Exploration of novel and effective therapies against liver damage with antioxidant activity is a point worth studying. The present study was aimed to evaluate the hepatoprotective and antioxidant activities of Euphorbia cooperi N. E. Br. aerial parts in paracetamol-induced hepatotoxicity mice and to isolate the bioactive constituents. Our findings suggest potential antioxidant and hepatoprotective activity of the n-butanol fraction of the plant, as it significantly (p<0.05) prevented the increased serum marker enzymes aspartateaminotransferase and alanine aminotransferase and bilirubin levels, decreased hepatic malondialdehyde, and recovered glutathione levels. Chromatographic separation of n-butanol fraction led to isolation of seven compounds, namely, gallic acid, brevifolin carboxylic acid, kaempferol-3-O-β-D-rutinoside, corilagin, 3, 3′-dimethoxy ellagic acid, 3, 4, 4′-trimethoxy ellagic acid, and ellagic acid. The structure of isolated compounds was elucidated by physical and spectroscopic analysis and by comparison with the literature data. These compounds are isolated for the first time from E. cooperi N. E. Br.

Keywords: Antioxidant, Corilagin, Euphorbia cooperi, Hepatoprotective

Introduction

Liver is the most important and central detoxifying organ in the body. Liver injury caused by hepatotoxic agents has serious implications [1]. Reactive oxygen species production by most of the hepatotoxins is a major causative factor for lipid peroxidation and other oxidative damages, which harm liver cells [2]. In this context, it was realized that antioxidant activity or inhibition of generation of free radicals may play a crucial role in providing protection against hepatic damage. Therefore, exploring novel and effective therapies against liver damage with antioxidant activity became a point worth studying.

Genus Euphorbia (Spurge family) is the largest in the family; it includes about 2000 species, and an important proportion, mostly those from Africa and Madagascar, is succulents [3]. Euphorbia cooperi N. E. Br. is native to Eastern South Africa, South Zimbabwe, Mozambique, and Zambia. It was planted as an ornamental tree in succulent gardens or rock gardens in South Africa and the United States [4]. The plant is a succulent spiny tree, up to 5m in length. Branches are constricted into segments, inverted cordate in outline, four to six angled. Spines are in pairs and long, gray, with blackish tips. The spines form a spiky margin along each ridge on the branches. The inflorescences consist of three cymes that are vertically arranged each with three cyathia and yellowish in color. Fruits are triangular, trilobed capsules green in color that change to purple when ripe [5].

Members of the genus Euphorbia are well recognized by their rich content in secondary metabolites and pharmacological value [6]. Several Euphorbia species have been proved to
have antioxidant and hepatoprotective activities [2,7–15]. However, no data were found concerning these activities for E. cooperi N. E. Br. Herein, our attention was focused on the investigation of the hepatoprotective and antioxidant potentials of E. cooperi N. E. Br. to clarify the most active extracts, with the aim of isolation and characterization of bioactive principles exhibiting both activities to appraise the plant potential use as natural antioxidant and hepatoprotective remedies. To the best of our knowledge, this is the first study dealing with the antioxidant and hepatoprotective activity of E. cooperi N. E. Br.

Materials and Methods

Plant material

Samples of E. cooperi N. E. Br. aerial parts were collected in March 2017 from Ahmed Alaa botanical garden, Toukh, Qalubia, Egypt. The plant was kindly identified by Dr Mohamed El-Gebaly (Senior Botanist). A voucher specimen of the plant was deposited at the herbarium of the Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Egypt (PG 4-3-2017).

Extraction of the plant

Fresh aerial parts (25kg) of E. cooperi N. E. Br. after removal of latex were extracted with 70% methanol (4×4 L) at room temperature till exhaustion and then concentrated under reduced pressure to give a viscous gummy residue (200g). A portion of this residue (150g) was suspended in distilled water (500ml) and partitioned with chloroform (4×200ml) and then n-butanol (6×200ml), successively. The chloroform and n-butanol fractions were concentrated under reduced pressure to yield 40g and 50g of fraction residues, respectively.

Chemicals and reagents

Paracetamol (paramol) used to induce hepatic damage was obtained from Misr Company (Egypt). Silymarin used as a reference hepatoprotective drug was supplied by Sigma-Aldrich Chemicals Co. (St Louis, Missouri, USA). Kits used for biochemical analysis were purchased from Biodiagnostics (Giza, Egypt), for measurement of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase(ALK), bilirubin, malondialdehyde(MDA), and glutathione(GSH) levels.

General Experimental Procedures

Sephadex LH-20 (Pharmacia) was used for column chromatography. Whatman No. 1 and 3MM filter paper (46×57cm) (Kent, England) was used for paper chromatography (PC). PC plates were visualized under ultraviolet lamp (at max 365nm) before and after exposure to NH3 vapors and spraying with AlCl3 and FeCl3 [16]. All solvents used were of analytical grades and purchased from El-Gomhouria Co. (Cairo, Egypt). Solvent systems A (15% acetic in water) and B (butanol–acetic acid–water (4:1:5v/v/v)) upper phase were used. Ultraviolet spectra of isolated compounds were determined in methanol and after using different shift reagents[17]. Melting points were determined using Electrothermal 9100 (UK) (uncorrected). 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on Bruker High Performance Digital FT-NMR spectrophotometer (Avance III HD): 1HNM R (400MHZ) and 13CNM R (100MHZ) (Bremen, Germany), which was performed at Faculty of Pharmacy, Cairo University, Egypt, using DMSO as a solvent.

Assessment of hepatoprotective and antioxidant activities

Acute toxicity

Male albino mice of Sprague–Dawley strain (25–30g) obtained from the animal house colony, National Research Centre, Giza, Egypt, were used. The LD50 of the methanolic extract of E. cooperi N. E. Br. was estimated according to Karber’s procedure [18].

Experimental animal

Male albino rats of Sprague–Dawley strain weighing 130–150g were obtained from the animal house colony, National Research Center, Giza, Egypt. Experimental animals were housed under conventional laboratory conditions throughout the period of experimentation and fed standard laboratory diet composed of vitamin mixture (1%), mineral mixture (4%), corn oil (10%), sucrose (20%), cellulose (0.2%), casein 95% pure (10.5%), and starch (54.3%) provided with water ad libitum. They were acclimatized to the laboratory conditions for at least 1 week before the experiment. All experiments involving animals were conducted according to the ethical policies and procedures approved by the ethics committee of National Research Center.
In-vivo hepatoprotective and antioxidant study
Liver damage was induced in rats by administration of paracetamol [19]. Drugs were administered as a protective course for 14 days. Measurements were carried out after 24h of liver damage. Animals were divided into five groups, with six rats in each, as follows: group 1 (control group) rats received 1% tween 80 for 14 days. Group 2 (liver damaged control) rats were administrated paracetamol (600mg/kg; orally). Group 3 (standard group) rats were pretreated with silymarin (50mg/kg) for 14 days before induction of liver damage with paracetamol. Groups 4–6 rats were pretreated with methanolic extract of E. cooperi N. E. Br. (380mg/kg), chloroform fraction (100mg/kg), and n-butanol fraction (100mg/kg) for 14 days before induction of liver damage with paracetamol. At the end of the experimental period, the animals were killed by decapitation. Blood samples (3ml) were collected in dry centrifuge tubes and left to clot at room temperature. Samples were centrifuged at 1500rpm for 10min; the clear supernatant was separated for estimation of serum parameters.

Biochemical analysis
Estimation of serum enzyme markers included Alt, AST [20], and serum Alp [21], as well as serum total bilirubin [22]. A portion of the liver was homogenized in 1.15% KCl to prepare 10% homogenate, for hepatic MDA determination [23]. Another portion of the liver was homogenized in 6% metaphosphoric acid, using Potter-Elvehjem Teflon glass homogenizer and centrifuged at 3000rpm for 15min at 4°C. the supernatant was used for the estimation of reduced liver GSH [24].

Histopathological study
Autopsy samples were taken from the liver of rats in different groups and fixed in 10% formalin for 24hr. Washing was done in tap water, and then serial dilutions of alcohol were used for dehydration. Specimens were cleared in xylene and embedded in paraffin at 56°C in hot air oven for 24hr. Paraffin bees wax tissue blocks were prepared for sectioning at 4-μm thickness by sledge microtome. The obtained tissue sections were collected on glass slides, deparaffinized, and stained by hematoxylin and eosin stain for examination through the light electric microscope [25]. Photomicrographs obtained are presented in Fig. 1 and 2.

Statistical analysis
The results were expressed as mean±SEM. Statistical analysis was carried out by one-way analysis of variance followed by Tukey–Kramer's multiple comparison. P value less than or equal to 0.05 was considered significant.

Isolation and purification of constituents
The n-butanol fraction of E. cooperi (40g) displayed significant hepatoprotective and antioxidant activities. The fraction was subjected to chromatographic separation for characterization of active constituents by using polyamide column chromatography (6.5×65cm). Gradient elution was carried out using water/methanol mixtures (0–100% methanol). Fractions of 500ml were collected, evaporated under reduced pressure, and monitored by PC using the solvent systems A and B. Similar fractions were pooled together, yielding four collective fractions, which were subjected to further purification for isolation of their components.

Fraction A (3.5g), eluted with 40% methanol, was subjected to preparative PC (3MM Whatman filter paper) using 15% acetic acid in water and then further purified by sephadex LH-20, and eluted with methanol to give compound 1 (53mg).

Fraction B (10g), eluted with 40% methanol, was subjected to sephadex LH-20 column, eluted with 20–40% methanol, to yield three subfractions. Subfraction 1B (250mg) was subjected to sephadex LH-20 column, eluted with n-butanol, saturated with water (upper layer), and then subjected to sephadex LH-20 column eluted by 50% methanol to afford compound 2 (40mg). Subfraction 2B (400mg) was subjected to sephadex LH-20 column, eluted with 20% methanol, yielding compound 3 (76mg). Subfraction 3B (1.4g) was subjected to sephadex LH-20 column, eluted with 20% methanol, to give compound 4 (61mg).

Fraction C (5.4g), eluted with 60–80% methanol, was chromatographed using sephadex LH-20 column, eluted by 20% methanol. Subfraction 1C (2g) was subjected to sephadex LH-20 column eluted with n-butanol saturated with water (upper layer) then applied on sephadex LH-20 column and eluted by 50% methanol, and finally, was subjected to preparative PC (3MM Whatman filter paper) using 15% acetic acid/water as eluent. The chromatogram showed two major bands which were cut and eluted with methanol. Each eluted band was further purified on sephadex LH-20 column chromatography using 20% methanol as solvent to give compound 5 (30mg) and compound 6 (15mg).

Fig. 1. Photomicrograph of liver sections of normal rats (A) and paracetamol treated rats (B, C, D), methanolic extract (E) and chloroform fraction (F & G), n-butanol fraction (h) of aerial parts of Euphorbia cooperi pretreated rats and Silymarin(I) pretreated rats.

bd (bile duct), CV (central vein), F (fatty liver), pV (portal vein).

Fig. 2. Structures of isolated compounds from Euphorbia cooperi N.E.Br.

Fraction D (4.6g), eluted with methanol, was purified on a sephadex LH-20 column using methanol for elution followed by sephadex LH-20 column eluted with 90% methanol, yielding compound 7 (70mg).

Identification of isolated compounds

Gallic acid (1) showed the following characteristics: white powder (53mg); molecular formula: C7H6O5; mp: 255–258°C; 1H NMR (400MHz, DMSO) ʎH: 9.17 (brs, three OH at position 3, 4, and 5) and 6.92 (2H, s, H-2, H-6) and 13C NMR (100MHz, DMSO) ʎc: 167.96 (C=O), 145.85 (C-3, C-5), 138.44 (C-4), 120.91 (C-1), and 109.20 (C-2, C-6) [26, 27].

Brevifolin carboxylic acid (2) showed the following characteristics: yellow amorphous powder (40mg); mp: 200–201°C; 1H NMR (400MHz, DMSO) ʎH: 7.17 (1H, s, H-7), 2.93 (2H, d, J=7.4Hz, H-3), and 4.39 (1H, d, J=6.6Hz, H-2); and 13C NMR (100MHz, DMSO) ʎc: 194.35 (C-4), 175.13 (C-1), 161.16 (C-6), 149.56 (C-4a), 146.01 (C-10), 143.58 (C-8), 140.02 (C-10a), 115.01 (C-9), 113.36 (C-6a), 107.71 (C-7), 40.99 (C-2), and 37.32 (C-3) [28].

Kaempferol-3-O-ß-D-rutinoside (3) showed the following characteristics: yellow amorphous powder (76mg); molecular formula: C27H30O15; mp: 220–222°C; 1H NMR (400MHz, DMSO) ʎH: 7.99 (2H, d, J=8.7Hz, H-2', 6'), 6.88 (2H, d, J=8Hz, H-3'), 6.21 (1H, d, J=1.6Hz, H-6), 5.32 (1H, d, J=1.6Hz, H-6'), 5.32 (1H, d, J=7.4Hz, H-1' for glucose), 4.38 (1H, s, H-1'' for rhamnose), and 0.99 (3H, d, J=6.12Hz, H-6'' methyl of rhamnose); and 13C NMR (100MHz, DMSO) ʎc: 177.84 (C-4), 164.63 (C-7), 161.66 (C-5), 157.31 (C-9), 133.68 (C-3), 131.34 (C-2', 6'), 121.26 (C-1'), 115.56 (C-3', 5'), 104.44 (C-10), 101.80 (C-1'), 101.22 (C-1''), 99.20 (C-6), 94.21 (C-8), 76.82 (C-3'), 76.20 (C-5'), 74.63 (C-2''), 72.28 (C-4''), 71.06 (C-4''), 70.81 (C-2''), 70.38 (C-3''), 68.99 (C-5''), 68.71 (C-6''), and 18.18 (C-6'') [29, 30].

Corilagin (4) showed the following characteristics: pale brown amorphous powder (61mg), molecular formula: C27H22O18; mp: 220°C; 1H NMR (400MHz, DMSO) ʎH: glucose moiety: 6.23 (1H, d, J=7.08Hz, H-1), 4.62 (1H, brs, H-3), 4.38 (1H, t, J=8.2Hz, H-5), 4.26 (1H, d, J=11.8Hz, H-6), 4.24 (1H, s, H-4), 3.98 (1H, m, H-6), and 3.89 (1H, d, J=7.16Hz, H-2), and galloyl moiety: 7.04 (2H, s, H-2'', 6''); and 13C NMR (100MHz, DMSO) ʎc: HHDP moiety: 6.58 (1H, s, H-2'') and 6.51 (1H, s, H-2'), glucose moiety: 92.53 (C-1), 71.99 (C-2), 77.74 (C-3), 64.42 (C-4), 76.41 (C-5), and 62.55 (C-6), galloyl moiety: 119.18 (C-1''), 109.48 (C-2'' ', 6''), 146.06 (C-3'', 5''), 139.47 (C-4''), and 165.29 (C=O), and HHDP moiety: 123.56, 124.37 (C1', 1''), 106.39, 107.30 (C-2', 2''), 144.42, 144.74 (C-3'', 3''), 145.30, 145.39 (C-5'', 5''), 135.91, 136.04 (C4'', 4''), 116.03, 116.30 (C-6'', 6''), and 167.22, 167.57 (C=O) [31].

3, 3'-dimethoxy ellagic acid (5) showed the following characteristics: yellow amorphous powder (30mg); molecular formula: C16H10O8; 1H NMR (400MHz, DMSO) ʎH: glucose moiety: 6.23 (1H, d, J=7.08Hz, H-1), 4.62 (1H, brs, H-3), 4.38 (1H, t, J=8.2Hz, H-5), 4.26 (1H, d, J=11.8Hz, H-6), and galloyl moiety: 7.04 (2H, s, H-2'', 6''); and 13C NMR (100MHz, DMSO) ʎc: 60.19 (3, 3'-OCH3), 109.33 (C-6, 6'), 111.66 (C-5, 5'), 112.96 (C-1', 1''), 141.20 (C-2, 2''), 141.59 (C-3, 3''), 152.51 (C-4, 4''), and 159.81 (C-7, 7') [32].

3, 4, 4'-trimethoxy ellagic acid (6) showed the following characteristics: yellow amorphous powder (15mg); 1H NMR (400MHz, DMSO) ʎH: 7.53 (1H, s, H-5), 7.25 (1H, s, H-5'), 4.02 (6H, s, OCH3-4, 4'), and 3.96 (3H, s, OCH3-3') and 13C NMR (100MHz, DMSO) ʎc: 61.64 (3-OCH3), 57.01 (4-OCH3), and 56.49 (4'-OCH3) [33].

Ellagic acid (7) showed the following characteristics: white amorphous powder (70mg); 1H NMR (400MHz, DMSO) ʎH: 7.46 (2H, s, H-5, 5') and 13C NMR (100MHz, DMSO) ʎc: 108.04 (C-6, 6'), 110.67 (C-5, 5'), 112.39 (C-1', 1''), 136.84 (C-2, 2''), 140.12 (C-3, 3''), 148.59 (C-4, 4''), and 159.61 (C-7, 7') [31].

Results and Discussion

Methanolic extract of E. cooperi N. E. Br. was safe and nontoxic (LD50=3.8g/kg body weight) [34]. The results of hepatoprotective and antioxidant studies (Tables 1 and 2) revealed that administration of paracetamol at a dose of 600mg/kg significantly (P<0.05) increased serum ALT (610.6%), AST (292.5%), and hepatic MDA (69.8%) and depleted the hepatic GSh (56.0%) when compared with control rats; however, serum Alp levels were not significantly changed. Pretreatment with the methanolic extract of the aerial parts of E. cooperi N. E. Br. at a dose of 380mg/kg significantly (P<0.05) showed an inhibition in the paracetamol-induced elevated levels of serum ALT (17.3%), AST (54.1%), and total bilirubin.
In the current study, increased oxidative stress is very important to prevent lipid peroxidation [40]. It is widely used as a reliable index of lipid peroxidation product MDA (37.9%) and restored the level of hepatic GSH (78.1%). However, pretreatment with the chloroform fraction of the aerial parts at a dose of 100mg/kg showed no significant effect on the paracetamol-induced elevated levels of serum ALT, AST, and total bilirubin (4.2, 11.7, and 0%, respectively) as well as the depleted GSH. Only, it is significantly decreased the formation of MDA (25.6%). Pretreatment with the n-butanol fraction of the aerial parts at a dose of 100mg/kg showed significant inhibition on the paracetamol-induced elevated levels of serum ALT, AST, and total bilirubin (55.8, 90.5, and 35.7%, respectively). It is significantly decreased the formation of hepatic MDA and restored the level of GSH (42.5 and 104.1%, respectively). The highest activity was observed by the n-butanol fraction followed by the methanol extract, whereas the chloroform fraction showed the least activity, all compared with the standard drug, silymarin.

For screening of hepatoprotective agents, paracetamol-induced hepatotoxicity in experimental animals has been used as a reliable method [35]. The ALT, AST, and ALP activity and serum bilirubin level are the most common biochemical markers to evaluate liver injury. Administration of paracetamol caused a significant elevation of AST, ALT, ALP, and bilirubin level owing to the damaged structural integrity of liver [36]. The co-administration of the methanolic extract of the aerial parts as well as its n-butanol fraction prevented the increased serum marker enzymes AST and ALT and bilirubin levels. This is in agreement with commonly accepted view that serum levels of ALT and AST return to normal with the healing of hepatic parenchyma and regeneration of hepatocytes [37]. On the contrary, it has been hypothesized that one of principal causes of paracetamol-induced liver injury is lipid peroxidation by free radical derivatives [35]. MDA is one of the main toxic end products of lipid peroxidation; hence, it is widely used as a reliable index of lipid peroxidation [38]. Reduced GSH is one of the most abundant biological antioxidants present in the liver and constitutes the first line of defense against free radicals in liver [39]. Therefore, GSH is a reasonable marker for the evaluation of oxidative stress, and maintaining its level is very important to prevent lipid peroxidation [40]. In the current study, increased oxidative stress was observed in paracetamol-treated rats, as evidenced by the remarkable increase in hepatic MDA levels with significant depletion of hepatic GSH. Pretreatment with the methanolic extract of the aerial parts of E. cooperi N. E. Br. and its n-butanol fraction significantly decreased hepatic MDA and recovered GSH levels.

Histopathological study of the photomicrographs of liver from the normal group showed a normal hepatic architecture with distinct hepatic cells, sinusoidal spaces, and central vein (Fig. 1a). No evidence of degeneration or necrosis or inflammatory reaction could be observed. In contrast, liver sections of paracetamol-treated group (Fig. 1b-d) showed marked histopathological alterations characterized by fatty degeneration in hepatocytes, severe dilatation, and congestion of the central and portal veins as well as dilatation of bile duct with periportal inflammatory cell infiltration. Pretreatment with the methanolic extract of the aerial parts of E. cooperi N. E. Br. (Fig. 1e) restored the liver structure to nearly normal, as seen by marked regression of the histopathological alteration recorded in the paracetamol-intoxicated group with only mild dilatation in central vein. However, in the group pretreated with chloroform fraction (Fig. 1f, g), the histopathological changes recorded in paracetamol-intoxicated group remained, with marked dilatation and congestion in the portal and central vein as well as dilatation of bile duct. In contrast, photomicrographs of liver pretreated with n-butanol fraction (Fig. 1h) resembled to a great extent that of normal group showing marked improvement and reversion of the histopathological lesions demonstrated in the paracetamol-intoxicated group, which was comparable to the silymarin pretreated group (Fig. 1i).

The evident control on ALT, AST, and total bilirubin parameters, exerted by methanolic extract of aerial parts of E. cooperi N. E. Br. and its n-butanol fraction reflects an improvement in the secretory mechanism of the intoxicated hepatocytes. In the same context, the biochemical findings obviously correlate with the results of histopathological examination of the isolated liver tissues. As a matter of fact, the histological features of hepatocellular damage manifested by degeneration (fatty change) in hepatocytes, severe dilatation, and congestion of the central and portal veins as well as dilatation of bile duct with periductal inflammatory cells infiltration,
were markedly ameliorated on pretreatment with methanolic extract of aerial parts of E. cooperi N. E. Br. and its n-butanol fraction.

The chromatographic separation of the n-butanol fraction led to isolation of seven compounds. These compounds were identified as gallic acid, brevifolin carboxylic acid, kaempferol-3-O-β-D-rutinoside, corilagin, 3, 3’-dimethoxy ellagic acid, 3, 4, 4’-trimethoxy ellagic acid, and ellagic acid based on physical and spectroscopic analysis and by comparison with the literature data. All the seven compounds are known molecules; however, they are reported in E. cooperi as the major constituents for the first time.

The n-butanol fraction of the aerial parts showed significant hepatoprotective and high antioxidant activities owing to the presence of flavonoids (kaempferol-3-O-β-D-rutinoside), phenolic acids (gallic acid), and tannins (brevifolin carboxylic acid, corilagin, dimethoxy and trimethoxy ellagic acid, and ellagic acid).

This is in agreement with literature, which reported that flavonoids from Euphorbiaceae are well documented for their anti-tumor, hepatoprotective, and antioxidant activities [41]. Ellagic acid is known to possess hepatoprotective and antioxidant properties [13]; moreover, tannins are strong antioxidant [42].

Conclusion

E. cooperi-butanol showed promising hepatoprotective effect based on antioxidant potential. Chromatographic separation of n-butanol fraction afforded seven compounds: gallic acid, brevifolin carboxylic acid, kaempferol-3-O-β-D-rutinoside, corilagin, 3, 3’-dimethoxy ellagic acid, 3, 4, 4’-trimethoxy ellagic acid, and ellagic acid. This study is considered as the first report for the isolation of these compounds from E. cooperi.

TABLE 1. Effect of treatment with the methanolic extract, chloroform and n-butanol fractions of Euphorbia cooperi on serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and bilirubin level in paracetamol-induced hepatotoxicity in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose (mg/kg b.wt.)</th>
<th>ALT (U/l) M ± S.E.</th>
<th>% change</th>
<th>AST (U/l) M ± S.E.</th>
<th>% change</th>
<th>ALP (U/l) M ± S.E.</th>
<th>% change</th>
<th>Bilirubin (mg/dl) M ± S.E.</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td></td>
<td>35.04 ± 3.61</td>
<td>-</td>
<td>219.50 ± 10.10</td>
<td>-</td>
<td>120.35 ± 1.69</td>
<td>-</td>
<td>0.09* ± 0.01*</td>
<td>-</td>
</tr>
<tr>
<td>Liver damaged group</td>
<td>380</td>
<td>249.00* ± 9.76</td>
<td>+610.6</td>
<td>861.50* ± 5.40</td>
<td>+292.5</td>
<td>129.41* ± 6.77</td>
<td>+7.5</td>
<td>0.14* ± 0.01*</td>
<td>+55.5</td>
</tr>
<tr>
<td>Methanolic extract</td>
<td>380</td>
<td>205.90* ± 8.9</td>
<td>-17.3</td>
<td>395.50* ± 11.25</td>
<td>-54.1</td>
<td>138.67* ± 9.61</td>
<td>+7.1</td>
<td>0.10* ± 0.003</td>
<td>-28.6</td>
</tr>
<tr>
<td>Chloroform fraction</td>
<td>100</td>
<td>238.44* ± 8.3</td>
<td>-4.2</td>
<td>761.00* ± 3.4</td>
<td>-11.7</td>
<td>159.02* ± 2.15</td>
<td>+22.8</td>
<td>0.14* ± 0.01*</td>
<td>0</td>
</tr>
<tr>
<td>n-butanol fraction</td>
<td>100</td>
<td>144.90* ± 11.9</td>
<td>-55.8</td>
<td>82.24* ± 2.34</td>
<td>-90.5</td>
<td>134.10* ± 9.6</td>
<td>+3.6</td>
<td>0.09* ± 0.005</td>
<td>-35.7</td>
</tr>
</tbody>
</table>

Data were expressed as mean ± SE (n=6). *Significantly different from normal control (Saline) at P<0.05, aSignificantly different from liver damaged group at P<0.05.
TABLE 2. Effect of treatment with the methanolic extract, chloroform and n-butanol fractions of Euphorbia cooperi on hepatic MDA and GSH in paracetamol-induced hepatotoxicity in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose (mg/kg b.wt.)</th>
<th>Hepatic MDA (mmol/g wet tissue)</th>
<th>% change</th>
<th>Hepatic GSH (mmol/g wet tissue)</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M ± S. E.</td>
<td>M ± S. E.</td>
<td></td>
<td>M ± S. E.</td>
<td></td>
</tr>
<tr>
<td>Normal control</td>
<td>4.63 ± 0.17</td>
<td>-</td>
<td></td>
<td>1.66 ± 0.05</td>
<td>-</td>
</tr>
<tr>
<td>Liver damaged group</td>
<td>7.86± 0.82</td>
<td>+69.8</td>
<td></td>
<td>0.73± 0.01</td>
<td>-56.0</td>
</tr>
<tr>
<td>Methanolic extract</td>
<td>380</td>
<td>4.88± 0.76</td>
<td>-37.9</td>
<td>1.30± 0.16</td>
<td>+78.1</td>
</tr>
<tr>
<td>Chloroform fraction</td>
<td>100</td>
<td>5.85± 0.61</td>
<td>-25.6</td>
<td>0.57± 0.04</td>
<td>-21.9</td>
</tr>
<tr>
<td>n-butanol fraction</td>
<td>100</td>
<td>4.52± 0.61</td>
<td>-42.5</td>
<td>1.49± 0.15</td>
<td>+104.1</td>
</tr>
<tr>
<td>Silymarin</td>
<td>50</td>
<td>4.90± 1.80</td>
<td>-37.7</td>
<td>1.75± 0.12</td>
<td>+139.7</td>
</tr>
</tbody>
</table>

Data were expressed as mean ± SE (n=6). *Significantly different from normal control (Saline) at P<0.05, aSignificantly different from liver damaged group at P<0.05

References

5. Bailey L.H., The standard encyclopedia of horticulture : a discussion for the amateur and the professional and commercial grower, of the kinds, characteristics and methods of cultivation of the species of plants grown in the regions of the United States and Canada for ornament, for fancy, for fruit and for vegetables. N. Y. Macmillan (1953).
13. Anusuya N., Raju K., and Manian S., Hepatoprotective and toxicological assessment of an ethnomedicinal plant Euphorbia fusiformis Buch-

18. Karber G., Archives of Experimental Pathology and Pharmacology. 50% end-point calculation, 162, 480-483 (1931).

