Abstract

1. Introduction

2. Experimental

2.1. Synthesis and crystallization

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

3. Results and discussion

Table 1

Experimental details

Crystal data	
Chemical formula	
M _r	408.29
Crystal system, space group	?, ?
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.2314 (2), 7.5215 (1), 24.5475 (4)
α, β, γ (°)	90, 97.921 (1), 90
$V(Å^3)$	1871.04 (5)
Ζ	4
Radiation type	Μο Κα
$\mu (mm^{-1})$	2.22
Crystal size (mm)	$0.34 \times 0.33 \times 0.30$
Data collection	
Diffractometer	?
Absorption correction	_
No. of measured, independent and	43084, 4632, 3418
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.035
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.139, 1.05
No. of reflections	4632
No. of parameters	254
$\Delta \rho_{max}, \Delta \rho_{min} (e \ {\AA}^{-3})$	0.76, -0.71
Absorption correction No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta/\lambda)_{max} (Å^{-1})$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters $\Delta\rho_{max}, \Delta\rho_{min} (e Å^{-3})$	- 43084, 4632, 3418 0.035 0.667 0.044, 0.139, 1.05 4632 254 0.76, -0.71

Computer programs: SHELXT-2014 (Sheldrick, 2014), *SHELXL97* (Sheldrick, 1997), *ORTEP* for Windows (Farrugia, 2012), *WinGX* publication routines (Farrugia, 2012).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Blessing, R. H. (1987). Cryst. Rev. 1, 3-58.
- Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.
- Bruker (2012). *APEX2* (Version 2012.10-0), *SAINT* (version 8.27B), *SADABS* (version 2012/1), BrukerAXS Inc, Madison, Wisconsin, USA.
- ABSCOR: Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- CAD-4 Software: Enraf-Nonius (1989). CAD-4 Software (or CAD-4 EXPRESS). Enraf-Nonius, Delft, The Netherlands.
- Cambridge Structural Database: Allen, F. R. (2002). Acta Cryst. B58, 380-388.
- *CAMERON*: Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.
- *CrysAlis CCD*, *CrysAlis RED* and associated programs: Oxford Diffraction (2006). Program name(s). Oxford Diffraction Ltd, Abingdon, England.
- CRYSTALS: Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- COLLECT: Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- DENZO/SCALEPACK: Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- DIAMOND: Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- DIF4 and REDU4: Stoe & Cie (1991). Program name(s). Stoe & Cie, Darmstadt, Germany.
- DIFABS: Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- DIRAX: Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- *DIRDIF2008*: Beurskens, P. T., Beurskens, G., de Gelder, R., Garciía-Granda, S., Gould, R. O. & Smits, J. M. M. (2008). The *DIRDIF2008* program system, Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.
- EDMA: Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.
- enCIFer: Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- EVALCCD: Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.
- JANA2000: Petricek, V. & Dusek, M. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
- Mercury: Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* **41**, 466–470.
- *Mogul*: Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). *J. Chem. Inf. Comput. Sci.* **44**, 2133–2144.
- ORTEPII: Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- *ORTEPIII*: Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- ORTEP-3: Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- PARST: Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- PLATON: Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- PROCESS: Rigaku (1996). PROCESS. Rigaku Corporation, Tokyo, Japan.
- PROCESS-AUTO: Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- publCIF: Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- SCHAKAL: Keller, E. (1999). University of Freiburg, Germany.
- SHELX: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- SHELXD: Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772-1779.
- SIR92: Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- SIR97: Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- SIR2002: Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- *SIR2004*: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). *J. Appl. Cryst.* **38**, 381–388.
- SIR2008 & IL MILIONE: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D., & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- SIR2011: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
- SUPERFLIP: Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- *TEXSAN*: Molecular Structure Corporation & Rigaku (2000). *TEXSAN*. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- WinGX: Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- X-AREA, X-RED, X-RED32, X-SHAPE: Stoe & Cie (2002). Program name(s). Stoe & Cie GmbH, Darmstadt, Germany.
- XCAD4: Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- XSCANS: Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Computing details

Program(s) used to solve structure: SHELXT-2014 (Sheldrick, 2014); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP* for Windows (Farrugia, 2012); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2012).

(shelx)

Crvstal data

5	
$\begin{split} M_r &= 408.29 \\ a &= 10.2314 \ (2) \ \text{\AA} \\ b &= 7.5215 \ (1) \ \text{\AA} \\ c &= 24.5475 \ (4) \ \text{\AA} \\ a &= 90^{\circ} \\ \beta &= 97.921 \ (1)^{\circ} \\ \gamma &= 90^{\circ} \\ V &= 1871.04 \ (5) \ \text{\AA}^3 \\ Z &= 4 \end{split}$	F(000) = 840 $D_x = 1.449 \text{ Mg m}^{-3}$ Melting point: 0 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 0 reflections $\theta = 0-0^{\circ}$ $\mu = 2.22 \text{ mm}^{-1}$ T = 293 K $0.34 \times 0.33 \times 0.30 \text{ mm}$
Data collection	
Graphite monochromator 43084 measured reflections 4632 independent reflections 3418 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$ $h = -13 \rightarrow 13$ $k = -10 \rightarrow 9$ $l = -32 \rightarrow 30$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.139$ S = 1.05 4632 reflections 254 parameters 0 restraints 0 constraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0705P)^2 + 0.8381P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.76$ e Å ⁻³ $\Delta\rho_{min} = -0.71$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2) for (shelx)

	x	у	Ζ	Uiso*/Ueq
Br1	0.96299 (4)	0.76868 (5)	0.231467 (13)	0.07914 (16)

O3	0.7709 (2)	0.9253 (2)	0.49427 (8)	0.0628 (5)
01	0.4220 (2)	0.7071 (3)	0.36264 (9)	0.0721 (6)
O4	0.9149 (2)	0.7426 (2)	0.54317 (10)	0.0708 (6)
N1	0.6899 (2)	0.3122 (3)	0.47492 (9)	0.0533 (5)
O2	0.3495 (2)	0.4265 (3)	0.35881 (10)	0.0821 (7)
C11	0.7444 (2)	0.6165 (3)	0.48054 (8)	0.0430 (5)
C10	0.7649 (2)	0.4494 (3)	0.50023 (9)	0.0462 (5)
C3	0.7274 (2)	0.6808 (3)	0.37963 (9)	0.0447 (5)
C8	0.5516(2)	0.5009 (3)	0.41607 (9)	0.0467 (5)
C7	0.6505 (2)	0.6517 (3)	0.42776 (9)	0.0443 (5)
C12	0.8083 (3)	0.7751 (3)	0.50617 (10)	0.0474 (5)
C9	0.5778 (2)	0.3377 (3)	0.43775 (10)	0.0491 (5)
C17	0.4314 (2)	0.5343 (4)	0.37711 (10)	0.0570 (6)
C6	0.8679 (3)	0.7322 (4)	0.29181 (10)	0.0548 (6)
C2	0.8128 (3)	0.5529 (4)	0.36496 (11)	0.0589 (6)
C1	0.8833 (3)	0.5779 (4)	0.32110 (12)	0.0645 (7)
C15	0.8595 (3)	0.3879 (4)	0.54869 (11)	0.0623 (7)
H15A	0.9482	0.3996	0.5406	0.093*
H15B	0.8421	0.2656	0.5563	0.093*
H15C	0.8486	0.4592	0.5802	0.093*
C5	0.7854 (3)	0.8629 (4)	0.30583 (13)	0.0679 (8)
C4	0.7164 (3)	0.8367 (4)	0.34961 (12)	0.0626 (7)
C16	0.4949 (3)	0.1735 (4)	0.42730 (14)	0.0656 (7)
H16A	0.4143	0.1883	0.4426	0.098*
H16B	0.5424	0.0732	0.4442	0.098*
H16C	0.4751	0.1539	0.3884	0.098*
C13	0.9757 (4)	0.8906 (4)	0.57496 (14)	0.0794 (9)
H13A	0.9669	0.998	0.5529	0.095*
H13B	1.0689	0.8672	0.5856	0.095*
C18	0.3173 (4)	0.7579 (6)	0.31924 (17)	0.0955 (13)
H18A	0.2444	0.675	0.3185	0.115*
H18B	0.2852	0.8753	0.327	0.115*
C19	0.3625 (5)	0.7592 (7)	0.26643 (19)	0.1165 (18)
H19A	0.4436	0.8247	0.2688	0.175*
H19B	0.2972	0.8145	0.24	0.175*
H19C	0.3769	0.6393	0.2552	0.175*
C14	0.9120 (5)	0.9147 (7)	0.62366 (19)	0.1271 (19)
H14A	0.8191	0.9333	0.613	0.191*
H14B	0.9493	1.0161	0.6439	0.191*
H14C	0.9253	0.8106	0.6464	0.191*
H7	0.601 (3)	0.766 (3)	0.4346 (10)	0.036 (6)*
H4	0.658 (3)	0.924 (5)	0.3589 (14)	0.079 (10)*
H1A	0.712 (3)	0.208 (4)	0.4866 (12)	0.055 (8)*
Н5	0.775 (3)	0.970 (5)	0.2867 (15)	0.089 (11)*
H2	0.822 (3)	0.443 (4)	0.3841 (13)	0.069 (9)*
H1	0.941 (3)	0.490 (5)	0.3098 (14)	0.079 (10)*
		~ /		

Atomic displacement parameters $(Å^2)$ for (shelx)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Br1	0.0842 (3)	0.0994 (3)	0.0581 (2)	-0.01673 (17)	0.02506 (16)	0.00708 (15)

supporting information

O3	0.0726 (12)	0.0443 (10)	0.0684 (11)	-0.0014 (8)	-0.0012 (9)	0.0019 (8)
01	0.0599 (12)	0.0844 (15)	0.0671 (12)	0.0119 (10)	-0.0087 (10)	0.0120 (10)
O4	0.0808 (15)	0.0547 (11)	0.0687 (13)	-0.0008 (9)	-0.0189 (11)	-0.0065 (8)
N1	0.0597 (13)	0.0382 (11)	0.0610 (12)	0.0020 (9)	0.0050 (10)	0.0028 (9)
O2	0.0593 (12)	0.0995 (17)	0.0822 (15)	-0.0096 (12)	-0.0090 (10)	-0.0100 (13)
C11	0.0498 (12)	0.0414 (11)	0.0377 (10)	0.0023 (9)	0.0059 (8)	-0.0007 (8)
C10	0.0513 (12)	0.0455 (12)	0.0422 (11)	0.0036 (10)	0.0072 (9)	0.0012 (9)
C3	0.0466 (12)	0.0461 (12)	0.0397 (10)	0.0002 (9)	-0.0001 (8)	0.0024 (9)
C8	0.0441 (11)	0.0533 (13)	0.0433 (11)	0.0017 (10)	0.0086 (9)	-0.0054 (9)
C7	0.0504 (12)	0.0415 (11)	0.0405 (10)	0.0064 (9)	0.0050 (9)	0.0007 (9)
C12	0.0556 (14)	0.0461 (13)	0.0409 (11)	0.0004 (10)	0.0078 (10)	0.0005 (9)
C9	0.0501 (13)	0.0474 (13)	0.0518 (12)	-0.0026 (10)	0.0139 (10)	-0.0075 (10)
C17	0.0452 (13)	0.0780 (18)	0.0484 (13)	0.0039 (12)	0.0085 (10)	-0.0067 (12)
C6	0.0549 (14)	0.0682 (16)	0.0411 (12)	-0.0112 (12)	0.0060 (10)	0.0023 (10)
C2	0.0747 (17)	0.0513 (14)	0.0530 (14)	0.0113 (12)	0.0169 (12)	0.0092 (11)
C1	0.0752 (18)	0.0657 (17)	0.0557 (14)	0.0133 (14)	0.0201 (13)	0.0033 (12)
C15	0.0743 (18)	0.0535 (15)	0.0553 (14)	0.0072 (13)	-0.0046 (12)	0.0086 (11)
C5	0.0760 (19)	0.0635 (18)	0.0661 (17)	0.0052 (14)	0.0160 (14)	0.0242 (14)
C4	0.0680 (17)	0.0568 (16)	0.0650 (16)	0.0131 (13)	0.0158 (13)	0.0152 (13)
C16	0.0613 (16)	0.0547 (15)	0.0816 (19)	-0.0092 (13)	0.0130 (14)	-0.0072 (14)
C13	0.087 (2)	0.0659 (19)	0.078 (2)	-0.0103 (16)	-0.0155 (17)	-0.0090 (16)
C18	0.067 (2)	0.136 (4)	0.078 (2)	0.030 (2)	-0.0103 (18)	0.018 (2)
C19	0.088 (3)	0.176 (5)	0.082 (3)	0.014 (3)	0.001 (2)	0.043 (3)
C14	0.149 (4)	0.136 (4)	0.103 (3)	-0.060 (3)	0.040 (3)	-0.058 (3)

Geometric parameters (Å, °) for (shelx)

Br1—C6	1.901 (3)	C2—C1	1.389 (4)
O3—C12	1.215 (3)	C2—H2	0.95 (3)
O1—C17	1.347 (4)	C1—H1	0.95 (3)
O1—C18	1.454 (4)	C15—H15A	0.96
O4—C12	1.342 (3)	C15—H15B	0.96
O4—C13	1.449 (3)	C15—H15C	0.96
N1C9	1.377 (3)	C5—C4	1.379 (4)
N1-C10	1.381 (3)	C5—H5	0.93 (4)
N1—H1A	0.85 (3)	C4—H4	0.94 (4)
O2—C17	1.207 (3)	C16—H16A	0.96
C11—C10	1.352 (3)	C16—H16B	0.96
C11—C12	1.461 (3)	C16—H16C	0.96
C11—C7	1.526 (3)	C13—C14	1.450 (6)
C10-C15	1.500 (3)	C13—H13A	0.97
C3—C2	1.380 (4)	C13—H13B	0.97
C3—C4	1.381 (4)	C18—C19	1.435 (6)
С3—С7	1.523 (3)	C18—H18A	0.97
С8—С9	1.350 (4)	C18—H18B	0.97
C8—C17	1.472 (3)	C19—H19A	0.96
C8—C7	1.521 (3)	C19—H19B	0.96
С7—Н7	1.02 (2)	C19—H19C	0.96
C9—C16	1.500 (4)	C14—H14A	0.96
C6—C1	1.363 (4)	C14—H14B	0.96
C6—C5	1.371 (4)	C14—H14C	0.96

C17—O1—C18	117.8 (3)	C10-C15-H15B	109.5
C12—O4—C13	118.2 (2)	H15A—C15—H15B	109.5
C9—N1—C10	123.6 (2)	C10-C15-H15C	109.5
C9—N1—H1A	120 (2)	H15A—C15—H15C	109.5
C10-N1-H1A	116 (2)	H15B-C15-H15C	109.5
C10-C11-C12	124.5 (2)	C6—C5—C4	119.5 (3)
C10-C11-C7	120.9 (2)	С6—С5—Н5	122 (2)
C12—C11—C7	114.58 (19)	C4—C5—H5	119 (2)
C11-C10-N1	119.0 (2)	C5—C4—C3	121.6 (3)
C11—C10—C15	128.4 (2)	C5—C4—H4	120 (2)
N1-C10-C15	112.6 (2)	C3—C4—H4	118 (2)
C2—C3—C4	117.4 (2)	C9—C16—H16A	109.5
C2—C3—C7	121.0 (2)	C9—C16—H16B	109.5
C4—C3—C7	121.5 (2)	H16A—C16—H16B	109.5
C9—C8—C17	120.9 (2)	C9—C16—H16C	109.5
C9—C8—C7	120.9 (2)	H16A—C16—H16C	109.5
C17—C8—C7	118.0 (2)	H16B—C16—H16C	109.5
C8 - C7 - C3	111.23 (18)	04-C13-C14	109.4(3)
C8—C7—C11	110.82 (19)	04—C13—H13A	109.8
C_{3} C_{7} C_{11}	110.52 (19)	C14—C13—H13A	109.8
C8—C7—H7	109.2 (14)	O4-C13-H13B	109.8
C_{3} C_{7} H7	109.2(11) 108.9(14)	C14—C13—H13B	109.8
C11—C7—H7	105.9(14)	$H_{13}A - C_{13} - H_{13}B$	109.0
03 - 012 - 04	103.9(11) 122.1(2)	$C_{19} - C_{18} - O_{1}$	111.5(4)
03 - 012 - 04	122.1(2) 123.2(2)	$C_{19} - C_{18} - H_{18A}$	100.3
04-012-011	123.2(2) 114.6(2)	01 - C18 - H18A	109.3
$C_{4} = C_{12} = C_{11}$	114.0(2) 110.3(2)	C_{10} C_{18} H_{18} H_{18}	109.3
C_{8} C_{9} C_{16}	117.3(2) 127.2(2)	01 C18 H18B	109.3
$N_1 = C_2 = C_1 C_1 C_2$	127.2(2) 113.5(2)		109.5
11 - 0 - 01	113.3(2) 121.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 5
02 - 017 - 01	121.9(3)	C18 = C19 = H19A	109.5
02 - 01 - 08	127.0(3)		109.5
OI = CI / = C8	111.0(2)	HI9A - CI9 - HI9B	109.5
CI = CO = CS	120.0 (3)	C18—C19—H19C	109.5
CI = Co = BrI	120.0 (2)	H19A—C19—H19C	109.5
$C_{2} = C_{0} = Br_{1}$	119.4 (2)	HI9B—CI9—HI9C	109.5
$C_3 = C_2 = C_1$	121.5 (2)	CI3-CI4-HI4A	109.5
C3—C2—H2	119.8 (19)	C13—C14—H14B	109.5
С1—С2—Н2	118.6 (19)	HI4A—CI4—HI4B	109.5
C6—C1—C2	119.3 (3)	C13—C14—H14C	109.5
C6—C1—H1	118 (2)	H14A—C14—H14C	109.5
C2—C1—H1	123 (2)	H14B—C14—H14C	109.5
C10—C15—H15A	109.5		
C12-C11-C10-N1	174.4 (2)	C17—C8—C9—N1	-178.7 (2)
C7-C11-C10-N1	-6.2 (3)	C7—C8—C9—N1	6.0 (3)
C12-C11-C10-C15	-4.0 (4)	C17—C8—C9—C16	-0.6 (4)
C7-C11-C10-C15	175.3 (2)	C7—C8—C9—C16	-175.8 (2)
C9—N1—C10—C11	-13.4 (4)	C10—N1—C9—C8	13.6 (4)
C9—N1—C10—C15	165.3 (2)	C10-N1-C9-C16	-164.9 (2)
C9—C8—C7—C3	101.2 (2)	C18—O1—C17—O2	-6.8 (4)

C17—C8—C7—C3	-74.2 (3)	C18—O1—C17—C8	172.6 (3)	
C9—C8—C7—C11	-22.3 (3)	C9—C8—C17—O2	-3.4 (4)	
C17—C8—C7—C11	162.4 (2)	C7—C8—C17—O2	171.9 (3)	
C2—C3—C7—C8	-65.8 (3)	C9—C8—C17—O1	177.2 (2)	
C4—C3—C7—C8	115.3 (3)	C7—C8—C17—O1	-7.5 (3)	
C2—C3—C7—C11	57.8 (3)	C4—C3—C2—C1	-1.2 (4)	
C4—C3—C7—C11	-121.1 (3)	C7—C3—C2—C1	179.9 (3)	
C10-C11-C7-C8	22.4 (3)	C5-C6-C1-C2	1.0 (5)	
C12—C11—C7—C8	-158.2 (2)	Br1-C6-C1-C2	-179.8 (2)	
C10-C11-C7-C3	-101.4 (3)	C3—C2—C1—C6	0.0 (5)	
C12—C11—C7—C3	77.9 (3)	C1—C6—C5—C4	-0.7 (5)	
C13—O4—C12—O3	8.4 (4)	Br1-C6-C5-C4	-180.0 (2)	
C13—O4—C12—C11	-173.3 (3)	C6—C5—C4—C3	-0.6 (5)	
C10-C11-C12-O3	-165.5 (3)	C2—C3—C4—C5	1.5 (4)	
C7—C11—C12—O3	15.2 (4)	C7—C3—C4—C5	-179.6 (3)	
C10-C11-C12-O4	16.3 (4)	C12—O4—C13—C14	87.4 (4)	
C7-C11-C12-O4	-163.1 (2)	C17—O1—C18—C19	-93.7 (4)	