Isolation, Identification, Thermal Analysis, DFT Calculations and Antioxidant Activity Studies of Lichen Metabolites Norstictic Acid and Evernic Acid

M.A. Zayed1* and Nedeljko T. Manojlović2
1Chemistry Department, Faculty of Science, Cairo University, 12613 Giza Egypt
2Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia

Abstract

This manuscript deals with successful trials to isolate two lichen acids (Norstictic and Evernic acids) from natural sources. The isolated compounds were purified, crystallized from suitable solvent, and their melting points were measured. Their structures were identified by elemental analyses, spectroscopic tools (Electronic spectra, FT-IR), Mass and finally using thermal analyses (TG, DTG and DTA). Their thermal fragmentation pathways were compared with mass fragmentation. These fragmentation pathways were compared with the theoretical molecular orbital calculations (DFT-MOCs). The molecular structures of the title compounds in the ground state were optimized by a DFT method using B3LYP functional combined with 6-311G**(d) basis set. Calculations were carried out using GAUSSIAN 09 suite of programs. In addition, antioxidant activity of norstictic acid and evernic acid were determined. The results showed that both compounds exhibited antioxidant activity, but that the norstictic acid showed several times higher activity than evernic acid. This study refers to successful obtaining of these biologically active acids from natural sources and of wide biomedical applications.

Key words: Isolation, Norstictic acid, Evernic acid, Spectroscopic studies, Thermal Analyses, DFT-MOCs, Biological Activities.

1. Introduction:

Lichens are biosynthesize unique secondary phenolic compounds that possess different types of biological activities Ranković, 2015 [1]. They often contain compounds from the group of phenols, depsides, depsidones, dibenzofurans, xanthones and anthraquinones. Extract of some lichens and their secondary metabolites have many biological activities, primarily including antioxidant, antimicrobial, anti-inflammatory, anticancer, antigenotoxic, antipyretic and analgesic activities Ranković, 2015 [1].

Depsides and depsidones are common and very important secondary lichen metabolites Calcott et al. 2018 [2]. Many of these compounds are unique to lichens only and are not found in higher plants. Unlike many higher plants, chemistry of lichen has not been widely investigated. The reason why photochemistry and biological activity of lichens are not much examined by scientists is because they grow in inaccessible areas, are difficult to remove from the rootstock on which they grow, and often can’t be found in large quantities. For this reason, lichen metabolites are of interest for testing. Evernic acid is depside which has been isolated from various lichens including lichen Evernia prunastri also known as oakmoss Kosanic et al. 2013 [3]. This lichen is commercially harvested are often used as perfume fixatives and form the base notes of many fragrances. Previous research has shown that evernic acid exhibits various biological activities including antimicrobial, antioxidant and antitumor activities Burlando et al. 2009 [4], Kosanic et al. 2013 [3], Emre et al. 2015 [5] and clastogenic effect on human lymphocytes Stojanović et al. 2014 [6]. Norstictic acid belongs to the depsidones and could be found in some lichens like Toninia candida where presents the major phenolic compound Ranković, 2015 [1]. Until now, different kind of biological activities of this compound are known such as antioxidant and
antimicrobial activities and also anticancer activity Rankovic et al. 2012 [7].

Thermal analytical methods have thus become important tools for the development of modern medicines [8-12]. These are precise and accurate techniques with low sample requirements, and can provide detailed information about new chemical entities even at the very earliest stages of discovery and development of the new compositions and drugs [13-16]. Thermogravimetric TG/DTG analysis used to provide quantitative information on weight losses due to decomposition and/or evaporation of low molecular materials as a function of time and temperature. In conjunction with mass spectrometric analysis [17-19], the nature of the released volatile may be deduced, thus greatly facilitating the interpretation of thermal degradation processes. On the other hand, computational quantum chemistry can provide additional information about the atoms and bonds, which can be used successfully in an interpretation of experimental results [20]. Application of computational quantum chemistry in addition to experimental results (MS and TA) gives valuable information about the atoms and bonds which helps in the description and prediction of primary fragmentation site of cleavage and subsequent one [21,22].

The aim of the present study was to identify the secondary metabolites of lichens Parmelia conspersa and Evernia prunastri from Serbia using HPLC-UV analysis, isolate and purity of their major metabolites and finally do their thermal analyses (TG, DTG and DTA). Their thermal fragmentation pathways were compared with mass fragmentation. These fragmentation pathways were compared with the theoretical molecular orbital calculations (DFT-MOCs).

Experimental

2.1. Material and compounds

2.1a. Lichen materials

Samples of the lichens were collected in various places during the spring 2018. Parmelia conspersa was collected from Mt. Golija and Evernia prunastri was collected from Mt. Suva planina in Serbia. The voucher specimens (Parmelia conspersa FSDB-221 and Evernia prunastri FSDB-222) were determined by prof. dr Perica Vasiljevic and the species are stored in the Mycological Herbarium of the Department of Biology, Faculty of Science, University of Nis.

2.1b. Preparation of the lichen extracts

The lichen materials were dried ten days at room temperature (26 °C), after which it was ground to a uniform powder. Then, 100 g dry powdered lichen material was soaked in 1000 mL of an appropriate solvent (acetone) at room temperature for three days with stirring. After that extracts were filtered through a Whatman no. 42 (125 mm) filter paper and concentrated in a rotary evaporator. In the same way, both extracts were prepared.

2.2. Procedures and Measurements

2.2.1. High performance liquid chromatography (HPLC) analysis

The extract samples were dissolved in 1 ml of methanol and analyzed on an Agilent 1200 System HPLC (Agilent Technologies) instrument with C18 column (C18; 25 cm × 4.6 mm, 10 m). UV spectrophotometric detector with methanol–water–phosphoric acid (80:20:0.9, v/v/v) solvent was used. The sample injection volume was 10 µl with a flow rate of 1.0 mL/min. Methanol was of HPLC grade and was purchased from Merck (Darmstadt, Germany). Phosphoric acid was analytical-grade reagent. Deionized water used throughout the experiments was generated by a Milli-Q academic water purification system (Milford, MA, USA). The standards used were obtained from the following sources: stictic acid (tR = 2.75 ± 0.10) from lichen Xanthoparmelia conspersa, norstictic acid (tR = 2.97 ± 0.10) was isolated from lichen Ramalina furinacea, evernic acid (tR = 3.12 ± 0.10) and usnic acid (tR = 8.22 ± 0.20) was isolated from lichen Evernia prunastri, atranorin (tR = 9.16 ± 0.10) and chloroatranorin (tR = 11.07 ± 0.20) from lichen Parmelia sulcata.

2.2.1 a. Isolation of norstictic acid from Parmelia conspersa

The dried acetone extract of the lichen Parmelia conspersa (600 mg) was fractioned on a silica gel column (0.149-0.074 mm; 100-200 mesh). The column was eluted with methanol-chloroform gradient solvent (10:1, 5:1 and 1:1) yielding twelve fractions. After TLC analysis and merging the fractions with the same components, norstictic acid (80 mg), was isolated, further purified by crystallization and used for structure identification and further studies. The structure of norstictic acid (1,3-Dihydro-1,4,10-trihydroxy-5,8-dimethyl-3,7-dioxo-7H-isobenzofuro(4,5-b)(1,4) benzoxodioxepin-11-carboxaldehyde) was confirmed by spectroscopic
data Huneck and Yoshimura, 1996 [23]. The purity of the isolated compound was determined by HPLC-DAD and amounted to 97.2% for norstictic acid.

2.2.1b. Isolation of evernic acid from Evernia prunastri

The dried acetone extract of the lichen P. perlata (500 mg) was dissolved in acetone and separated on a chromatographic column (silica gel, 0.149–0.074 mm; 100–200 mesh) with methanol-chloroform (10:1, 5:1 and 1:1 v/v), as solvent systems. Ten fractions were obtained. After TLC analysis, norstictic acid (95 mg), was isolated, further purified by crystallization and used for structure identification and further studies. The structure of norstictic acid (2-hydroxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)oxy]-6-methylbenzoic acid) was confirmed by spectroscopic data Huneck and Yoshimura, 1996 [23] and others [24-25]. The purity of evernic acid was determined by HPLC-DAD and amounted to 97.9%.

2.2.2. Analyses Measurements and Instruments:

The thermo spectronic Nicolet evolution300BB UV spectrophotometer was used for absorbance values measurements in the wavelength range 190 – 600 nm. Weights measurement was performed by using sensitive analytical balance of 0.0001 g max 120 g d = 0.1 mg, Shimadzu model. Stirring and heating were performed by using magnetic stirrer made in Europe, hot plate (VELP-made in UK). The pH values were measured using pH meter, ORION Triode model 420A with Ag/AgCl internal reference system of thermistor for ATC, model 915BN. The instrument is calibrated using standard buffer solution, 4.00, 7.00 and 10.00 before direct measurement. Micro-Accupipette, USA (100 – 1000) μL was used to measure the very small volumes, whereas glass pipettes (2, 5 mL) were used to measure the large volumes. Elemental micro-Analyses of the solid acids for C, H, N and Cl were performed at the Microanalytical Center, Cairo University, using CHNS-932 (LECO) Vario Elemental Analyzers. FT-IR spectra were recorded on a Perkin-Elmer FT-IR type 1650 spectrophotometer in wave number region 4000 - 400 cm⁻¹. The spectra were recorded as KBr discs. The 1H-NMR and 13C-NMR spectra were recorded by 300 MHz Varian-Oxford Mercury. The used duterated solvent was dimethylsulphoxide (DMSO-d6) and the spectra extended from 0 to 15 ppm. The thermal analyses (TG, DTG and DTA) were carried out in dynamic nitrogen atmosphere (20 mL. min⁻¹) with a heating rate of 10 °C min⁻¹ using TG-60 H Shimadzu simultaneous DTA-TG instrument.

2.3.3. Theoretical calculations

The molecular structure of the title compounds in the ground state was optimized by a DFT method using B3LYP functional [26, 27] combined with 6-311G** (d) basis set. Calculations were carried out using GAUSSIAN 09 [27] suite of programs. The vibrational frequencies and the corresponding normal modes were evaluated at the optimized geometry [27, 28]. Vibrational modes were analyzed using GAUSSVIEW software [3]. Natural bond orbitals (NBO) analysis and frontier molecular orbitals were performed using NBO 3.1 program [29] at the same level of theory.

2.2.4. Biological Activity

2.2.4a. Determination of DPPH free radical scavenging activity

Determination of the ability to neutralize DPPH• (1,1-diphenyl-2-picrylhydrazyl) radical was analyzed using a spectrophotometric method Kumarasam 2007[30], by preparing a methanolic solution of DPPH radical concentrations of 40 μg/mL in a dark room. The sample solutions and DPPH• were then mixed with 3 mL of the DPPH radical solution and 2 mL of the sample solution and such a mixture was left for 30 minutes at room temperature in the dark, after which the absorbance was measured at 517 nm. Ascorbic acid and BHT were used as reference standards. The free radical neutralization capacity was calculated according to the following formula (1):

\[
\text{Inhibition capacity of the DPPH radical (%) = \left(\frac{Ac - As}{Ac} \right) \times 100, \quad \text{……………… (1)}
\]

Where the Ac is the absorbance of the control solution (negative control) and AS is the absorbance of the sample solution or standard.

The IC50 value (μg/mL), defined as the concentration of extract needed to reduce the DPPH concentration of the radical by 50%, and was obtained from the linear regression equation.

2.2.4b. Superoxide Anion Radical Scavenging Activity

The superoxide anion radical scavenging activity of samples was detected according to the method of Nishimiki et a l [24]. Briefly, 0.1 mL of test sample (1000, 500, 250, 125 and 62.5 μg/mL) was mixed

Egyptian Journal of Chemistry **63** No. 11 (2020)
with 1 mL nitro blue Tetrazolium (NBT) solution (156 μM in 0.1 M phosphate buffer, pH 7.4) and 1 mL nicotinamide adenine dinucleotide (NADH) solution (468 μM in 0.1 M phosphate buffer, pH 7.4). The reaction was started by adding 100 μL of phenazine methosulphate (PMS) solution (60 μM in 0.1 M phosphate buffer, pH 7.4). The mixture was incubated at room temperature for 5 min, and the absorbance was measured at 560 nm in spectrophotometer ("Jenway" UK) against blank samples. Decreased absorbance indicated increased superoxide anion radical scavenging activity. Ascorbic acid was used as positive control. The percentage inhibition of superoxide anion generation was calculated using the following formula (2):

$$\text{Superoxide anion scavenging activity} \% = \left[\frac{A_0 - A_1}{A_0} \right] \times 100$$ \hspace{1cm} (2)

Where A0 is the absorbance of the negative control and A1 is the absorbance of reaction mixture or standards.

The inhibition concentration at 50% inhibition (IC50) was the parameter used to compare the radical scavenging activity.

3. RESULTS AND DISCUSSION

3.1. HPLC isolation and Identification:

Lichens *Parmelia conspersa* and *Evernia prunastri* were used as a natural source of secondary metabolites used in this paper. Phytochemical analysis of the lichens was done by HPLC-UV chromatography. The HPLC chromatogram for standards and the acetone extracts of the tested lichens are represented in Figure 1-3. In the investigated extracts, depsidones, depsides and dibenzofuran were present as the most abundant substances classes. In addition to the major secondary metabolite norstictic acid (NOR, $t_R = 2.97 \pm 0.10$), usnic acid (USN, $t_R = 8.22 \pm 0.20$), stictic acid (STI, $t_R = 2.75 \pm 0.10$) and atranorin (ATR, $t_R = 9.16 \pm 0.10$) were also identified in acetone extract of *P. conspersa*. The acetone extract of *E. prunastri* showed that the most intense peak belongs to the evernic acid ($t_R = 3.12 \pm 0.10$), in addition to the peaks of usnic acid ($t_R = 8.22 \pm 0.20$), atranorin (ATR, $t_R = 9.16 \pm 0.10$) and chloroatranorin (CHL, $t_R = 11.07 \pm 0.20$). Identification of these compounds was achieved by comparison of their t_R values and UV absorbance spectral data (200–400 nm) also corresponded with those of standards and found in Yoshimura et al [31]. The UV spectra of depsidones have 3 absorption maxima and are dissimilar from those of depsides and monocyclic compounds. So, depside norstictic acid has absorbance maxima at 212, 239, 310 nm. On the other hand, evernic acid belonging to depside has a completely different spectrum appearance with absorbance maxima at 213, 270, 304 nm. Two major secondary metabolites of the lichens belonging to different classes of compounds (one depside and other depsidone) were isolated and used in further studies. Norstictic acid was identified for the first time in lichen *P. conspersa*.
Fig. 1 HPLC chromatogram of mixed standards used for identification of the lichen compounds. (Stictic acid; Norstictic acid; Salazinic acid; Usnic acid; Atranorin; Chloroaranorin)

Fig. 2 HPLC chromatogram of the acetone extracts of *P. conspersa* at 254 nm.

Fig. 3 HPLC chromatogram of the acetone extracts of *E. prunastri* at 254 nm.

Norstictic Acid one of its IUPAC name is 1,3-Dihydro-1,4,10-trihydroxy-5,8-dimethyl-3,7-dioxo-7H-isobenzofuro(4,5-b)(1,4)benzodioxepin-11-carboxaldehyde or 7H-Isobenzofuro(4,5-b)(1,4)benzodioxepin-11-carboxaldehyde, 1,3-dihydro-1,4,10-trihydroxy-5,8-dimethyl-3,7-dioxo-

Evernic Acid one of its IUPAC name is 2-hydroxy-4-[(2-hydroxy-4-methoxy-6-methylphenyl)oxomethoxy]-6-methylbenzoic acid is a carbonyl compound.

Fig. 4. The structures of the isolated lichen metabolites

Scavenging activities and reduction power:

The structures of the isolated lichen metabolites are shown in Figure 4.
After isolation and identification, the antioxidant activity of these compounds was determined. The values obtained for norstictic acid and evernic acid were compared. The results of DPPH radical scavenging and superoxide anion scavenging activities (IC$_{50}$) for norstictic acid and evernic acid are shown in Table 1. The IC$_{50}$ values for norstictic acid and evernic acid are $= 101.95 \pm 1.02$ and 319.84 ± 4.07 µg/mL, respectively. As it can be seen, evernic acid has about three times larger the value of IC$_{50}$ than norstictic acid. On the other hand, the IC$_{50}$ values of superoxide anion scavenging activity for norstictic acid and evernic acid are $= 132.89 \pm 2.31$ and 561.05 ± 7.78 µg/mL, respectively. Evernic acid has about four times higher IC$_{50}$ values than norstictic acid. The results of reduction power for norstictic acid and evernic acid are shown in Table 2. Higher absorbance indicates higher reducing power. Results showed that norstictic acid has significantly higher reducing power than the evernic acid. At lower concentrations (250 µg/mL, 125 µg/mL and 62.5 µg/mL), the reducing power values for norstictic acid were similar to those for the standard (ascorbic acid). On the basis of these results, it can be concluded that both tested compounds showed antioxidant activity, but that the norstictic acid showed several times better activity than evernic acid.

3.3. Microanalytical and spectral analysis:

The microanalyses of the isolated pure acids refer to the results of Evernic Acid of general formula C$_{17}$H$_{16}$O$_{7}$ of mol mass 332.2 g/L (m.p. = 165-175°C) (calculated % C= 61.39, H= 4.81 an O= 33.70 and Found % = 61.29, H= 4.90, O= 33.61), Norstictic Acid of general formula C$_{18}$H$_{12}$O$_{9}$ of mol mass 372.0 g/L (m.p. = 275°C) (Calculated % C= 58.018, H= 3.22, O=38.67, Found % C= 58.23, H=3.18, O=38.63).

3.3.2. Spectral measurements

3.3.2.1. Mass spectra of isolated acids:

The measured Negative LDI mass Spectra [32] of norstictic and evernic acids are given in Figs (5,6).

Table 1. Retention time of the isolated lichen substances, their absorbance maxima (nm), HPLC purity, DPPH radical scavenging and superoxide anion scavenging activities

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time (t$_R$ ± SD)* (min)</th>
<th>Absorbance maxima (nm) UV spectrum</th>
<th>HPLC Purity (%)</th>
<th>DPPH radical scavenging IC$_{50}$ (µg/mL)</th>
<th>Superoxide anion scavenging IC$_{50}$ (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norstictic acid</td>
<td>2.97 ± 0.10</td>
<td>212, 239, 310a</td>
<td>97.2</td>
<td>101.95 ± 1.02</td>
<td>132.89 ± 2.31</td>
</tr>
<tr>
<td>Evernic acid</td>
<td>3.12 ± 0.10</td>
<td>213, 270, 304</td>
<td>97.9</td>
<td>319.84 ± 4.07</td>
<td>561.05 ± 7.78</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Values are the means of three determinations ± SD, m - minor absorbance maximum.

Table 2. Reducing power of norstictic acid and evernic acid

<table>
<thead>
<tr>
<th>Lichen compound</th>
<th>1000 µg/mL</th>
<th>500 µg/mL</th>
<th>250 µg/mL</th>
<th>125 µg/mL</th>
<th>62.5 µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norstictic acid*</td>
<td>0.8781±0.006</td>
<td>0.6639±0.003</td>
<td>0.0867±0.002</td>
<td>0.0419±0.002</td>
<td>0.0271±0.007</td>
</tr>
<tr>
<td>Evernic acid*</td>
<td>0.1121±0.004</td>
<td>0.0908±0.003</td>
<td>0.0480±0.006</td>
<td>0.0302±0.005</td>
<td>0.0190±0.002</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>2.114±0.031</td>
<td>1.653±0.020</td>
<td>0.0955±0.008</td>
<td>0.0479±0.005</td>
<td>0.0250±0.005</td>
</tr>
</tbody>
</table>

*Values are expressed as mean ± SD of triplicate measurements.
Fig (5): Negative LDI mass of Norstictic Acid

Fig (6): Negative LDI mass of Evernic Acid

These figures [32] refer to the obtained negative molecular ion \([M-H]\) of \(m/z = 371.0396\) of the isolated Norstictic Acid; which confirm its elementally analyzed data of its general formula \(C_{18}H_{12}O_9\) and negative molecular ion \([M-H]\) of \(m/z = 331.10\) of the isolated Evernic Acid; which confirm their elementally analyzed data of its general formula \(C_{17}H_{16}O_7\) consequently the purity of the isolated acids from their natural source under the referred HPLC effective conditions.

3.3.2.3. UV spectra: Spectra of Norstictic Acid

The UV spectra of norstictic acid at different pH values (5.71-9.20) is depicted in Fig (7).

Fig.(7). UV of \(2.1 \times 10^{-5}\) mol/dm 3 norstictic acid (a) experimental spectra and (b) reconstructed spectra, pH from 5.71 to 9.20.

This UV spectral measurement norstictic acid at different pH values in NaOH medium refers to two isosbestic points which may refer to the following equilibrium of the given acid:

\[
\text{A(OH)}_3^- = \text{A(OH)}_2^- + \text{H}^+ = \text{A(OH)}_2^- + 2\text{H}^+ = \text{(AO)}_3^- + 3\text{H}^+, \text{............... (3)}
\]

This equilibrium may refer to three dissociation constants of the, \(pK_1\), \(pK_2\) and \(pK_3\) of the three ionized phenolic groups at different pH values (5.71 to 9.2).

The UV spectra of evernic acid at different pH values (5.83-9.48) in NaOH medium is given in Fig (8).

Fig.(8). UV spectra of \(1.9 \times 10^{-5}\) mol/dm 3 evernic acid (a) experimental spectra and (b) reconstructed spectra, pH from 5.83 to 9.48.
This UV spectral measurement of evernic acid at different pH values in NaOH medium refers to two isosbestic points which may refer to the following equilibrium of the given acid:

\[
\text{A(OH)}_2\text{COOH} \rightleftharpoons [\text{A(OH)}_2\text{COO}^- + \text{H}^+] = \text{[A(OH)COO]}^{-2} + 2\text{H}^+ = [(\text{AO})\text{COO}]^{-3} + 3\text{H}^+, \quad (4)
\]

This equilibrium may refer to three dissociation constants of the, \(pK_1\), \(pK_2\) and \(pK_3\) of the carboxylic group and two ionized phenolic groups at different pH values (5.71 to 9.2).

3.3.2.3. IR spectra of Evernic Acid and Norstictic Acid:

The studied obtained FT-IR spectra of depside and depsidone isolated and analyzed compounds refer to 3425m 1754s, 3053 w 1724 sh, 2924w 1695 s, 1639 s, 1613 sh, 1563 m 1543m, 1527 m, 1481 s, 1445 m, 1429m, 1379m, 1342 m, 1282s, 1242m, 1190m, 1156 s, 1136 sh, 1087m,1058m., a strong and sharp band occurs between 3425, and 3333 cm\(^{-1}\), possibly due to the presence of the OH group and the low frequency may be due to hydrogen bond formation with the, oxygen of diphenyl ether linkage. The carbonyl groups appear in region (1780-1600 cm\(^{-1}\)). Carboxyl carbonyl, the chelated carboxyl group of the P-part shows a strong band near 1650-1630 cm\(^{-1}\) and this together with a number of weak absorption bands in the region 3000-2500 cm\(^{-1}\). The chelated aldehyde carbonyl absorption appears near 1650-1640 cm\(^{-1}\). The aromatic region appears at (1600-1500cm\(^{-1}\)). CH\(_3\) region occurs near 1400 cm\(^{-1}\). With all methoxy compounds the bands are present near 1460, 1340, 1250, 1180, 1125 and 1028 cm\(^{-1}\) due to the C-O-C group. The FT-IR of evernic acid is given in Fig (9).

![Fig (9): The FT-IR of evernic acid](image)

3.3.2.4. \(^1\)HNMR and \(^{13}\)CNMR Spectra of Norstictic Acid and Evernic Acid:

The \(^1\)H-NMR and \(^{13}\)C-NMR spectra of norstictic acid obtained are given in Fig (10):

![Fig (10): The \(^1\)H-NMR and \(^{13}\)C-NMR spectra of norstictic acid](image)

Evernic acid showed the presence of \(^1\)H-NMR (200 MHz, CDC13): 2.27 (3 H , s, - M e) , 3.77 (3 H , s, - O M e) , 6.2 -Ö .4 (3 H , s, - O M e) , 6 .2 -Ö .4 (3 H , s, - O M e) . All of the above spectral data confirm to great extent the purity of the isolated acids from the studied natural source and also elucidate their structural formulae. Their structures can also confirmed by their thermal degradation behavior in comparison with mass fragmentation and also confirmation of these comparative studies by theoretical molecular orbital calculation.

3.4. Thermal Analyses measurements and calculations

To our knowledge, until now, there are very few scientific papers describing thermal analysis of lichen metabolites. Melo et al. 2008 [25] described the physicochemical characterization, thermal analysis and antinociceptive property of atranorin obtained from Cladina kalbii (DESABB.) Ahti. The TG/DTG curves of atranorin indicate that the thermal decomposition process of UA occurs in two stages in the following temperature ranges (mass loss): 193.4—280°C (% loss = 63.4%) and 280—900 °C (% loss = 36.5%). In the first stage partial thermal decomposition of atranorin occurs with elemental
carbon formation due to sample carbonization. Between 350 and 900 °C the elemental carbon is released slowly.

3.4.1. Thermal Analyses of Evernic Acid:

The thermal decomposition of evernic acid is given by Figs (11-13).

The explanation of thermal degradation of Evernic acid coming from TGA and DTG (Figs 11-12), is given by Table (3) and thermal decomposition scheme (1).

Scheme (1): The proposed thermal decomposition of evernic acid.

These results refer to the thermal degradation of this acid in two steps at temperature ranges of 23.55-214.27°C exactly at 185.30°C and at 214.30-300.25°C exactly at 373.61°C of mass losses 31.8 % (calcd = 30.9 %) and 40.88% (calcd = 41.52%) respectively. This degradation is given by the proposed Scheme 1. The DTA of evernic acid (Fig 13) refer to an endothermic peak at 168.43°C; which approximately equal to the average of m.p. of the isolated acid (165-175°C). The energy required for each decomposition step and corresponding thermodynamic parameters are calculated by Koat-Redfern equation [34] and given in Table (3). These data refer to endothermic nature of thermal decomposition of evernic acid. The proposed thermal decomposition scheme 1 is very similar to the previously published proposed mass scheme 2 [35].
3.4.2. Theoretical Calculations for Evernic Acid:

The theoretically calculated selected bond length and bond order of the different bonds of the evernic acid are given in Table (4). The bonds ruptured in evernic acid at thermal decomposition (scheme 1) are those bonds of long bond length and of less bond order values. These decomposed bonds lead to the formation of CO and CO$_2$ evolved gases; which confirm the thermal decomposition scheme (1). Both TA and mass spectral fragmentation schemes (1 and 2) are confirmed by calculated quantum parameters of evernic Acid in Table (5).

Table (5): Theoretical calculated quantum parameters of evernic acid

<table>
<thead>
<tr>
<th>Quantum parameter</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total energy (eV)</td>
<td>-4371.845</td>
</tr>
<tr>
<td>E_{HOMO} (eV)</td>
<td>-9.280</td>
</tr>
<tr>
<td>E_{LUMO} (eV)</td>
<td>-0.546</td>
</tr>
<tr>
<td>ΔE_{gap} (eV)</td>
<td>-8.734</td>
</tr>
<tr>
<td>Ionization energy (I)</td>
<td>9.280</td>
</tr>
<tr>
<td>Electron affinity (A)</td>
<td>0.546</td>
</tr>
<tr>
<td>Mulliken electronegativity (χ)</td>
<td>4.913</td>
</tr>
<tr>
<td>Hardness (η)</td>
<td>4.367</td>
</tr>
<tr>
<td>Heat of formation (kcal/mol)</td>
<td>-268.571</td>
</tr>
</tbody>
</table>

The theoretically calculated and obtained total energy (eV) = -4371.845 and heat of formation (kcal/mol) = -268.571 of evernic acid refer to the high stability of evernic acid; which is correlated with its thermal stability concluded from TA study. In TA it required high ΔH^* = 107.53 KJ mole$^{-1}$ in step of CO and CO$_2$ gases formation as result of ruptured bonds. The high values of energy gap ΔE_{gap} (eV) = -8.734, Ionization energy (I) = 9.280, Hardness (η) = 4.367 and energy difference between EHOMO (eV) = -9.280 and ELUMO (eV) = -0.546 energy levels refer to the high stability of evernic acid and its low polarizability (Fig 15).

Table (3): Thermodynamic parameters of thermal decomposition of (Evernic Acid)

<table>
<thead>
<tr>
<th>Decomp. Temp. Range (°C)</th>
<th>E^* KJ mole$^{-1}$</th>
<th>A (S$^{-1}$)</th>
<th>ΔS^* J.K$^{-1}$.mole$^{-1}$</th>
<th>ΔH^* KJ mole$^{-1}$</th>
<th>ΔG^* KJ mole$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>306.04-487.7</td>
<td>35.5</td>
<td>1.288E+07</td>
<td>-112.40</td>
<td>31.7</td>
<td>83.2</td>
</tr>
<tr>
<td>487.27-573.3</td>
<td>112.02</td>
<td>1.311E+10</td>
<td>-56.16</td>
<td>107.53</td>
<td>137.83</td>
</tr>
<tr>
<td>573.4-872.82</td>
<td>2.25</td>
<td>5.337E+08</td>
<td>-84.28</td>
<td>-3.13</td>
<td>51.3</td>
</tr>
</tbody>
</table>

Scheme 2: Proposed mass fragmentation pathways of evernic acid (REF: 35).

Fig (14): Optimized geometry, numbering system, and vector of dipole moment for the studied evernic acid using B3LYP/6-311G**.
This conclusion is confirmed by the low value of the calculated Softness (S) = 0.229 and high energy values required to its spectra appeared at UV range (Fig 8) absorption at λ_{max} of $\log \varepsilon$ 267 (4.29); 300 (4.06) respectively. These conclusions are also confirmed by theoretical calculated charges on atoms of evernic acid in both neutral and cationic forms (Table 6 and Fig16). The neutral form refer to the shape of acid molecule in thermal analyses (Scheme 1); while cationic form refer to acid in mass study (Scheme 2). The rupture of certain bonds such as C15-C19, C4-C5, C5-C6,…etc may be attributed to electrostatic repulsion and/or low electrostatic attraction between positively charged atoms and/ or negatively charged red labeled atoms; which leading to formation of evernic acid thermal and mass fragments and /or evolved CO and CO$_2$ gases.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Charge</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neutral</td>
<td>Cation</td>
</tr>
<tr>
<td>O10</td>
<td>-0.390807</td>
<td>-0.383725</td>
</tr>
<tr>
<td>C15</td>
<td>-0.324554</td>
<td>-0.289207</td>
</tr>
<tr>
<td>C19</td>
<td>0.685845</td>
<td>0.669449</td>
</tr>
<tr>
<td>O20</td>
<td>-0.492366</td>
<td>-0.456194</td>
</tr>
<tr>
<td>O21</td>
<td>-0.565273</td>
<td>-0.550475</td>
</tr>
</tbody>
</table>

Fig (15): HOMO and LUMO charge density maps of the investigated evernic acid using B3LYP/6-311G**

3.4.3 Thermal Analyses of Norstictic acid:

The thermal analyses of norstictic acid are given in Figs (17-19):

From the TGA and DTG curves of norstictic acid (Figs 17, 18); it is clear that the thermal decomposition of this acid occurs in three steps. The first one occurs at the temperature range 30.07 to 233.51°C and exactly at 83.72°C as indicated by DTG. It may be explained by the mass loss of 5.39%.
The second one occurs at 234.49-302.92°C and exactly at 273.57°C. It refers to a mass loss of 27.1%. The third one occurs at 302.92 to 599.87°C and exactly at 507.68°C. It gives a mass loss of 4.714%. These mass losses are attributed to the loss of two CO and two CO₂ gaseous groups of total practical mass of 37.24% (Calcd% = 38.7), leaving remainder stable part of practical% = 62.76% (Calcd% = 61.3). These mass losses are explained by the proposed scheme 3. The first step as endothermic peak appeared at 49-64°C as given by DTA of acid (Fig 18). It followed by an endothermic sharp peak at 275.55°C; which may be attributed to the melting point of norstictic acid (m.p. = 275°C). This sharp peak refers to the purity of the isolated acid. It is followed by an exothermic peak at 285.55°C and at 481.33°C; which may be explained by chemical rearrangement of acid skeleton after its final mass loss to give stable form.

The calculated energy values and the thermodynamic parameters of thermal degradation of norstictic acid applying Koat and Redfern equation [34] are given in Table (7). These data refer to endothermic and exothermic mutual processes occur in thermal decomposition of norstictic acid to leave rearranged chemical stable compound.

Table (7): Thermodynamic parameters of thermal decomposition of (Norstictic Acid)

<table>
<thead>
<tr>
<th>Decompos.</th>
<th>E* (KJ mole⁻¹)</th>
<th>A (S²)</th>
<th>ΔS* (J.K⁻¹.mole⁻¹)</th>
<th>ΔH* (KJ mole⁻¹)</th>
<th>ΔG* (KJ mole⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. Range (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305.18-506.4</td>
<td>18.7</td>
<td>3.016E+07</td>
<td>-87.95</td>
<td>18.3</td>
<td>23.2</td>
</tr>
<tr>
<td>506.7-575.92</td>
<td>275.53</td>
<td>4.572E+25</td>
<td>241.32</td>
<td>270.98</td>
<td>139.08</td>
</tr>
<tr>
<td>575.92-872.87</td>
<td>78.65</td>
<td>4.636E+05</td>
<td>-144.47</td>
<td>72.16</td>
<td>184.9</td>
</tr>
</tbody>
</table>

According to Koopman’s theorem [36], the ionization energy (I) and electron affinity (A) can be expressed through the energies of HOMO and LUMO as I = -E_{HOMO} and A = -E_{LUMO}. Alternatively, the chemical hardness and softness of a molecule are good indicators for the chemical reactivity of a given molecule. From energy gap, one can find whether the molecule is hard or soft. The soft molecule is more polarizable than the hard one because it needs small energy to excitation. Softness (S) is a property of molecule that measures the extent of chemical reactivity. It is defined as the reciprocal of hardness (η) and η = (1 - A)/2 [37]. As shown in Table 8, the dimeric PQC is softer than the monomeric one. In addition, the chemical potential (μ) and electronegativity (χ) of a molecule can be calculated.
as follows: $\mu = -(I + A)/2$, and $\chi = (I + A)/2$, i.e. $\mu = -\chi$. The electrophilicity index (ω), $x = \mu^2/2\eta$, [38] is a measure of energy lowering due to maximal electron flow between donor and acceptor.

3.5.1. Norstictic acid:

The structure of Norstictic acid and numbering system used for theoretical molecular orbital calculation is given in Fig (19):

Fig (20): Optimized geometry, numbering system, and vector of dipole moment for the studied norstictic acids using B3LYP/6-311G**

The obtained results are in Tables (8-10):

Table 8: The calculated frontier orbital energies and related molecular properties of norstictic acid

<table>
<thead>
<tr>
<th>Quantum parameter</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total energy (a.u.)</td>
<td>-1370.165</td>
</tr>
<tr>
<td>E_{HOMO} (eV)</td>
<td>-6.848</td>
</tr>
<tr>
<td>E_{LUMO} (eV)</td>
<td>-2.363</td>
</tr>
<tr>
<td>ΔE_{gap} (eV)</td>
<td>-4.485</td>
</tr>
<tr>
<td>Ionization energy (I)</td>
<td>6.848</td>
</tr>
<tr>
<td>Electron affinity (A)</td>
<td>2.363</td>
</tr>
<tr>
<td>Mulliken electronegativity ((\chi))</td>
<td>4.606</td>
</tr>
<tr>
<td>Softness (S)</td>
<td>0.446</td>
</tr>
<tr>
<td>Hardness ((\eta))</td>
<td>2.243</td>
</tr>
<tr>
<td>Electrophilicity index ((\omega))</td>
<td>2.140</td>
</tr>
<tr>
<td>Total dipole moment (D)</td>
<td>2.140</td>
</tr>
</tbody>
</table>

The calculated total energy of norstictic acid molecule $= -1370.165$ (a.u) is actually correlated with that calculated from practical thermal analyses ($E^* = 275.55$ KJ mole$^{-1}$ Table) and refer to its high stability and consequently its difficult thermal decompostion. Only terminal carboxylic groups are evolved as carbageous gases (CO and CO$_2$) at high temperature range 302-599°C. The value of Hardness ($\eta = 2.243$ and low dipole moment $D = 2.14$, means that Norstictic acid is a hard compound and less chemically reactive and less polarizable compound as confirmed by its ionization at high pH values as given by UV spectral and chemical ioniyation under alkalinety (Fig 7 and equilibrium No 1). The HOMO and LOMO energy levels of the given acid are graphically represented in Fig (20).

Fig (21): HOMO and LUMO charge density maps of the investigated Norstictic acid using B3LYP/6-311G**

The high energy gap value (ΔE_{gap} (eV) 4.485) between E_{HOMO} (eV) -6.848 and E_{LUMO} (eV) -2.363 energy level of the given norstictic acid molecule explain its stablity and why its electronic transions occure in short wavelenghts in the UV range of λ_{max} and log ε: 239(4.33); 320(3.40) (Fig. 7). These conclusions are confirmed by the high values of Ionization energy (I) = 6.848 and Mulliken electronegativity (χ) = 4.606 and low values of Electron affinity (A) = 2.363 and Softness (S) = 0.446 of Norstictic acid molecule. The evolved CO and CO$_2$ gas molecules from Norstictic acid during thermal decompositin are due to long and weak red labeled bonds rupture as results of Mulliken Charge(e) values that theretically calculated in Table (9) and graphically represented in Fig (21).

Egypt. J. Chem. 63 No. 11 (2020)
4. Conclusions:

From the presented research it is concluded that, successful trials were made to isolate two lichen acids (norstictic and everinic acids) from natural sources. The isolation was successfully done by using effective HPLC. Their structures were proved via elemental, spectroscopic, and thermal analyses. In addition, antioxidant activity of norstictic acid and everinic acid were determined. The practical results obtained were successfully correlated with the theoretical calculations. The importance of this research stems from the importance of the isolated Lichen compounds from natural specimen and their possible applications in medical field.

Acknowledgments

This research was supported by Ministry of Education and Science of Serbia, project number 172015; and some measurements and theoretical calculations were supported by Egyptian side (Chemistry Department, Faculty of science, Cairo University).o funder's requirements.

Authors declared that there is no conflict of interest

References

21- M.A. Zayed, Gehad G. Mohamed, M. A. Fahmey, Thermal and mass spectral characterization of novel azo dyes of p-acetoamidophenol in comparison with

Egypt. J. Chem. 63 No. 11 (2020)
36- T.A. Koopmans, about the assignment of wave functions and eigenvalues to the individual electrons of an atom, Physica 1 (1933) 104.

الملخص باللغة العربية

دراسة فصل وتعريف وتحليل الحاراري والحسابات النظرية والنشاط المضاد للكيماوية لبعض مشتقات النبات (حمض نورستاكتيك وحمض أيبرنيك).

محمد عبد الجواد زايد جمهورية مصر العربية، نيديك مالونيفيك جمهورية صربية

يتحدث هذا البحث عن محاولات ناجحة لعزل بعض مشتقات النبات (حمض نورستاكتيك وحمض أيبرنيك) من مواد طبيعية ككل الكوزيرة بواسطة كروموديجرافيا الناسال بالضغط والتعرف على تقاريرها وتركيبها بطرق تقانات المكونات كتجميع العناصر المكونة لتلك الحمايات والقياسات الطيفية والتحليل الحراري وحسابات الدوال الحرارية ودرجة ثباتها والحسابات النظرية واستخدامها كمواد مضادة للأكماحة. وتضمنت الحسابات النظرية استخدام برنامج جاوس 9، وتم تجربتها بنجاح كمواد مضادة للأكماحة توطئة لاستخدامها في العديد من التطبيقات الطبية والصناعية.

Egypt. J. Chem. 63 No. 11 (2020)