Structural, A.C electrical and Optical properties of (Polyvinyl alcohol–Polyethylene Oxide–Aluminum Oxide) Nanocomposites for Piezoelectric Devices

Qayssar M. Jebur¹, Ahmed Hashim²* and Majeed A. Habeeb²
¹Ministry of Education, Iraq.
²University of Babylon, College of Education for Pure Sciences, Department of Physics, Iraq.

Introduction

In general; Piezoelectric effect or direct piezoelectric effect is a phenomenon that generates electrical energy as when the material is subjected to pressure, applied force or mechanical stress. Where the charges are separated due to applied force. In short; energy conversion phenomena [1]. The Converse piezoelectric effect is called when materials are generated a mechanical strain when an electric field is applied [2]. First discovered in the phenomenon of piezoelectric effect are the two brothers Jacques Curie and Pierre Curie in 1880. They are observed when some crystals naturally occurring as quartz, cane sugar, Rochelle salt and topaz or Man-made crystals as a quartz analogue crystal, Gallium orthophosphate (GaPO4), and Langasite (La₃Ga₅Si₅O₁₄), nanocomposites when exposed to pressure gave electric effect. In addition, lead zirconate titanate, which was the first piezoelectric ceramic, was discovered when it was exposed to mechanical stress and generated an electric effect [3].

Piezoelectric materials have played a major role in research and development of many fields as pressure sensors and actuators. So, they are defined as a materials have the ability to convert...
Mechanical energy into electrical energy when exposed to mechanical stress. The molecules of these materials are poly or monocristalline [4]. Piezoelectric materials have many applications in many fields, for examples, sensors, as pressure sensor, force sensor, and strain gauge; actuators as loudspeaker, piezoelectric motors, nanopositioning in AFM and STM, and acoustooptic modulators; high voltage and power source such as cigarette lighter, energy harvesting, and AC voltage multiplier; transducers; surface acoustic wave devices; and frequency control [5].

Nanocomposites are defined as materials are resulting from the mixing of two substances; polymer as a matrix and the additive such as nanometals, nanofibers and nanometals oxide or any other materials. To obtain of piezoelectric nanocomposites must be selected polymers should be semi crystalline polymer, fibers, biocompatibility, biologically derived polymers, high ionic conductivity, biodegradability, brauch linking, lightweight nanocomposites and high specific strength. Both poly vinyl alcohol (PVA) and polyethylene Oxide (PEO) are characterized by these properties mentioned above[6].

Theoretical part

The dielectric constant (\(\epsilon\)) of (PVA-PEO-Al2O3) nanocomposites is calculated by the eq.:

\[\epsilon = \frac{C_p}{C_0}\]

\(\epsilon\) = dispersed component \(\epsilon\) \(\epsilon\) = frank component \(\epsilon\)

Where, \(C_p\) is parallel capacitance and \(C_0\) is vacuum capacitor

The dielectric loss (\(\epsilon''\)) of (PVA-PEO-Al2O3) nanocomposites is given by the equation [7]:

\[\epsilon'' = \frac{C_p}{C_0}\]

\(\epsilon''\) = dispersive component \(\epsilon''\)

Where, \(\epsilon_0\), \(\epsilon_0\), and \(\epsilon_0\), \(\epsilon_0\) are fundamental dielectric constant and \(\epsilon_0\), \(\epsilon_0\), and \(\epsilon_0\), \(\epsilon_0\) are real and imaginary parts of the dielectric constant (\(\epsilon_0\), \(\epsilon_0\), and \(\epsilon_0\), \(\epsilon_0\)) as the following eqs.:

\[\epsilon_r = \frac{n^2 - k^2}{n^2 + k^2}\]

\(\epsilon_{im} = 2nk\)

Optical conductivity can be defined as the movement of the charge carriers due to alternating electric field of the incident electromagnetic waves produced the electrical conductivity. Optical conductivity (\(\sigma_{op}\)) can be determined as:[10].

\[\sigma_{op} = \frac{\alpha n \epsilon_0}{\eta}\]

Materials and Methods

In this paper the materials used are polymers (Poly vinyl alcohol (85 wt. %)), (Poly ethylene oxide (15 wt. %)) as a polymer blend and the nanoparticles as magnesium oxide as additive. To get a homogeneous solution to (PVA-PEO) blend has been used magnetic stirrer in mixing process when each of the (PVA and PEO) polymers are dissolved in distill water. Aluminum oxide NPs were added to solution with concentrations is (0, 2, 4, and 6) wt. %. To preparation the (PVA-PEO-Al2O3) nanocomposites, the casting method has been used. The dielectric properties of nanocomposites were measured in frequency ranges from 10 Hz to 1MHz by using LCR meter type (HIOKI 3532-50 LCR HI TESTER. The films of (PVA-PEO-Al2O3) nanocomposites were prepared by dissolving (4g) of polymers in (60
ml) of distilled water with different concentrations are 85 wt.% PVA and 15 wt.% PEO by using a magnetic stirrer to blend the polymers for one hour to get a more homogeneous solution. Aluminum oxide nanoparticles are added to (PVA-PEO) blend with different concentrations are (0, 2, 4 and 6) wt. %. The sample was placed between copper plate and applied load on two plates where sample between them. The capacitance for different applied load range (60-300) bar was measured by using LCR meter type (HIOKI 3532-50 LCR HI TESTER at 100Hz, which locally manufactured.

To measure the optical properties of (PVA-PEO-Al₂O₃) nanocomposites in the range of wavelength (200-1100) nm, the UV/1800/ Shimadzu spectrophotometer device has been used.

Results and Discussion

Figure 1 show the photomicro graphs for (PVA-PEO-Al₂O₃) nanocomposites. From these shapes are noted homogenous distribution of Al₂O₃NPs through (PVA-PEO) blend and they are form a path network in the (PVA-PEO-Al₂O₃) nanocomposites when the concentration of nanoparticles exceeds 6 wt. %.

Fig. 1. Photomicrographs (x40) for (PVA-PEO-Al₂O₃) nanocomposites :
(A) for pure (B) for 2 wt.% Al₂O₃NPs (C) for 4 wt.% Al₂O₃NPs
Figure 2 shows the FTIR spectra of (PVA-PEO-Al₂O₃) nanocomposites. Double bonds of OH groups in the polymer matrix chain are observed for all samples of nanocomposites at around 3255.75 cm⁻¹ and 3648.99 cm⁻¹. At (1088.71) cm⁻¹ the other bands as (C-O-C) group are noted due to the PVA film was not so transparent. Bonds of C-H groups are presented at (2955-2918) cm⁻¹. The C=C stretching mode is appeared in the bands at (1706-1698.48) cm⁻¹. The peak at (1091.02-1420.46) cm⁻¹ the band is strong for all samples of nanocomposites this is due to the stretching mode of C-O group. The two strong bands observed at around (1418 cm⁻¹ and 842 cm⁻¹) are due to the stretching and bending modes of CH₂ group respectively [11].

The interaction between polymer blend and Al₂O₃ NPs leads to change in spectral of (PVA-PEO) blend. From the FTIR studies note that there are no interactions between (PVA-PEO) blend and Al₂O₃ NPs. Due to the increase in Al₂O₃ NPs concentrations, the transmittance is decreased slightly as figures show [12].

![FTIR spectra for (PVA-PEO-Al₂O₃) nanocomposites](image)

Fig. 2. FTIR spectra for (PVA-PEO-Al₂O₃) nanocomposites
A- (PVA-PEO) blend
B- 2 wt.% Al₂O₃ NPs
C- 4 wt.% Al₂O₃ NPs
D- 6 wt.% Al₂O₃ NPs.

Figures 3 and 4 show the plot between dielectric parameters against the frequency for different concentrations of aluminum oxide nanoparticles at room temperature. At low frequencies, each of dielectric constant and dielectric loss of nanocomposites are high, but they are decreasing rapidly when frequency increases due to the electric dipoles as interfacial polarization have sufficient time to adjust with the electric field before the field changes its direction. On the other hand, at high frequencies, the dielectric constant and dielectric loss of (PVA-PEO-Al$_2$O$_3$) nanocomposites are decreased due to the limited time available for electric dipoles compatibility. As a result, they are increased with increasing of aluminum oxide (Al$_2$O$_3$) nanoparticles concentrations, due to the increase in charge carrier density in (PVA-PEO) matrix [13-21].

Fig. 3. variation of dielectric constant with the frequency for different concentrations of aluminum oxide nanoparticles at room temperature.

Fig. 4. variation of dielectric loss with the frequency for different concentrations of aluminum oxide nanoparticles at room temperature.
Figure 5 shows the variation between A.C conductivity and frequency for (PVA-PEO-Al₂O₃) nanocomposites. It is observed that conductivity increases with increasing frequency due to interfacial polarization. In addition to; the increasing of conductivity for (PVA-PEO-Al₂O₃) nanocomposites with increase in Al₂O₃ NPs. The increase of electrical conductivity with increase in Al₂O₃ NPs attributed to increase the charges carries in (PVA-PEO) blend [22-30].

Figure 6 shows the plot between dielectric constant for (PVA-PEO-Al₂O₃) nanocomposites with different concentrations of Al₂O₃ NPs versus applied load. It’s observed that dielectric constant increases with increasing applied load of (PVA-PEO-Al₂O₃) nanocomposites due to the samples are exhibited high polarization and ability to orient the molecular dipoles. Where both of space charge and orientation polarization are responsible for piezoelectricity in these nanocomposites. In addition to; (PVA-PEO-Al₂O₃) nanocomposites are more flexible [9]. On the other hand the increase in dielectric constant may be attributed to the increase of aluminum oxide nanoparticles additive because of only each oxygen atom has the same distance to the aluminum atoms. This is because of the formation of net dipole moments owing to the change in the position of the atoms owing to mechanical stress,which led to creation of polarization and an electric field., respectively [3].

Fig. 5. variation of A.C conductivity with the frequency for different concentrations of aluminum oxide nanoparticles at room temperature.

Fig. 6. variation of dielectric constant for (PVA-PEO-Al₂O₃) nanocomposites with applied load at 100Hz.
To know the effects of aluminum oxide filler on the optical properties of (PVA-PEO) blend, UV-visible absorption spectra for (PVA-PEO-Al₂O₃) nanocomposites was measured. Fig. 7 shows the absorbance for (PVA-PEO-Al₂O₃) nanocomposites. It’s indicated the intensity of the peak increase with increases aluminum oxide filler. All samples have higher absorbance at UV region. The absorption band shifts due to specific weight Al₂O₃NPs and the formation of intermolecular hydrogen bonding existing between aluminum ions with the adjacent OH groups of the PVA and PEO main chain. Its note that (PVA-PEO) blend has low absorbance because of the distance between valence and conduction band is higher. The increase in aluminum oxide particles leads to the increase in absorption which is related to the increase the number of carries charge inside nanocomposite [31-44].

Figure 8 shows the plot of absorption coefficient vs. incident photon energy for (PVA-PEO) blend with different percentages of aluminum oxide nanoparticles Al₂O₃NPs. It shows the absorption low when energy is low, this means the electron transitions are low. In the high energy, absorption becomes large this indicate the highest probability for electron transitions. The absorption coefficient for (PVA-PEO-Al₂O₃) nanocomposites is increased by increase of Al₂O₃NPs additive [45]. The advantage of the absorption coefficient to conclude the transition electrons nature, when the value of absorption coefficient is high in the higher energy expected direct transition of electrons. The energy and momentum conservation can by electrons and photons, when the value of absorption coefficient low expected indirect transition of electrons. The momentum conservation is by phonons only. From the results it’s indicated absorption coefficient for (PVA-PEO-Al₂O₃) nanocomposites has values are less than (10⁴ cm⁻¹) which mean it’s have indirect energy band gap [46].

Figure 9 shows the variations between absorbance edge (ahu)¹² for (PVA-PEO-Al₂O₃) nanocomposites as a function of photon energy. It can be indicated that the values of forbidden energy gap (allowed) of (PVA-PEO-Al₂O₃) nanocomposites are decreased with increasing aluminum oxide nanoparticles concentration this is attributed to great localize levels in the forbidden energy gap, in addition to oxygen vacancies of Al₂O₃NPs which form non-stoichiometry [45-47].

Figure 10 shows the variations between absorbance edge (ahu)¹⁄₃ for (PVA-PEO-Al₂O₃) nanocomposites as a function of photon energy. Its indicate that the values of forbidden energy gap (prevent) for (PVA-PEO-Al₂O₃) nanocomposites decrease with increase aluminum oxide nanoparticles concentration this attribute to forms new levels and the transition of electrons between the tails of localize of the new levels made by the Al₂O₃NPs additive [31,49].
Fig. 8. Variation of absorption coefficient (α) for (PVA-PEO-Al$_2$O$_3$) nanocomposites with photon energy.

Fig. 9. Variation of $(\alpha h\nu)^{1/2}$ for (PVA-PEO-Al$_2$O$_3$) nanocomposites with photon energy.
To describe the attenuation of the waves must be studying the extinction coefficient, Fig. 11 shows the variations of extinction coefficient against wavelength for (PVA-PEO-Al₂O₃) nanocomposites. It shows an increase in extinction coefficient with increasing of aluminum oxide nanoparticles for (PVA-PEO) blend. The increasing of extinction coefficient is attributed to high absorption coefficient. Where aluminum oxide nanoparticles will modify the structure of the host (PVA-PEO) blend. An interesting result that when the concentration of Al₂O₃NPs increases the absorbance in the visible region increases [50].

To describe the electromagnet waves in the medium of propagation must be studied refractive index. Fig. 12 illustrates the plot of the variations of refractive index with wavelength for (PVA-PEO) blend. There is a fracture index of (PVA-PEO) blend increases with increasing the aluminum oxide nanoparticles, which attributed to increase the scattering of incident photon which causes to increase the reflectance. In addition to; further addition of aluminum oxide nanoparticles causes increasing the intensity for (PVA-PEO-Al₂O₃) nanocomposites [45].

Figure 13 shows the variations of real part dielectric vs. wavelength for (PVA-PEO-Al₂O₃) nanocomposites. It can be indicated that real part dielectric is mainly proportional to the square of refractive index. So, it is increased with increasing Al₂O₃ NPs additive. Figure 14 show the variations of imaginary part dielectric vs. wavelength for (PVA-PEO-Al₂O₃) nanocomposites. Its proportional to the extinction coefficient as shown in equation (11) and its increased with the increasing of the aluminum oxide nanoparticles [9].

Figure 15 shows the optical conductivity with wavelength for (PVA-PEO-Al₂O₃) nanocomposites. The optical conductivity is increased for (PVA-PEO-Al₂O₃) nanocomposites due to aluminum oxide nanoparticles Al₂O₃NPs are increased which leads to increase the absorption coefficient [12]. In addition to; this increase due to the creation of new levels in the band gap, lead to ease of passage carrier charges from the valence to the conduction band, as a result decreasing in the band gap and the conductivity increase [50-52].
Fig. 11. Variation of extinction coefficient for (PVA-PEO-Al₂O₃) nanocomposites with wavelength.

Fig. 12. Variation of refractive index for (PVA-PEO-Al₂O₃) nanocomposites with wavelength.
Fig. 13. variation of real part of dielectric constant for (PVA-PEO-Al$_2$O$_3$) nanocomposites with wavelength.

Fig. 14. variation of imaginary part of dielectric constant for (PVA-PEO-Al$_2$O$_3$) nanocomposites with wavelength.
Conclusions

1. The dielectric constant of PVA–PEO blend increases about 77% at 100Hz by increasing the concentrations of Al$_2$O$_3$ NPs to 6 wt.%. Moreover, it is increased to about 86% when the applied load is 60 bars and increase in the concentrations of Al$_2$O$_3$ nanoparticles is 6 wt.%. So, (PVA-PEO-Al$_2$O$_3$) nanocomposites can be used as piezoelectric sensors.

2. The dielectric loss of (PVA-PEO) blend has increased about 17.6 % at 100 Hz by increasing concentrations of Al$_2$O$_3$ nanoparticles at 6 wt.%. Moreover, it increased to about 13.7% when mechanical stress is 60 bars and increase in the percentage weight of Al$_2$O$_3$ nanoparticles at 6 wt.%.

3. The optical measurements are shown that in infrared region the absorbance of (PVA-PEO-Al$_2$O$_3$) nanocomposites has increased about 59% by increasing the percentage weight of Al$_2$O$_3$ nanoparticles at 6 wt.% So, (PVA-PEO-Al$_2$O$_3$) nanocomposites can be used as shielding systems.

4. The indirect energy gap (E_g) of (PVA-PEO) blend decreases about 48% with increasing of concentrations of Al$_2$O$_3$ nanoparticles at 6wt.%. So, (PVA-PEO-Al$_2$O$_3$) nanocomposites can be used as optoelectric devices.

5. The results showed that the (PVA-PEO-Al$_2$O$_3$) nanocomposites can be used for different applications such as: sensors, solar cells, and medical fields.

References

43. Falah Ali Jasim, Farhan Lafta, Ahmed. Hashim,

الخصائص التركيبية، و الكهربائية المتناوبة والبصرية للمتراكبات النانوية (بولي فينيل الكحول- بولي اثيلين اوكسايد- جسيمات اوكسيد الالمنيوم) للأجهزة الكهروضغطية

قيصر مهدي جبر، و مجد علي حبيب، و احمد هاشم، و قيصر مهدي جبر

وزارة التربية، العراق.
جامعتي بابل، كلية التربية للعلوم الصرفة، قسم الفيزياء، العراق.

هناك حاجة لدراسة الخصائص التركيبية والكهربائية والبصرية للمواد المتداخلة لتحديد مدى ملاءمتها للتطبيقات الالكترونية والصناعية والخلايا الشمسية. اكتشفت الخلاطات البوليمرية والمتراكبات النانوية أهمية كبيرة لدى الباحثين والعلماء، بالإضافة إلى أن هذه المواد دخلت في تطبيقات كهربائية وصناعية واسعة في هذا البحث. متراكبات نانوية من بولي فينيل الكحول- بولي اثيلين اوكسايد- جسيمات أوكسيد الالمنيوم النانوية تم تحضيرها بتراكيز وزنية مختلفة من أكسيد الالمنيوم النانوية. بيئة النانوية ان تأثير العزل الكهربائي يزداد مع زيادة تراكيز جسيمات أكسيد الالمنيوم النانوية وزاوية الحمل المطبق. تردد المهيج لخليط (PVA-PEO) يزداد زيادة تراكيز الوزنية لجسيمات أكسيد الالمنيوم ويدخل الجهد المطبق عند التردد 1000 هرتز. القياسات البصرية تؤدي إلى زيادة تراكيز جسيمات أكسيد الالمنيوم النانوية، حيث تزويدت الأدوات الكهروكيماوية بتوزيعات الاتساقية للمتراكبات النانوية (PVA-PEO-Al₂O₃). تتوافق مع زيادة تراكيز جسيمات أوكسيد الالمنيوم النانوية، وتزيد ثابتة الامتصاص، معامل انكسار، معامل نسيج، معامل التوصيلية البصرية للمتراكبات النانوية (PVA-PEO) مع زيادة النسب الوزنية لجسيمات أوكسيد الالمنيوم النانوية.