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Introduction

HE structural and vibrational properties of Zn Se  (n=1,3,7,13) nanostructures have

been investigated using the Gaussian 09 program, density functional theory (DFT)
and time-dependent density functional theory (TDDFT) at the B3LYP level with 6-311G
basis functions. The structural properties showed that the rebuilding in surface atoms
deviated many bonds from their ideal length, the Zn-Se bond length decreased with the
increase in the size of nanostructures and converged to the experimental value. Quantum
confinement effect diminution was observed with the growing size of the nanostructures;
hence, the energy gap converged to the experimental value of 2.7 eV. Moreover, the binding
energy increased with the increase of the structure size, such that wurtziod2c (Zn,,Se ,) is
more stable than smaller structures. The vibrational properties results indicated that the
experimental longitudinal optical mode (LO mode) is situated between bare and hydrogen
passivated LO modes and very near to the bare case, this gave a good agreement with
experimental findings. The presence of hydrogen atoms at the surface caused a several
times decrease in vibrational force constant in comparison to the bare case. The IR spectrum
for wurtzoid and HP wurtzoid were investigated. The optical edge in UV-Vis spectra of
wurtzoid reduced from 4.5 eV to 4.2 eV of wurtzoid2c due to the increase in the size of
the nanostructure, while the maximum peak for wurtzoid at 2.88 eV increased to 3.06 eV
for wurtzoid2c showing a clear blue shift. These results leads to wide applications in fields
such as photoelectronic devices, lasers, sensors, and LEDs.
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required to build the nanostructure of materials.

Nanostructures have significant applications

Nanostructures of semiconducting materials
with a given size and composition can be
synthesized nowadays generating a wide interest
in investigating these structures in order to
discover new technologies and applications
[1-3]. Physicochemical  properties  for
nanomaterial depend on the size and shape of
nanostructures which are different from their
bulk form characteristics [4]. Hence, in order to
study the such structures at their nanosize level,
a molecular species representing the unit cell are

[5-14] which required extensive theoretical
and experimental studies of different promising
materials. It has been observed that quantized
and surface effects are dominant parameters at
nanostructures level. Fortunately, it is possible
to modify these nanostructures to create them
with the desired properties. Nanostructures
of II-VI semiconductors have interesting
characteristics; they have a wide energy gap,
bright photoluminescence, high stability, and
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size dependence. Therefore, they are used in
different applications such as LEDs, solar
cells, sensors, biological photoelectrochemical
cells, and catalysts [15-18]. Zinc selenide
(ZnSe) is an II-VI compound having a direct
bandgap of 2.7 eV. ZnSe is recognized to
be a favorable material for red, blue and
green LEDs, photodetectors, transistors,
photoelectrochemical cells, inorganic
semiconductor for core/shell, and doped
nanocrystals, etc. [19,20]. ZnSe at nanoscale
exhibitions incredibly different properties
than bulk form. In this work, wurtzoids will be
used to represent the wurtzite at the nanoscale
in order to investigate the structural and
vibrational properties of ZnSe. As such, the
nanostructures Zn Se_where n is the number of
atoms (n=1,3,7,13) will be considered.

Models and Method

Waurtzite and diamond structure at molecular
and nanoscale regimes can be represented by a
small molecule called wurtzoid and diamondoid,
respectively [21-24]. The surface atoms of these
molecules are usually passivated with hydrogen
or other atoms to saturate the dangling bond and
make bulk wurtzite and diamond crystals. If
not passivated, these unsaturated atoms tend to
reorganize and undergo a surface reconstruction
to minimize the surface energy. Wurtzoids are
the building blocks of the wurtzite structure.
As in the wurtzite structure, a and ¢ parameters
are needed to describe wurtzoids, i.e., these
wurtzoids are cupped bundles of (3,0)
nanotubes of ZnSe. Fig. 1 shows the smallest
CdSe molecules in the wurtzite structure is
wurtzoid (Zn,Se.) and wurtzoid2¢ (Zn, Se ;)
after geometrical optimization. Fig. 1 also
shows ZnSe diatomic molecule and ZnSe bare
cyclohexane (Zn,Se,), these two molecules
are also the component building block of
both wurtzoids and diamondoids. Hydrogen
passivated wurtzoid (HP wurtzoid) also
shown in Fig.1. All the clusters in Fig. 1 are
geometrically optimized using the Gaussian 09
program, density functional theory and time-
dependent density functional theory at the
B3LYP level with 6-311G basis functions[25].
UV-vis spectrum was calculated using time-
dependent density functional theory.

Results and Discussions

Density of bonds
Three kinds of bonds exist in bare and HP
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wurtzoid. These are Zn-H, Se-H, and Zn-Se.
The shortest bonds are Zn-H bonds followed
by Se-H bonds. The widest distribution of bond
lengths is in Zn-Se bonds. The reconstruction in
surface calculations deviates many bonds from
their ideal length. Fig. 2 show the distribution
of bond lengths of bare wurtzoid, HP wurtzoid,
and bare wurtzoid2c. The Zn—Se average bond
lengths are 2.54 A in the bare wurtzoid, 2.7A in
the HP wurtzoid and 2.52 A for wurtzoid2c. It
is in a good agreement with experimental value
2.45A [26]. The bond length decreases with
increasing the size of the molecule. This result
agrees with the experimental measurement
[18]. Se—H and Zn—H bond lengths are 1.475 A
and 1.54 A, respectively, Zn and Se atoms are
attached to hydrogen atoms to saturate dangling
bonds.

Energy gap and binding energy

The variation of the energy gap of bare
ZnSe structures is shown in Fig. 3. The Figure
shows that ZnSe structures tend to converge
to the bulk experimental gap. ZnSe structures
obey quantum confinement rule of approaching
the bulk energy gap with the increase of the
structure size. However, due to a large number
of dangling bonds in both ZnSe and Zn,Se,
molecules for the actual number of bonds of
the two molecules, the energy gap is decreased
since the dangling bonds create energy levels
inside the original energy gap that decreases
its value as shown in Table 1. As the molecules
increase in size, the number of dangling bonds
decreases for the total number of bonds that
prevents gap reduction and renders quantum
confinement rule of approaching bulk energy

gap [24].

The binding energy is calculated by using
the relation:

E binding=((nZn+nSe)-Zn_n

Where n is number of atoms.

Fig. 4 shows the variation of binding
energy with the number of atoms. The binding
energy increases with the increased size of the
structure. The wurtzoid2c is more stable than
other structures because it has high binding
energy. The dangling bonds decreased with the
increased size of structures and causes a rise in
the binding energy as shown in Table 1.
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Fig. 1. Optimized structure of suggested molecules (diatomic molecule ZnSe, bare
cyclohexane Zn,Se,, bare wurtzoid Zn.Se, bare wurtzoid2c Zn Se , and
hydrogen passivated wurtzoid Zn_Se. H ).
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TABLE 1. Energy gap and binding energy for the structures.

Energy gap experimental

Structures Energy gap eV eV Binding energy eV/atom
Diza?friic 1.478 0.952
Zn,Se, giczlghexane 1.859
Warnold 2.714 2.7 2.274
Worbiordhe 2.788 2.407
Reduced mass and force constant IR Spectrum

Fig. 5 shows the variation of reduced mass as
a function of the frequency of bare wurtzoid and
HP wurtzoid. The longitudinal optical mode (LO)
can be deduced from this figure. The LO mode
is the last vibrational mode in the bare case. In
the same way, the LO mode is the last vibrational
mode in the HP case before the beginning of the
hydrogen vibrations. The hydrogen vibrations
are characterized by a reduced mass that is
nearly equal to 1. LO modes of both bare and
HP wurtzoids, which are shown in Fig. 5 in
comparison with experimental LO value at 250
cm [10,26]. Also, from Fig. 5, it can be seen that
the experimental LO mode is situated between
bare and HP LO modes and very near to the bare
case, this phenomenon can be correlated with Fig.
2 that shows the weak bonding between surface
hydrogenated atoms and the rest of the molecule.
Surface hydrogen atoms are easily removed so
that these molecules are partially hydrogenated in
real experiments.

The vibrational force constant shown in Fig. 6,
which in its bare mode is several times higher than
that of the HP case. The surface dangling bonds
are the cause of this large increase. The electronic
charge of dangling bonds strengthens other real
bonds so that nearly double bonds are created
in other bonds. Various hydrogen vibrations can
be seen in the HP case in addition to the Zn-Se
vibrations discussed previously and shown in
Fig. 1. Se-H and Zn-H bending vibrations can be
seen in the range 288-556 cm. These bending
vibrations are followed by an island of Se-H
stretches at the range 1824-1850 cm™. Finally, an
island of Zn-H stretching can be seen at the range
0f 2297-2339 cm.

Fig. 7 shows the IR spectrum of ZnSe wurtzoid
structure molecule. IR spectrum for wurtzoid has
two high peaks; one at 208.8 cm™ and another at
252.6 cm’!. Fig. 8 shows the IR spectrum of HP
wurtzoid structure molecule. The IR spectrum
for HP wurtzoid can be divided into four regions
depending on the properties of vibration. In the
first region, pure Zn-Se vibrations results have
shown a good matching to the experimental
measurement [10,26]. The second region, Se-H
and Zn-H bending vibrations. In the third region,
Se-H stretching has a high peak at 1612 cm™. The
fourth region Se-H stretching has lower intensity
when compared with the three above mentioned
regions for HP wurtzoid.

UV-vis Spectrum

UV-vis spectra of wurtzoid and wurtzoid2c are
shown in Fig. 9. The optical edge in UV-vis spectra
moves from 275.4 nm for wurtzoid to 295.2 nm for
wurtzoid2c, this reduction (redshift) in excitation
energy from 4.5 eV to 4.2 eV is due to the increase
in the size of the molecule. In the molecular and
nanoscale regime, the number of atoms and also
atomic orbitals involved in the overlap are much
smaller than the bulk counterpart which causes an
increase of the optical band gap at the nanoscale.
The maximum peak for wurtzoid at 430.2 nm and
wurtzoid2c at 405 nm which shows a clear blue
shift. Fig. 9 shows that the width of the UV-vis
peak for wurtzoid is wider in comparison to the
nanostructure case while its amplitude is lower
where the amplitude of the nanostructure case is
much sharper. This means that the optical behavior
for ZnSe nanostructure can be changed by changing
the size of the nanostructure. This result leads
to wide applications such as in photoelectronic
devices, lasers, sensors, and LEDs.
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Conclusions

The structural and vibrational properties
of ZnnSen (n=1,3,7,13) nanostructures have
been investigated by using wurtzoids structure,
DFT/TDDFT at the B3LYP level with 6-311G
basis functions and Gaussian 09 program. The
calculation results are in high agreement with
experimental values. The bond length decreased
with the size of the nanostructures in good
agreement with the published experimental
results. The energy gap and binding energy
increased with nanostructures size while the
energy gap converged to 2.7 eV. UV-vis spectra
for wurtzoid and wurtzoid2c¢ changed with the
size of the structure and covered all visible region.
The maximum peak for wurtzoid at 430.2 nm is
shifted to 405 nm for wurtzoid2c. Therefore, the
optical properties can be modified to the desired
values by reducing or expanding the size of
nanostructures. This leads to wide applications
in photoelectronic devices, lasers, sensors, and
LEDs.
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