Volatile compounds isolated from leaves and roots respectively of *Artemisia ifranensis* and *Anacyclus pyrethrum* species, by hydrodistillation, were analyzed by (GC/FID) and (GC/MS). Oils chemical profile of plant species showed the presence of major compounds among the identified constituents, this is respectively β-thujone (41.12 %) and spathulenol (16.9 %). Essential oils studied are screened also for their, *in vitro*, antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The noted results reported that *Artemisia ifranensis* essential oil exhibited promising antioxidant profile, and revealed an antioxidant property more important (IC$_{50}$ = 5.9 mg/ml) than that of ascorbic acid used in food and pharmaceutical industries (IC$_{50}$ = 8.09 mg/ml). This essence can be considered as a valuable source of natural antioxidants. Hence, oil of *A. pyrethrum* has a low efficient antioxidant potency (IC$_{50}$ values 30.05 mg/ml), compared to the tested samples.

The results supported the traditional usage and also possible use of plants volatile oils in combination with other preservatives to protect food materials against a variety of oxidative systems, in pharmaceutical and cosmetic industries.

Keywords: *Artemisia ifranensis* J. Didier; *Anacyclus pyrethrum* Link; Essential oil; Chemical composition; DPPH; Antioxidant activity.

1. Introduction

Environmental protection has become an increasingly important global concern in recent decades. Several questions have arisen regarding the efficacy and safety, on human health, of chemicals used in medicine or in the food industry.

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced in cells by different means [1]. Oxidative stress by free radicals is an important event in cell that can cause aging and degenerative diseases; may cause DNA damage that could lead to mutation and lipid peroxidation in foods that leads to their deterioration. All aerobic organisms, including human beings, have antioxidant defenses that protect against oxidative damage. However, these natural antioxidant mechanisms can be inefficient, and hence dietary intake of antioxidant compounds becomes important.

Aromatic plants, especially essential oils (EOs), have been used for millennia for their health benefits, well documented in ancient literature [1]. On the other hand, several EOs have been attributed good antioxidant properties. Therefore, the search for natural antioxidants with the virtue of being nontoxic has given rise to a large number of studies on the antioxidant potential of EOs.

---

*Corresponding author e-mail: hananeelazzouzi@yahoo.fr* (Hanane Elazzouzi). Receive Date: 18 April 2020, Revise Date: 02 May 2020, Accept Date: 13 June 2020 DOI: 10.21608/EJCHEM.2020.28171.2594 ©2020 National Information and Documentation Center (NIDOC)
The genus *Artemisia* is one of the largest and most widely distributed genera of the Asteraceae family [2]. Members of this genus have botanical and pharmaceutical interest due to their characteristic scent or taste and are used in the liqueur-making industry [1]. In Morocco, about 12 species have been reported of the *Artemisia* genus [3]. *Artemisia ifranensis*, endemic specie of Morocco, grows naturally in Middle Atlas at an altitude of 1600 to 2100 m [4,5]. Locally known as ‘chih’, ‘izri’, and ‘ifsii’, this specie is regarded as an antiseptic intestinal tonic, stomachic, spasmodic and diuretic. The plant is highly effective against some pathogenes thus confirming its use as antirabies [5].

The genus *Anacyclus* (Asteraceae) includes 13 annual and perennial species mainly concentrated in the northwest of Africa [6]. *Anacyclus pyrethrum* is among the plant species, endemic and spontaneous of Morocco, highly valued for the medicinal properties of its roots [5,7]. Locally referred to as Aud el-attas, Akkar Karha, Igendass, and Tigendaste, it is found in the Middle Atlas, High Atlas and Highlands of Eastern Morocco (Jerada region) at altitudes between 1000 and 2500 m and in the Rif to the Chaouene region in the Jebel Assilah, and the Tizi-n-Lei valley [7]. Previous chemical studies showed that *A. pyrethrum* has immunostimulating, anti-inflammatory, antioxidant, anabolic, and aphrodisiac properties [8]. It has appreciated as a tonic nervous system (paralysis and epilepsy) [9], and it is used for its insecticidal properties [10].

The present study deals with the chemical diversity of their constituents and its influences on the oxidative stability of species EOs, highlighting their potential antioxidant properties.

2. Materials and methods

2.1. Plant material

The leaves and roots parts of Wild *Artemisia ifranensis* and *Anacyclus pyrethrum*, respectively, were collected during June, from the Timahdite region (33° 14' 13" N; 5° 03' 36" W at 1800 m altitude) that is located in the Moroccan Middle Atlas with a semi-arid climate and characterized by an average rainfall of 695 mm/year. Afterward, they were dried in the shade (at room temperature). A botanical identification of the species was carried out by Professor Mohamed Ibn Tattou of the National Herbarium at the Rabat Scientific Institute (Morocco). Voucher specimens have been deposited in the herbarium of the same Institute.

2.2. Essential oils isolation

In this section, the materials evaluated for their antioxidant activity consist of the essential oils derived from the leaves and roots respectively of *A. ifranensis* and *A. pyrethrum*. The essential oils were extracted by hydrodistillation of 100g leaves and roots of studies species during three hours with a Clevenger-type apparatus. Then, the oils were dried using anhydrous sodium sulfate [11], and stored in dark at 4°C until use.

2.3. Analyses and identification of essential oils chemical composition

2.3.1. Analysis of essential oils constituents by GC-FID and GC-MS

Chromatographic analyses of EOs samples were performed with gas chromatograph Thermo Electron type (Trace GC Ultra) equipped with a column DB-5 (5% phenyl-methyl-siloxane) (30m x 0.25 mm x 0.25 microns film thickness), a FID detector set at 250°C and fed with a gas mixture H2/air. The device was equipped with an injector PVT (Programmed Temperature Vaporization) of split-splitless type. The mode of injection is split (ratio: 1/50, debit: 66 ml/min); the carrier gas used is nitrogen with a flow rate of 1 ml/min. The column temperature is programmed at a rate of 4 mounted °C/min from 50 to 200°C for 5min. GC-MS was carried out on chromatograph Thermo Electron type (Trace GC Ultra) coupled to a mass spectrometer Thermo Electron Trace MS system (Thermo Electron: Trace GC ultra; Polaris Q MS). Fragmentation is performed by electron impact at 70eV. Electron ionization mass spectra were acquired over the mass range 50–350 m/z. The used column was a column DB-5MS (5% phenyl-methyl-siloxane) (30m x 0.25 mm x 0.25 microns film thickness). The column temperature is programmed at a rate of 4 mounted °C/min from 50 to 200°C for 5min. The carrier gas is helium with a flow rate set at 1.5ml/min. The injection mode is split type (ratio: 1/70, flow: ml min⁻¹).

2.3.2. Identification of essential oils constituents

Determination of chemical composition of *A. ifranensis* and *A. pyrethrum* oils has been performed based on the comparison of their retention indices (RI). Theses indices were calculated based on the relation between the compounds and linear alkanes (C₁₀–C₆₅) injected in the experimental condition and compared to those in the literature [12,13]. The mass spectra were also compared to different references as Adams [13], Nist library (1998).
2.4. Evaluation of antioxidant activity by DPPH* free radical scavenging method

The experiment was carried out using the spectrophotometric quantification method cited above. The capacity of prepared extracts to scavenge the ‘stable’ free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was monitored using a published DPPH* radical scavenging activity assay method [14,15] with some slight modifications. The solution of DPPH* (1,1-diphenyl-di-picrylhydrazyl) at 6.10^{-5} M is obtained by dissolving 2.4 mg of the powder in 100 ml of ethanol. The samples to be tested were prepared by dissolution in ethanol at a rate of 20 μl/ml. The test is performed by mixing a volume of 2.8 ml of the previous solution of DPPH* with 200 μl of essential oil of our samples as well as Ascorbic acid at different final concentrations (0 to 200 μg/ml). The mixtures were well shaken and kept at room temperature in the dark for 30 minutes. The absorbance is read at 515 nm against a blank that contains only ethanol. Ascorbic acid was used as positive controls (Reference). The anti-radical activity is expressed as the percentage of reduction or inhibition (I %) of free radical DPPH* according to the following equation [16,17]:

\[ I (%) = \frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \times 100 \]

I (%): Percentage of inhibition.
Abs control: Absorbance of the solution containing only the solution of the radical DPPH*.
Abs sample: Absorbance of the solution of the samples EO to be tested in the presence of DPPH*.

The IC_{50} values (EO concentration providing 50% inhibition) were determined graphically from the polynomial trend curves of 3rd degree plotted, representing the inhibition percentages as a function of the different doses of the tested EOs. IC_{50} values are expressed in mg/ml, which is inversely related to antioxidant capacity [18,19].

2.5 Statistical analysis

The experimental data obtained were expressed as an average. The statistical analysis of the data, including the correlation coefficient of the antioxidant properties, was carried out using Excel software (Microsoft Office 2010). Values expressed as means ± standard deviation were used to compare averages of essential oils yield among samples.

3. Results and Discussions

3.1. Yields and chemical composition of essential oils

Yields of A. ifranensis and A. pyrethrum EOs obtained during harvest period (June) have been calculated from dry plant material. The yield of Artemisia ifranensis (1.11 ± 0.3 %) is higher than that of A. pyrethrum (0.07 ± 0.1 %). However, this rate of wormwood EO seem to be higher than those obtained from Moroccan Artemisia sp. such as A. herba alba, A. negrei and A. mesatlantica (0.43, 0.38 and 0.36% respectively) [33], and those obtained in other studies on Artemisia species [20,21,22]. On the other side, our results are lower than those of A. herba alba collected in 2012 from different altitudes (southwest of Tunisia), were obtained a yields (2.70-2.80 %) [23]. In addition, yield of Anacyclus pyrethrum’s EO is relatively higher than that obtained in Algeria by Selles et al., (2013) (0.019 %) [24]. Likewise, this difference in yields can be explained by the species’ nature, the effect of vegetative stage and regional soil conditions.

Chemical composition of theses EOs studied, determined by chromatography-flame ionization detector (GC/FID) and GC-mass spectrometry (GC/MS) analysis, has shown quantitative and qualitative changes (Figure 1, Table 1). The results obtained allowed identifying a total of forty six and thirty six compounds, representing respectively 84.6 and 91.82 %, in A. ifranensis and A. pyrethrum samples. The EOs chemical examination shows that A. ifranensis leaves contain oxygenated monoterpenes and sesquiterpenes, the abundant groups among identified compounds, their level attained respectively 45.7 and 31.1 %. Thus, oxygenated sesquiterpenes (90.58 %) was the most abundant in pyrethrum EO. On the other hand, β-thujone (41.12 %) is the major compound of A. ifranensis EO followed at small levels by components namely; α- bisabolone oxide A and (14.54 %) 8-ermoligenol (4.44 %). Therefore, the spathulenol (16.9 %), was main constituent in A. pyrethrum volatile extract. Other components were also relatively identified at low percentages: germacre-4(15),5,10(14)-trien-1-α-ol (12.89 %), Selina-3,11-dien-6α-ol (9.24 %) and caryophylene oxide (7.11 %) (Table 1).
EO of *A. ifranensis* mainly composed of β-thujone, can be classified as a β-thujone-chemotype. In fact, the chemical composition of the studied oils agrees with that reported by some researches previously conducted. β-thujone is also the main constituent of *A. mesatlantica* (56.3 %) and *A. arborescens* (68.5 %) [25,20]. However, the chemical composition of *A. herba alba* EOs from eastern Morocco (Guer cif), Tunisia and Algeria was totally different than that of our sample, which chrysanthenone (48.4 %), α-thujone (24.8 %) and α-Chrysanthenyl acetate (25.1 %) are the major compounds respectively [26, 27]. Moreover, camphor is the major compound of *A. negre i* from Morocco (55 %) [28]. EOs of *A. vulgaris* from Lithuania and Iran are mainly dominated respectively by Germacrene-D (15.1 %) and Isobornyl isobutyrate (38.0 %) [29,30].

In *A. pyrethrum* essential oil, spathulenol is the most important compound (Table 1). Thus, the plant EO can be classified as spathulenol chemotype. However, in other studies the results are quite different. *Anacyclus pyrethrum* EO from Algeria is dominated by germacrene-D and defined by the germacrene-D chemotype [31,24]. The study performed by Zardi-Bergaoui et al., 2008, reported that the *Anacyclus cyrtolepidioïdes* species, gathered in the south of Tunisia, is dominated by α-pinene [32]. Moreover, *A. clavatus* species in Tunisia, contain *Trans*-chrysanthenyl acetate (12.3 %) as major constituent [33].

<table>
<thead>
<tr>
<th>NP</th>
<th>Compounds</th>
<th>RI&lt;sub&gt;e&lt;/sub&gt;</th>
<th>RI&lt;sub&gt;i&lt;/sub&gt;</th>
<th>Area (%)</th>
<th>Compounds</th>
<th>RI&lt;sub&gt;e&lt;/sub&gt;</th>
<th>RI&lt;sub&gt;i&lt;/sub&gt;</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-Pine ne</td>
<td>931</td>
<td>939</td>
<td>0.1</td>
<td>α-Neocalitropsene</td>
<td>1470</td>
<td>1476</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>β-Pine ne</td>
<td>971</td>
<td>979</td>
<td>1.3</td>
<td>Germacrene D</td>
<td>1479</td>
<td>1481</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Cymene &lt;p&gt;</td>
<td>1023</td>
<td>1024</td>
<td>0.5</td>
<td>Trans-β-Ionone</td>
<td>1486</td>
<td>1488</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Cineol &lt;1,8&gt;</td>
<td>1030</td>
<td>1031</td>
<td>1.6</td>
<td>Cubebol</td>
<td>1514</td>
<td>1515</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>Terpinene &lt;γ&gt;</td>
<td>1058</td>
<td>1059</td>
<td>0.2</td>
<td>δ-Cadinene</td>
<td>1522</td>
<td>1523</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Sabine hydrate &lt;cis&gt;</td>
<td>1065</td>
<td>1070</td>
<td>-</td>
<td>Ar-Macrocarpene</td>
<td>1524</td>
<td>1526</td>
<td>0.40</td>
</tr>
<tr>
<td>7</td>
<td>Linalool oxide &lt;cis&gt;</td>
<td>1074</td>
<td>1072</td>
<td>0.1</td>
<td>Italiane c epoxide</td>
<td>1549</td>
<td>1548</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Trans-sabine hydrate</td>
<td>1096</td>
<td>1098</td>
<td>0.1</td>
<td>occidentalol</td>
<td>1553</td>
<td>1552</td>
<td>2.20</td>
</tr>
<tr>
<td>9</td>
<td>Thujone &lt;cis&gt;</td>
<td>1102</td>
<td>1102</td>
<td>1.1</td>
<td>1α,10α-Epoxy-amorph-4-ene</td>
<td>1568</td>
<td>1572</td>
<td>2.83</td>
</tr>
<tr>
<td>10</td>
<td>Thujone &lt;trans&gt;</td>
<td>1115</td>
<td>1114</td>
<td>41.1</td>
<td>Spathulenolα</td>
<td>1577</td>
<td>1578</td>
<td>16.90</td>
</tr>
<tr>
<td>11</td>
<td>Fenchol &lt;endo&gt;</td>
<td>1120</td>
<td>1116</td>
<td>0.3</td>
<td>Caryphylene oxide</td>
<td>1580</td>
<td>1583</td>
<td>7.11</td>
</tr>
<tr>
<td>12</td>
<td>Thujanol &lt;iso-3&gt;</td>
<td>1133</td>
<td>1138</td>
<td>0.1</td>
<td>β-copaen-4-α-ol</td>
<td>1588</td>
<td>1590</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Sabinol&lt;trans&gt;</td>
<td>1139</td>
<td>1142</td>
<td>0.8</td>
<td>Salvial-4(14)-en-1-one</td>
<td>1591</td>
<td>1594</td>
<td>4.66</td>
</tr>
<tr>
<td>14</td>
<td>Thujanol&lt;neo-3&gt;</td>
<td>1149</td>
<td>1153</td>
<td>0.1</td>
<td>Mayurone &lt; cis – dihydro&gt;</td>
<td>1597</td>
<td>1595</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Terpinen-4-ol</td>
<td>1176</td>
<td>1177</td>
<td>1.4</td>
<td>β-Atlantol</td>
<td>1606</td>
<td>1608</td>
<td>2.90</td>
</tr>
<tr>
<td>16</td>
<td>Terpeneol&lt;o&gt;</td>
<td>1190</td>
<td>1188</td>
<td>0.1</td>
<td>β-Biotol</td>
<td>1611</td>
<td>1613</td>
<td>5.16</td>
</tr>
<tr>
<td>17</td>
<td>Myrtenol</td>
<td>1196</td>
<td>1195</td>
<td>0.2</td>
<td>E-Isouegenol acetate</td>
<td>1619</td>
<td>1615</td>
<td>0.36</td>
</tr>
<tr>
<td>18</td>
<td>Dihydrocarveol&lt; iso&gt;</td>
<td>1214</td>
<td>1214</td>
<td>-</td>
<td>Trans-1sologifolane</td>
<td>1623</td>
<td>1626</td>
<td>0.45</td>
</tr>
<tr>
<td>19</td>
<td>Fragnanol</td>
<td>1216</td>
<td>1215</td>
<td>0.1</td>
<td>Murola-4,10(14)-dien-1-β-ol</td>
<td>1628</td>
<td>1631</td>
<td>1.81</td>
</tr>
<tr>
<td>20</td>
<td>Dihydrocarveol&lt;neo iso&gt;</td>
<td>1228</td>
<td>1228</td>
<td>1.0</td>
<td>β-Acorenol</td>
<td>1635</td>
<td>1637</td>
<td>2.58</td>
</tr>
<tr>
<td>21</td>
<td>Sabinyl acetate&lt;trans&gt;</td>
<td>1293</td>
<td>1290</td>
<td>0.1</td>
<td>Caryophylla-4(18), 8(13)-dien-5α-ol</td>
<td>1640</td>
<td>1640</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Dihydrocarveol acetate&lt;neo iso&gt;</td>
<td>1357</td>
<td>1359</td>
<td>0.2</td>
<td>3-iso-Tujopsanone</td>
<td>1638</td>
<td>1642</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Fig.1. GC-FID and GC-MS chromatograms of *A. ifranensis* (a) and *A. pyrethrum* (b) essential oils.
3.2. Scavenging effect of the free radical DPPH by essential oil plant extract

*A. ifranensis* and *A. pyrethrum* EOs, were subjected to screening for their possible antioxidant activity using the DPPH assays. This radical is generally one of the most widely used substrates for the rapid and direct assessment of antioxidant activity due to its radical form stability and the simplicity of analysis [34]. Results from these assays are presented in Figure 2:
The results reported above demonstrate the DPPH radical scavenging activities (% inhibition), caused by different concentrations of *A. ifranensis*, *A. pyrethrum* essential oils and vitamin C used as a positive control, which increased with increasing its concentration, until reaching a plateau that corresponds to the almost total containment of the DPPH present in the medium. The reduction of this radical is accompanied by its passage from the violet color (2.2 diphenyl-1-picyl hydrazyl (DPPH)) to the yellow color (2,2 diphenyl-1-picyl hydrazine (DPPH-H)) [35,36]. According to the obtained profiles (Figure 2), *A. ifranensis* essential oil show a significant activity in the DPPH-scavenging test and 83 % maximal inhibition was achieved at a concentration of 31 mg/ml. From the same concentration, where ascorbic acid exerted an antiradical effect reaching 77 % inhibition, the oil of *A. pyrethrum* show less efficient antioxidant power and only 62% inhibition percentage has been registered.

In the DPPH test, the analysis of the antioxidant activity results is also evaluated by comparison of the IC$_{50}$ values, the lowest value corresponds to the highest efficiency. This parameter has been used by several researchers groups to present their results [19]. Therefore, 50 % inhibitory concentration results are given below (Figure 3):

Data processing of the obtained results allowed us to deduce that tested *A. ifranensis* EO was the most active (IC$_{50}$ = 5.9 mg/ml) followed by the reference antioxidant (IC$_{50}$ = 8.09 mg/ml) (Figure 3), a solution containing a pure molecule of ascorbic acid, which was less effective. In other words, this oil is a good source of natural antioxidants. The essence of *A. pyrethrum* was found, however, less interesting (IC$_{50}$ values 30.05 mg/ml), it revealed poor radical scavenging activity compared to other tested samples.
This study is an original work that treats and highlights endemic species of Morocco. In the literature, no data have been previously published on antioxidant activity of Artemisia ifranensis and Anacyclus sp. EOs, including A. pyrethrum species. In fact, it is an original work which treats and highlights endemic species of Morocco. On the other hand, the antioxidant effect of certain Artemisia genus oils has been recorded in several works. Pradeep et al. (2013) reported similar results, they found that the Indian A. nilagirica oil has a significant trapping effect compared to vitamin C (EC₅₀ = 65.4 ± 0.03 and 125 ± 0.022 µg/ml, respectively) [37]. It also seems that A. arborescence EO has a powerful antioxidant effect interpreted by an IC₅₀ (6.26 mg/ml) very close to that of vitamin C (5.33 mg/ml) [38]. Similarly, in another study of A. campestris EO, it has a significant trapping property since it acts at a low dose (IC₅₀ = 3.5 mg/ml) [39]. In contrast, A. absinthium and A. spicigera EOs (from India and Iran successively) reveals IC₅₀ values of 0.014 mg/ml and 0.086 ± 2.23 mg/ml respectively. These values remain modest compared to that recorded for ascorbic acid (0.003 mg/ml and 0.0021 ± 0.23 mg/ml, respectively) [40, 41]. In other works, researchers have tested the antioxidant activity of A. herba alba essence collected in different regions of Tunisia: Sidi Bouzid and Kairouan. They deduce that oil sample from Sidi Bouzid region is more efficient to reduce the DPPH radicals (IC₅₀ = 0.05 mg/ml) than that from the Kairouan region (IC₅₀ = 5.03 mg/ml). Comparison of the DPPH scavenging activity of the investigated essential oils from Tunisia and those expressed by BHT showed that the oils possessed weaker antioxidant effects than BHT standard (0.037 and 0.015 mg/ml respectively) [42, 43]. In another study, EOs radical trapping effect of various populations of A. chamaemelifolia collected in vegetative and flowering stages was evaluated. In both stages, IC₅₀ values varied between 0.310 ± 11.9 and 0.809 ± 42.2 mg/ml respectively. Then, the positive control tested, the most efficient antioxidant, has value (IC₅₀ = 0.076 ± 11.3 mg/ml) [44].

Moreover, in the literature the antioxidant activity of essential oils formed from complex mixtures of chemical compounds, having various functional groups; can be attributed to various mechanisms that due to their redox properties, the compounds act as reducing agents donors of hydrogen and singlet oxygen [45, 46]. Thus, it has been established in large works that the activity of an essential oil relates to the majority compounds, but there may also be another minority compounds which can interact in a synergistic (or antagonistic) manner to create a system effective against free radicals [47, 48, 49]. In general, EOs rich in oxygenated compounds exhibit more marked antiradical activity than those with hydrocarbon terpenes [43,50,51,52]. It also seems that the antioxidant performance of EOs is due to the presence of phenolic compounds, known to be good antioxidants [48,53]. Indeed, strong antioxidant activity observed in A. ifranensis essential oil should be attributed to their main components. From the results on chemical composition above, A. ifranensis oil contain higher amount of oxygenated monoterpenes and sesquiterpenes (45.7 % and 31.1 % respectively), which promotes its property of being a radical scavenging agent. Therefore the intervention of main oxygenated monoterpene compound β-thujone (41.12 %), known for its antioxidant potential [54,55], or even major oxygenated sesquiterpenoids such as α-bisabolone oxide A (14.54 %) and eremoligenol (4.44 %), expresses the powerful antioxidant activity. However, the antioxidant activity of the major compounds tested separately often gives lower results, compared to the activity of all of the essential oil. In general, the synergistic interactions between the different constituents of the oil are responsible for a much greater antioxidant power [56,57]. Indeed, the synergistic (co-activity) effect of more than one oil compound can be held, which confirms the above hypothesis. In fact, it is assumed that the contribution of minor and major compounds exhibited this activity and not only one or few active molecules. However, one last study have also reported similar results, β-thujone (41.9 %) is in fact responsible for the potent antioxidant activity of A. herba-alba essential oil [43]. Thus, other researchers have reported that the antioxidant capacity of A. nilagica and A. absinthium EOs was attributed to the major compounds β-thujone, which is in concord with our present data [37,58]. In contrary, Shyau et al. (2016) have reported different results[59]. The essential oil of Moroccan A. herba alba, is characterized by its weak antioxidant activity (IC₅₀ = 77 ± 3.69 mg/ml).
compared to the positive control (IC$_{50}$ = 0.14 ± 0.001 mg/ml); it is in agreement with a previous study [58]. Therefore, thujone present in high concentrations (59.07 %), in oil of A. herba alba, has lower antioxidant potency [57].

About Anacyclus pyrethrum, EO demonstrated moderate antioxidant activity in the model assayed. The chemical profile of EO, is characterized by a high abundance of oxygenated sesquiterpene compounds (90.58 %). Quite obviously, the modest antioxidant activity of species can be linked to the majority phenolic compound spathulenol (13.31 %). These results have been reported by another work, which attribute the weak scavenger effect to the presence of main constituents, especially spathulenol [60]. On the other hand, this compound is also may account, in part, for the good antioxidant potential reported in else studies [61,62]. In fact, the weak antioxidant activity of oil can be attributed to the absence of some components that have DPPH radical scavenging effect, also with the antagonistic effect created by the minor compounds of the essence.

These results lead to conclude that it is very difficult to attribute the antioxidant effect of an essential oil to one or a few active principles, because an essential oil always contains a mixture of different chemical compounds. In addition to the major compounds, also minor compounds may make a significant contribution to the oil activity.

4. Conclusion
This study characterized and provided data on the chemical composition and antioxidant activity of A. ifranensis and A. pyrethrum essential oils. The chemical composition of Moroccan species, respectively, confirms the predominance of β-thujone and spathulenol chemotypes respectively. Subsequently the antioxidant potentialities were analyzed in terms of DPPH radical scavenging assays. This in vitro assay indicates that the essential oil of wormwood possesses a strong antioxidant potency, enough to reduce DPPH radicals, than of synthetic antioxidant and pyrethrum oil.

From the obtained results, it is obvious that the essential oils chemical composition has an important impact on the antioxidant activity. However, this antioxidant activity cannot be attributed to the sole presence of the major compounds, synergistic interactions between the various constituents of essential oil are also to be taken into consideration. Thus, antioxidant activity of studied essential oils, especially that of A. ifranensis, constitutes a potential source of natural antioxidants in foods in order to find possible alternative to synthetic antioxidant, and the pharmaceutical industry for the prevention the progress of numerous oxidative stresses and the treatment of various human diseases.

5. Compliance with ethical standards
The authors declare no conflict of interest.

6. Acknowledgements
This study was supported by Mohammed V University, Faculty of Sciences, Rabat in collaboration with Moulay Ismail University, Faculty of Sciences, Meknes, Morocco.

7. References
47. Ghareeb M.A., Refahy L.A., Saad A.M., Ahmed W.S., Chemical composition, antioxidant and anticancer activities of the
essential oil from *Eucalyptus citriodora* (Hook.) leaves. Der Pharma Chemica, 8(1), 192-200 (2016).


