Supporting Information

Dissipation kinetics and degradation products of cyantraniliprole in tomato plants and soil in the open field

Mohamed Abdelhady Kandil^a, Moataz Abdelmonem Mahmoud Moustafa^a, Mohammed Abdallah Saleh^b, Izat Raafat Ateya^{b*}

 ^a Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt.
 ^b Department of Pesticides Analysis Researches, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, 12618 Giza, Egypt

Corresponding Author: Izat Raafat Ateya

E-mail address: ezatraafat0@gmail.com

 Table S1. Soil characterization

Soil parameter	Values
Texture	Clay
Clay %	89.5
Sand %	1.5
Silt %	9
organic matter %	1.9
pH in water (1:2.5)	8.6
electrical conductivity dS m ⁻¹	2.92
Nitrogen mg kg ⁻¹	138
Phosphorus mg kg ⁻¹	8.34
Potassium mg kg ⁻¹	183
ionic composition mEq L ⁻¹	
Ca ²⁺	9.5
Mg^{2+}	5.5
Na ⁺	13.55
K ⁺	0.62
Co ₃ -	-
HCO ₃ -	1
Cl-	18.5
So 4 ²⁻	9.47

Fig. S1. Residue dissipation curves of cyantraniliprole in tomato fruits (A), leaves (B) and soil (C) after application with recommended dose (75 ml 100L⁻¹).

Fig. S2. Mass spectra of cyantraniliprole on LC-MS.

Fig. S3. Mass spectra of IN-J9Z38 on LC-MS.

Fig. S4. Mass spectra of IN-RNU71 on LC-MS.

Fig. S5. Mass spectra of IN-NXX70 on LC-MS.

Fig. S6. Mass spectra of IN-MLA84 on LC-MS.

Fig. S7. Mass spectra of IN-MYX98 on LC-MS.

Fig. S8. Mass spectra of IN-HGW87 on LC-MS.

Fig. S9. Mass spectra of IN-NXX69 on LC-MS.

Fig. S10. Mass spectra of IN-M2G98 on LC-MS.

Fig. S11. Mass spectra of TP439 on LC-MS.

Fig. S12a. Transformation pathways of cyantraniliprole.

Fig. S12b. Transformation pathways of cyantraniliprole.