

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Strengths and Weaknesses of Three Different Popular Acid Base Theories: A Comparation Study

Tutik Setianingsih*¹, Ewies Fawzy Ewies²

¹Department of Chemistry, Brawijaya University, Malang 65145, Indonesia ² Department of Organometallic and Organometalloid, National Research Centre, Giza, Egypt

Abstract

Arrhenius, Bronsted-Lowry, and Lewis acid-bases theories are the most popular ones in Chemistry and studied by undergraduated students in Element Chemistry. A comparison study is needed to find each strength and weakness to stimulate analysis method and application developments. Reference searching method was conducted to obtain the informations. Result of study shows that Bronsted-Lowry and Lewis are focused on reaction by donor/acceptor process, independent of solvent and phase. Arrhenius is more concerned on dissolved product and applicable in water solvent only. Bronsted acid/base strength is determined as $K_{ab}K_{b}$ mathematically and experimentally but Lewis acidity is a sequence based on K_{f} , K_{BA} , and ΔH . All Bronsted acids contain Lewis acid and base, all Bronsted bases are Lewis ones, but not vice versa. Bronsted-Lowry reactions are the broken bonds, but Lewis ones can be with or without the breaking. Lewis and Bronsted-Lowry reactions support cementation, metal complexe and organometal synthesis, Arrhenius and Bronsted-Lowry support rock mineral activations, and those all three theories are suitable for metal ion adsorption by carboneous materials and metabolism reactions in erythrocyte. Based on the study, Lewis indicated the most superiority in both concept and application.

Keywords: Arrhenius; Bronsted - Lowry; Lewis; concept, application.

1.Introduction

Acid-base theory is one of topics which are studied by undergraduated students in Inorganic Chemistry field. the The acid-base theory is important to learn because many life aspects involve acid and base, including acid/base substances, acid-base adducts, and acid-base reactions. For example, acid compounds such as ascorbic acid, folic acid, citric acid, tartaric acid in the fruits [1], complexe Fe(II) ion (hemoglobin) in the blood [2], anthocyanine (acid/base indicator) in the flowers [3]. acid and basic drugs in medicine [4], formation of complexe metal ions in metal spectrophotometric analysis [5], CaCO₃ deposition as stalagtite and stalagmite in the cave [6], cation exchange reactions of metal cations and proton on the acid soil [7], etc.

Ten acid base theory types have been made from 1776 until 1960, sequently including Liebig, Arrhenius, Bronsted-Lowry, Lewis, Ingold-Robinson, Lux-Flood, Usanovich, Solvent system, and Frontier orbitals. The six ones of all those concepts are related to donor and acceptor terms. Among those six concepts, the only Bronsted-Lowry concept defined acid as donor and base as acceptor, while the other five ones (including Lewis) have the opposite terms [8,9]. Although there are 10 acid base concepts, the only 3 ones are studied popularly including Arrhenius, Bronsted-Lowry, and Lewis ones. Among those theories, Arrhenius is not connected to donor/acceptor.

Some journals have discussed those three acid base topics individually, including about Bronsted-Lowry concept [10-12], Lewis concept [13-15], Lewis acidity analysis method [16-20], Bronsted-Lowry acidity analysis method [21-22], Bronsted-Lowry applications [23-24], and Lewis applications [24-27]. Bronsted-Lowry and Lewis theories have been studied together especially their roles in the same organic synthesis [28-29]. A comparison study of those three concepts is needed to understand each shortage and strength. Their strengths will inspire more creations and modifications for synthesis of functional inorganic materials based on the acid base reactions. Their shortages will be a consideration to create additional theory supported by new analysis methods.

In this paper we compared those Arrhenius, Bronsted-Lowry, and Lewis acid-base including their concepts and some applications. For the concept, advantages and disadvantages of those concepts are studied. For the application, their roles are investigated especially related to inorganic synthesis, organometal synthesis, and human physiology. Result of this comparison study will be one of references in Element Chemistry course for undergraduate students in Inorganic Chemistry

field. Purpose of this study is to improve understanding of the undergraduate students in choosing the right concept to explain the acid base reactions.

2. Comparisons as the concept

Swante Arrhenius (1884) defined that acid is a substance which produces hydrogen ions in water [30] or yields proton in aqueous solution [8] or adds concentration of H^+ or H_3O^+ ions in water [31] or forms hydrogen ion or hydronium in aqueous solution [9]. Arrhenius base is a compound which yields hydroxide ions in aqueous solution [8], or adds concentration of OH^- ions in water [31] or forms hydroxide ion in aqueous solution [9]. It means that Arrhenius acid-base theory focus on product of the dissolved proton or hydroxide in the water.

Johannes Brønsted and Thomas Lowry (1923) proposed the acid-base reaction as ion hydrogen transfer [30]. Bronsted-Lowry defined acid as a species which has a tendency to lose a hydrogen ion and a base as a species which a trend to gain a hydrogen ion [8]. In other word, acid is a proton (H^+) donor and base is a proton (H^+) acceptor. Each can be called briefly as Bronsted acid and Bronsted base, respectively [30]. Both Bronsted acid and base can be molecule or ion [31].

Based on those definitions, Bronsted-Lowry focus on the reaction process, whereas Arrhenius focus on the product. Bronsted-Lowry concept has a superiority over Arrhenius concept because it doesn't depend on solvent type or solvent presence and applicable in gas, liquid, or solid phases, about the dissolved ones or the precipited ones. In other side, the Arrhenius concept is only useful for aquatic solution. For example, in Arrhenius concept, HCl is acid due to proton production in the water; NaOH is a base due to hydroxide ion formation in the water, and neutralization reaction of both dissolved proton and dissolved hydroxide ions in aqueous solution [8]. In other side, Bronsted-Lowry concept states HCl as an acid due to the proton donor, NH₃ is a base due to the proton acceptor, and reaction of HCl and NH₃ can occur NH₃ liquid to form NH₄Cl [32]. The chemical can be written as follows:

Arrhenius : HCl (aq) + NaOH (aq) → NaCl (aq) + H₂O (l)
Arrhenius acid Arrhenius base Salt Water

Bronsted – Lowry : HCl (dissolved in NH₃) + NH₃ (l) → NH₄Cl (dissolved in NH₃)
Bronsted acid Bronsted base

Another superiority of Bronsted-Lowry concept over Arrhenius is that it can explain a substance (including a solvent compound) can has a property as acid or base (amphoteric) depend on the other reactant properties. Even, the same substances can react each other as base and acid. These properties are impossibly explained by Arrhenius concept. For example, the H_2O molecule is acid (proton donor) toward NH_3 , but a base (proton acceptor) toward HF. H_2O molecules can react each other as acid and base to form H_3O^+ and OH as presented in Figure 1 [30]. The same explanations are applicable for amphoteric substances such as NH_3 , H_2SO_4 , HF, CH_3OH , CH_3CN , and CH_3COOH . The acid base reaction among themselves are stimulated by dipole attraction force due to their polar properties. Acetic acid (CH_3COOH) can also react as base in the acetic acid glacial (100% acetic acid) with other substances which are categorized as the stong acids in the water, such as H_2SO_4 , HNO_3 , HCl, $HClO_4$ (Figure 2). Sequence of their acid strength in glacial acetic acid is $HClO_4 > HCl > H_2SO_4 > HNO_3$ [8].

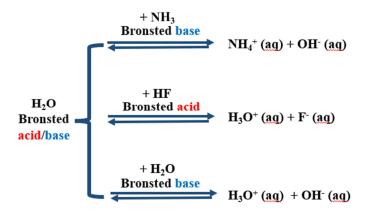


Fig. 1. Amphoteric property of H₂O in Bronsted-Lowry concept [30].

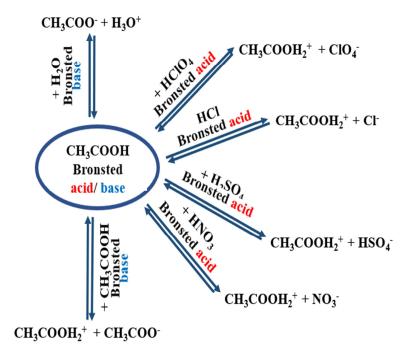


Fig. 2. Amphoteric properties of acetic acid in Bronted-Lowry concept [8].

Arrhenius modern concept used terms of "form, yield, and produce" in acid and base definitions which indicates applicable for substances which have no hydrogen for the acids or hydroxide for the bases because the consideration is not the reaction process but more about the product. For example, the acid oxides (non metal oxides) such as SO₂ and CO₂ are Arrhenius acids due to production of proton or hydronium in the water [30]. However those oxides are not Bronsted acids due to unable to transfer proton. The Bronsted acids must contain H atoms because they are proton donors, therefore Bronsted Lowry concept more considers the process than the products. The reaction examples can be written as follows:

$$CO_2(g) + H_2O(l) \longrightarrow H_2CO_3(aq)$$
 $H_2CO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + HCO_3^-(aq)$
Bronsted acid Bronsted base
 $CO_2(g) + H_2O(l) \longrightarrow H_3O^+(aq) + HCO_3^-(aq)$
Arrhenius acid Dissolved hydronium

In other side, the base oxides (metal oxides) such as Na_2O , CaO, etc are both Arrhenius and Bronsted bases. In Arrhenius concept, they produce the hydroxide ions in the water and in Bronsted Lowry concept, they are the donor proton toward H_2O solvent. The reactions are as follows:

$$Na_2O\left(s\right)$$
 + $H_2O\left(l\right)$ \longrightarrow $Na^+(aq)$ + $OH^-(aq)$ Arrhenius/ Bronsted acid Dissolved hydroxide Bronsted base

 Al_2O_3 is reactive toward water and produces the undissolved hydroxide, therefore Al_2O_3 is not Arrhenius base. In other side, Bronsted–Lowry keeps successfully explaining the Al_2O_3 as Bronsted base due to proton donor toward H_2O and toward proton in acid solution. Al_2O_3 is called amphoteric oxide due to its reactivity to acid and base. In this case, Bronsted Lowry concept can show its superiority over Arrhenius that principally in the base solution Al_2O_3 acts as Bronsted base toward H_2O as the Bronsted acid and the hydroxide ions as the ligands to form the dissolved metal complexe anions (Figure 3).

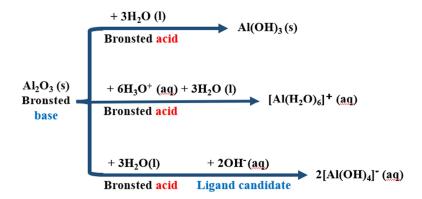


Fig. 3. Amphoteric property of alumina in Bronsted-Lowry concept [30].

G.N. Lewis (1930) defined a base as an electron-pair donor and an acid as an electron-pair acceptor [8,9, 33]. The Lewis acid includes metal ions and the main group compounds [1]. A proton (H^+) is also a Lewis acid because it can attack an electron pair, such as the pair in NH₃ to form NH₄⁺. It means that every HA Bronsted acid always contains Lewis acid (H^+) and Lewis base (A). Therefore, the HA Bronsted acid is exactly not Lewis acid but always exhibits Lewis acidity. However, all BL bases are Lewis bases because all proton acceptors are also the electron pair donors [30]. For example, in the reaction of the Bronsted acid CH₃COOH and Bronsted base NH₃, we can see that NH₃ is also Lewis base because it use its lone pair to make reaction with H atom of the acetic acid which releases it as the proton to NH₃ to form NH₄⁺ (Figure 4).

Fig. 4. Reaction mechanism of Bronsted acid (CH₃COOH) and Bronsted/Lewis base (NH₃) [34].

In Figure 4, O atom in C=O of acetic acid attract pi bonding to become lone pair which creates positive charge on centre C atom. This charge attracts lone pair of O atom on hydroxide to create new π bonding of C=O. This new bonding stimulates changing from bonding pair of O-H to lone pair of O atom which releases proton. Attraction force of positive dipole of H on hydroxide and negative dipole of N atom on NH₃ also supports deprotonation of acetic acid.

Superiority of Lewis concept over Bronsted-Lowry concept is proved by presence of the compounds as Lewis acid which do not contain hydrogen such as BF_3 (Figure 5) or contain hydrogen but not the proton donor such as BH_3 (Figure 6).

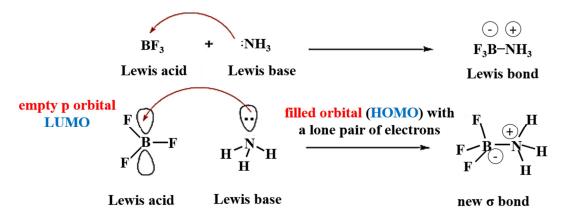


Fig. 5. Reaction of Lewis acid (BF₃) and Lewis base (NH₃) [35].

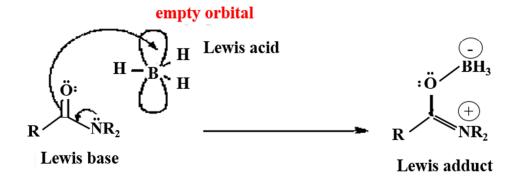


Fig. 6. Reaction of Lewis acid (BH₃) and Lewis base (RONR₂) [35].

In Figure 5 and 6, B atom is Lewis acid because it has potency to create one more covalent bond to achieve octet rule. This potency is caused by the provided orbitals (3s, $3p_x$, $3p_y$, and $3p_z$) in its valence shell to form a hybrid orbital of sp^3 . This Lewis acid characteristics attracts lone pair of N atom on NH₃ (Figure 5) and π bonding of C=O on RCONR₂ (Figure 6) to form new covalent bonds of B-N (Figure 5) and B-O (Figure 6). Both reactions in Figure 5 and Figure 6 are not able to be explained using both Arrhenius and Bronsted-Lowry due to lone pair transfer without water.

Existence of the metal ions as the Lewis acids indicates superiority of Lewis concept over the Bronsted-Lowry one due to no proton. However, Bronsted-Lowry is better to explain hydrolysis reaction in the aqueous solution of the salts why their solutions are acid. If a salt (example $AlCl_3$) is solved in water, the Al^{3+} ions (Lewis acid) and the H_2O molecules (Lewis base) make coordination bonding to form the $Al(H_2O)_6^{3+}$ complexe cation. This complexe is a Bronsted-Lowry acid due to some factors including: 1). Hydrogen bonding of the H_2O ligands and the H_2O solvents, 2). Attraction of electron density from O atoms of H_2O ligands by Al^{3+} , 3). Repulsion of Al^{3+} and positive dipoles of H atoms in H_2O ligands. Those three factors make the bonds of O-H in the ligands weaker and the complexe can release H^+ toward H_2O solvents to form H_3O^+ in the Bronsted-Lowry acid base reactions named hydrolysis reactions [36] as follows:

$$AlCl_3(s) + nH_2O(l) \longrightarrow Al^{3+}(aq) + 3Cl^{-}(aq)$$

$$Al^{3+}(aq) + 6H_2O(l) \longrightarrow [Al(H_2O)6]^{3+}(aq)$$
Lewis acid Lewis base
$$Al(H_2O)_6^{3+}(aq) + H_2O(l)$$
Bronsted acid Bronsted base
$$[Al(H_2O)_5OH]^{2+}(aq) + H_3O^{+}(aq)$$

The hydrolysis reaction between the $Al(H_2O)_6^{3+}$ cations and H_2O solvent molecules are the Bronsted-Lowry acid base reaction. However, it principally also involves H_2O solvent as Lewis base which makes reaction with Lewis acid H atom positive dipole of H_2O ligand of the metal complexe ion. The reaction mechanism shown in Figure 7.

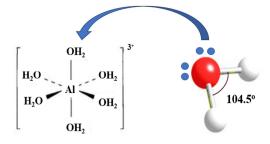


Fig. 7. Lone pair transfer from Lewis base H_2O to Lewis acid $[Al(H_2O)_6]^{3+}[30, 36]$.

In Figure 7, There is bond hydrogen between dipoles of H_2O solvent and ligands. This molecular attraction force weakens covalent bond in H_2O ligand molecule. This weakening of bond is also supported by the coordination bond between Al^{3+} and O atom in H_2O ligand. Thus, the metal complex releases proton to the solvent to form deprotonated complex and H_3O^+ .

Although same about transfer between donor and acceptor, concentration of the transferred proton or hydroxide in Bronsted-Lowry concept can be calculated mathematically based on the acid base equilibrium reactions and measured directly through analysis method, whereas impossible to determine the transferred electron pair concentration in Lewis concept. The examples of mathematics calculation for determination of the transferred proton and hydroxide [37, 30] are given as follows:

Based on those formulas, the transferred H^+ or OH^- concentration can be calculated mathematically by using data of K_a or K_b , the resulted A^- or BH^+ , and the remain HA or B, respectively. Each proton and hydroxide concentration can be also measured directly using pH meter or acid base titration analysis method.

Strength of Bronsted acid and Bronsted base can be also measured directly from its acidity constant (K_a) and its basicity constant (K_b) , respectively, whereas it can't be done for Lewis acid and Lewis base. A substance which has Ka > 1 $(pK_a < 1)$ is a strong acid because it is regarded as fully deprotonated in its solution so that the acid concentration can be negligible. In other side, a substance with $K_a < 1$ $(pK_a > 1)$ is a weak acid due to hard deprotonation reaction so that the acid reactant is more favour [30]. In Bronsted-Lowry concept, acidity strength is applicable for molecules and ions as listed in Table 1 and Table 2.

Table 1: Acidity constants of some Bronsted acid molecules and ions in their aqueous solution at 25°C

No.	Bronsted acid	Ka	Strength
1.	H_2SO_4	~10 ²	Strong acid
	HSO_4	1.20 X10 ⁻²	Weak acid
2.	H_3PO_4	7.52 X 10 ⁻³	Weak acid
	$H_2PO_4^-$	6.23 X 10 ⁻⁸	Weak acid
	HPO_4^{2}	2.20 X 10 ⁻¹³	Weak acid

Source: [32]

Table 1 shows that both H_2SO_4 and H_3PO_4 experience decreasing of Bronsted acidity after deprotonation. Both acid substances have oxy (S=O, P=O) and hydroxide(S-OH, P-OH) functional groups. The deprotonated hydroxide groups stimulate resonance structure. This resonance decreases formation of positive charge on S atom which weakens attraction to bonding electron pair of S-O which finally strengthen bonding of O-H and more difficult to release proton. The resonace structures of HSO_4^- , $H_2PO_4^-$, and HPO_4^{-2} are shown from Figure 8 to Figure 10, respectively.

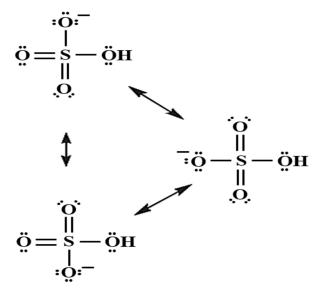


Fig. 8. Resonance structure of HSO₄ [30].

Fig. 9. Resonance structure of H₂PO₄ [38].

Fig. 10. Resonance structure of HPO₄²⁻ [39].

By instrument development, pKa was determined by ^{19}F NMR Spectroscopy, for example, pKa of a fluorinated binaphthyl-derived phosphinic acid [40]. Bronsted acidity was determined by UV-Vis spectrophotometry by calculating the Hammett function (H_o) comparison of relative acidity to sulfuric acid [41]. Bronsted acid site of solid was determined by FTIR spectrometry, for example for Zr-Si oxide nanoparticles [42].

Table 2: Acidity constants for some Bronsted acids of the metal complexe ions

No.	Bronsted acid	M ⁿ⁺ radii (pm) *	pK _a	Acid Strength
1.	$[Co (H_2O)_6]^{3+}$	75	2.92	Weak acid
	$[Cr (H_2O)_6]^{3+}$	76	4.29	Weak acid
	$[Sc (H_2O)_6]^{3+}$	89	4.30	Weak acid
2.	[Cu (H ₂ O) ₆] ²⁺ [Co (H ₂ O) ₆] ²⁺	87	8.00	Weak acid
	$[Co (H_2O)_6]^{2+}$	89	9.65	Weak acid
	$[Mn (H_2O)_6]^{2+}$	97	10.59	Weak acid
3.	$[Mg (H_2O)_6]^{2+}$	86	11.41	Weak acid
	$[Sr(H_2O)_6]^{2+}$	132	13.18	Weak acid
	$[Ba (H_2O)_6]^{2+}$	149	13.36	Weak acid

Source: [43], * [9]

Table 2 presents the examples of pK_a which are only affected by charge and metal cation radii. The other examples which need discussion by involving the other influencing factors such as d^n , high spin, and low spin are not listed In Table 2 because this paper will be used for reference of Element Chemistry (semester 3), while Coordination Chemistry will be studied in semester 4. The acid strength of the complexes is affected by coordination bonding strength of M^{n+} and H_2O ligand. The stronger bonding of M- OH_2 in the complexe, the weaker bonding of OH in H_2O ligand, the easier releasing of proton from ligand. The metal cation charge of 3+ have the complexes which have lower pK_a (higher K_a) than of 2+. Among the same metal cation charge, the larger the metal cation size, the larger pK_a (smaller K_a). Larger charge and smaller size of the metal cations strengthen coordination bonding of M- OH_2 . In this case, hydrogen bonding of positive dipole of H atom in H_2O ligand and negative dipole of H atom in H_2O solvent also supports the deprotonation.

In Lewis concept, no Lewis acidity constant and Lewis basicity constant are recognized like in Bronsted-Lowry concept because the transferred electron pair amount can't be determined directly. Alternatively, Lewis basicity is determined indirectly by formation reaction of Lewis adduct from L base and Lewis acid [8]:

Lewis basicity can be determined based on K_{BA} value. I_2 is the good Lewis acid to determine Lewis basicity due to soluble in different solvents. For example, the K_{BA} values in Table 3 showed the same Lewis basicity ranking in 2 different solvents by using I_2 as the Lewis acid in sequence of Lewis basicity: $(C_6H_5)_3P=O < (C_6H_5)_3P=S < (C_6H_5)_3P=Se$. There is decreasing

of electronegativity (O > S > Se) which causes the Lewis base softer. The soft acid I2 makes stronger bonding with softer

Table 3: Data of log K_{BA} for using I₂ as Lewis acid and 2 different solvents at 25°C

No.	Lewis base	Lewis acid	Log K _{BA} in CCl ₄	Log K _{BA} in CHCl ₃
1.	$(C_6H_5)_3P=O$	I_2	1.38	0.89
2.	$(C_6H_5)_3P=S$	I_2	2.26	2.13
3.	$(C_6H_5)_3P = Se$	I_2	3.48	3.65

Source: [8]

Entalphy reaction is another indicator to determine Lewis basicity in formation of the Lewis adducts. Affinity of BF_3 towards various bases was measured in dichloromethane solution [Table 4]. Increasing of BF_3 affinities indicate stronger coordinate covalent bonding and increasing of Lewis basicity towards BF_3 . The affinity is defined as magnitude of the enthalpy change of adduct formation in this reaction [8]:

$$CH_2Cl_2$$
 $BF_3 + L$ base L base - BF_3 $-\Delta H^o = BF_3$ affinity of Lewis basicity

Table 4: Data of BF₃ affinities for different Lewis bases in CH₂Cl₂ at 25°C

No.	Lewis bases	BF ₃ affinities (kJ/mol)
1.	2-trifluoromethylpyridine	82.46
2.	2-methylpyridine	123.44
3.	Pyridine	128.08
4.	3-methylpyridine	130.93
5.	4-dimethylaminopyridine	151.55

Source: [8]

Based on BF_3 affinities, Table 4 shows increasing of Lewis basicity from no 1 to no 5 due to different substituent type or location on pyridine structure (Figure 11). On the ortho position, substituent of trifluoromethyl reduced Lewis acidity to the lowest value. F atom has the highest electronegativity in periodic table, thus presence of $-CF_3$ as substituent will reduce electron density on pyridine structure. This condition makes N atom more difficult to donate the lone pair to the B atom of BF_3 . Methyl is the electron pushing group which can increase electron density on pyridine structure, but it also reduced Lewis basicity of pyridine. It is probably caused by ortho position which is not effective to increase electron density and steric effect of methyl toward BF_3 due to near by N atom of pyridine. Methyl substituent on meta position enlarged the Lewis basicity of pyridine due to effective position to increase electron density and lack of steric effect. However, Substance of 4-dimethylaminopyridine has the highest Lewis basicity due to para position which is effective to improve electron density, low steric effect, and more methyl as the electron pusher group.

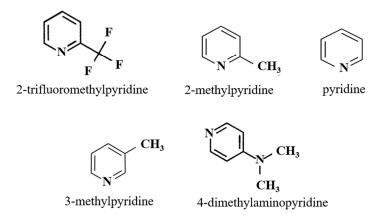


Fig. 11. Chemical structures of pyridine and its different type and location of substituents [44,-46].

In the metal complexes, Lewis acidity and Lewis basicity of the metal cations and the ligands can be predicted from stability constant or formation constant of the metal complexes for various metal cations (one metal cation type) or various ligands (one ligand type). However, this stability constant is affected by acid/base characteristics named hard acid/base and soft acid/base. Interactions of hard-hard or soft-soft species create more favourable reactions than of the hard-soft ones. Hard and soft acid/base are based on molecule or ion polarizability. Polarizability is a distortion degree of a molecule or an ion by their interactions. Electrons in the polarizable molecules will be attracted or repelled by other

molecule charges and form slightly the polar species which interact with the other molecules. Hard acids/bases are relatively small, compact, and nonpolarizable, while the soft acids/bases are larger and more polarizable. The hard acids include the metal cations which have the large positive charges (\geq 3+) or d electrons with relatively unavailable for p bonding. Soft acids are those which have d electrons or orbitals available for p bonding such as neutral atoms , 1+ cations, and heavier 2+ cations [8].

Although no acidity constant and basicity constant in Lewis concept like in Bronsted-Lowry concept, hardness and softness of acid/base are recognized in Lewis acid-base theory as Hard Soft Acid Base Concept (HSAB) and can be calculated quantitatively. Absolute hardness (η) is calculated as half of ionization energy (I) and electron affinity difference (A), both in eV. Softness (σ) is defined as the hardness inverse.

$$\eta = \frac{\mathit{I-A}}{2} \qquad \qquad \sigma = \frac{1}{\eta}$$

Data of stability constants for some different metal complexes are listed in Table 5 with the same Lewis hard base (NH₃).. The higher the stability constant the stronger Lewis acidity. The larger coordination number the larger metal cation size [2], thus the same coordination numbers are needed for comparison of different metals. Among the same metal cation charges of 3+ and coordination number of 6, the stability constant of the complex which were formed by the hard acid-hard base (Co^{3+} -NH₃) is much higher than by borderline acid- hard base. For among borderline metal cations and among soft metal cations, the smaller size of metal cations the larger K value. HSAB theory is good to compare the same metal, such as Cu^+ VS Cu^{2+} or Co^{2+} VS Co^{3+} , but for different metal cations, it may be not always applicable because there is other influencing factor which must be considered. For example, $Ag(I) - NH_3$ complex has much lower K than $Cu(II) - NH_3$ complex because Ag(I) is soft and Cu(II) is borderline acid while NH3 is hard. In other side, $Cu(I) - NH_3$ complex has much higher K than $Co(II) - NH_3$ complex although Cu(I) is soft and Co(II) is borderline. Thus, HSAB concept is conditional.

Table 5: Stability constants of ammonia complexes with different metal cations

No.	Lewis acid	Hardness acid (η)	M ⁿ⁺ radii (pm)**	Lewis base	Hardness base (η)	Coordination number (CN)	Lewis adduct	Stability constant (K)
1.	Ag^+	Soft	81	NH ₃	hard	2	$[Ag(NH_3)_2]^+$	1.70 X 10 ⁷
	Ag ⁺ Cu ⁺	Soft	60	NH_3	hard	2	$\left[\operatorname{Cu}(\operatorname{NH}_3)_2\right]^+$	3.80×10^{10}
2.	Zn^{2+}	Borderline	74	NH_3	hard	4	$[Zn(NH_3)_4]^{2+}$	3.98 X 10 ⁹
	Cu ²⁺	Borderline*	71	NH_3	hard	4	$[Cu(NH_3)_4]^{2+}$	4.80×10^{12}
3.	Co ²⁺	Borderline	89	NH_3	hard	6	$[Co(NH_3)_6]^{2+}$	7.70×10^4
-	Ni ²⁺	Borderline	83	NH_3	hard	6	$[Ni(NH_3)_6]^{2+}$	1.26 X 10 ⁹
	Co ³⁺	Hard	69	NH_3	hard	6	$[Co(NH_3)_6]^{3+}$	5.00×10^{33}

Sumber: [8,47]; *[48], **[9]

Table 6 gives examples for the complexes with same Lewis acid but different Lewis bases. In Table 6, the stability constant of the Au(I) complexe anions increased by Lewis base sequence of $F < C\Gamma < \Gamma$ which indicate sequence of Lewis basicity toward Au(I) metal cation. Au(I) is soft acid which creates strong coordination bond with soft ligand. Softness of ligand increses from F to Γ due to increasing of anion size which makes the anion easier to donate lone pair to the Au(I). This sequence is match with HSAB concept.

Table 6: Stability constants of complexes with same metal cations and different ligand

No.	Lewis acid	Acid hardness (η)	Lewis base	Base hardness (η)	Lewis adduct	K
1.	Au(I)	5.6 (Soft)	Cl ⁻	4.70 (Hard)	$[Au(Cl)_2]^-$	3.9×10^9
2.	Au(I)	5.6 (Soft)	Br ⁻	4.24 (Borderline)	$[Au(Br)_2]^{-}$	2.5×10^{12}
3.	Au(I)	5.6 (Soft)	I ⁻	3.70 (Soft)	$[Au(I)_2]^{-}$	1.0×10^{19}

Sumber: [9, 49]

Lewis basicity can be also measured as a sequence from K_{sp} (constant of solubility product) values with reaction as follows [1]:

$$AgX(s) + n H_2O(l)$$
 $Ag^+(aq) + Cl^-(aq)$ $K_{sp} = [Ag^+][X]$

The lower K_{sp} the lower solubility of AgX, the stronger bonding of Ag(I) and X, the higher Lewis basicity of halogen ions toward Ag(I) cation. The soft acid Ag(I) prefer to create strong bonding with soft base with more covalent bonding characteristics. Data in Table 7 shows that K_{sp} values of AgX decreases in sequence of F > CI > Br > I due to decreasing of Lewis base hardness. This decreasing ones are caused by larger size of halogen anions which cause them easier to donate the lone pair to Lewis acid Ag(I). Beside that, although the same soft acid, Ag(I) has smaller size for AgI

and AgBr due to tetrahedral clusters in their unit cells, while larger size for Ag(I) in AgF and AgCl due to octahedral clusters (Figure 12).

Table 7: K_{sp} values of Lewis adducts with Lewis acid of Ag(I)

No.	Lewis	Acid hardness	M ⁿ⁺ radii (pm)	Lewis	Base hardness (η)	X-	Lewis	K _{sp}
	acid	(ŋ)	**	base		(pm)	adduct	
1.	Ag (I)	Soft	129	F-	7.01 (Hard)	117	AgF	205
	Ag(I)	Soft	129	C1	4.70 (Hard)	167	AgCl	1.8 X 10 ⁻¹⁰
	Ag(I)	Soft	114	Br ⁻	4.24 (Borderline)	182	AgBr	5.2×10^{-13}
	Ag(I)	Soft	114	I-	3.70 (Soft)	206	AgI	8.3 X 10 ⁻¹⁷
2.	Mg^{2^+} Ca^{2^+}	Hard	86	\mathbf{F}^{-}	7.01 (Hard)	117	*MgF ₂	6.6 X 10 ⁻⁹
		Hard	114	F	7.01 (Hard)	117	*CaF ₂	3.9 X 10 ⁻¹¹
	Sr^{2+}	Hard	132	F	7.01 (Hard)	117	*SrF ₂	2.8 X 10 ⁻⁹
	Ba^{2+}	Hard	149	F	7.01 (Hard)	117	*BaF ₂	1.7 X 10 ⁻⁶

Source: [8], * [32], ** [9]

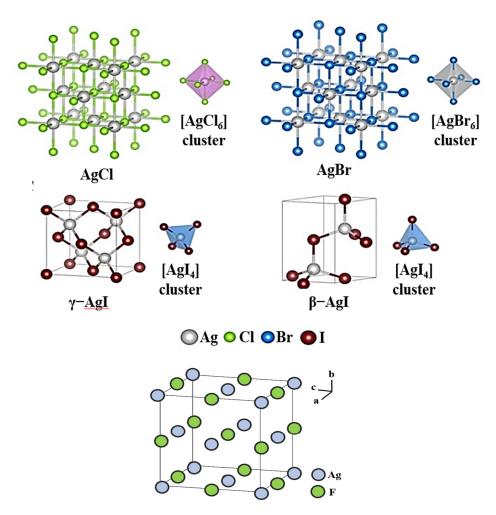


Fig. 12. Crystal structure of AgX [50,51].

Based on Table 7, HSAB concept is also applicable to explain K_{sp} of fluoride salts which are formed by some different metal cations of IIA group in periodic table. Although all metal cations and anion are same hard, their solubilities increase from CaF_2 to BaF_2 ; This is as consequency of larger metal cation size from Ca^{2+} to Ba^{2+} for same 8 coordination number (Figure 13) which make their bonding easier broken by H_2O solvent. However, there is anomaly about MgF_2 which has higher K_{sp} than CaF_2 although the Mg^{2+} cation size is smaller than Ca^{2+} . It is probably caused by lower coordination number of Mg^{2+} in its unit cell than Ca^{2+} . Every Mg^{2+} and Ca^{2+} cations are arrounded by 3F and 8F anions, respectively (Figure 13). Thus, H_2O

polar solvent molecules are easier to make interactions with Mg^{2+} than Ca^{2+} due to more repelled by fluoride anions to attack Ca^{2+} .

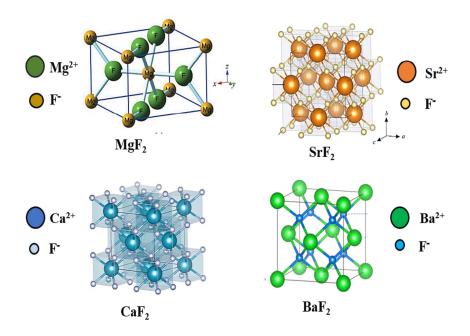
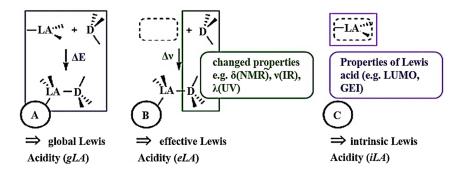



Fig.13. Crystal structures of MF₂ fluoride salts [52-54].

By development, Lewis acidity can be determined as 3 categories, including global Lewis acidity (gLA), effective Lewis acidity (eLA), and intrinsic Lewis acidity (iLA) as shown in Figure 14. Among those categories, the eLA uses spectroscopic methods to measure effect of Lewis acid on a probe molecule. The induced changes of physicochemical properties of a probe Lewis base are followed by instrumental measurements including IR/UV/Vis/ fluorescence/NMR spectroscopy [16].

 $Fig.\ 14.\ Scaling\ methods\ of\ Lewis\ acidity: A)\ global,\ B)\ effective,\ C)\ intrinsic\ [16].$

2. Comparisons in application

Acid-base concept can be used to explain the reactions in various applications. This section discussed some applications to understand which concepts is more applicable compared to the others.

Bronsted-Lowry concept can be applied for the reactions in rock mineral activation. For example, based on EDX analysis kaolinite mainly contains SiO_2 (53.57 %) and Al_2O_3 (43.54 %) with some chemical impurities such as Fe_2O_3 (1.08 %), K_2O (1.52%), Na_2O (0.078 %), CaO (0.085 %), CaO (0.094 %), and CaO (0.073%) [55]. Sea sand consists of CaO (53.16 %), CaO (19.40 %), CaO (2.66 %), and CaO (2.08%), a

before modified with sodium dodecyl benzene sulfonate (SDBS) surfactant [60]. HCl and H_2SO_4 are Arrhenius acids due to production of dissolve proton in their solutions. They are also Bronsted acids due to electron transfer reaction toward H_2O (Bronsted base) to form H_3O^+ . However, the activation reactions are impossible to explain by using Arrhenius theory, it needs Bronsted-Lowry acid base reactions to remove M_2O ($M = K^+$, Na^+), MO ($M = Mg^{2^+}$, Ca^{2^+}), Fe_2O_3 . As explained in section 2 that all Bronsted bases are Lewis base and all Bronsted acids contains Lewis acid (H^+), therefore the rock mineral activations with acids can be also explained using Lewis acid-base theory.

$$M_2O(s)$$
 + $H_3O^+(aq)$ \longrightarrow $2M^+(aq)$ + $OH^-(aq)$ + $H_2O(l)$ Bronsted/Lewis base Bronsted acid conjugate acid conjugate base $MO(s)$ + $H_3O^+(aq)$ \longrightarrow $M^{2+}(aq)$ + $OH^-(aq)$ + $H_2O(l)$ Bronsted/Lewis base Bronsted acid conjugate acid conjugate base $Fe_2O_3(s)$ + $3H_3O^+(aq)$ \longrightarrow $2Fe^{3+}(aq)$ + $3OH^-(aq)$ + $3H_2O(l)$ Bronsted/Lewis base Bronsted acid conjugate base

 TiO_2 needs heating for dissolving process because TiO_2 is soluble in hot H_2SO_4 and HCl solution [61, 44] with this acid-base reaction:

$$TiO_2(s)$$
 + $2H_3O^+(aq)$ \longrightarrow $Ti^{4+}(aq)$ + $2OH^-(aq)$ + $2H_2O(l)$
Bronsted/Lewis base Bronsted acid conjugate base

In dry synthesis of $ZnFe_2O_4/CNS$, $MnFe_2O_4$ and $ZnCr_2O_4/CNS$ composites, the ZnO/CNS composite was reacted with KOH and salt chlorides by calcination. The ZnO/CNS was prepared from biomass and $ZnCl_2$ hydrothermally and with microwave sequently [62] or with dry microwave and product dispersion process in water solvent mechanically [63]. The spinel dry synthesis is solid state synthesis method which involve diffusion of ions in solid phase thermally to form the product [64]. The spinel formation in the calcination processes are Lewis acid base reaction involving Lewis acids $(Zn^{2+}, Mn^{2+}, Cr^{3+}, Fe^{3+})$ using sources of metal chloride salts and Lewis bases (O^2) from sources of KOH. The reactions are not Arrhenius or Bronsted – Lowry ones because they involved the lone pair transfer in solid phase. The chemical reactions are as follows:

$$ZnC/CNS(s) + 2KOH(s) + ZnCl_{2}(s) + 2CrCl_{3}.6H_{2}O(s) \longrightarrow ZnCr_{2}O_{4}/CNS(s) + 2KCl(s) + ZnO(s) + 6HCl(g) + CO_{2}(g) + 6H_{2}O(g)$$

$$ZnO/CNS(s) + 2KOH(s) + MnCl_{2}(s) + 2FeCl_{3}(s) \longrightarrow MnFe_{2}O_{4}/CNS(s) + 2KCl(s) + ZnO(s) + 6HCl(g) + CO_{2}(g)$$

Existence of $ZnCr_2O_4$ and $ZnFe_2O_4$ spinels as Lewis adducts appear clearly in their same crystal structures (Figure 15). Both spinels are the normal structure with Zn^{2+} cations occupy tetrahedral sites arrounded by O^{2-} anions and Fe(III) or Cr(III) cations in octahedral sites arrounded by six O^{2-} anions. While for $MnFe_2O_4$, Mn^{2+} and Fe^{3+} in $MnFe_2O_4$ occupy both sites [62,63]. Those transition metal cations are Lewis acids and oxygen anions are Lewis bases.

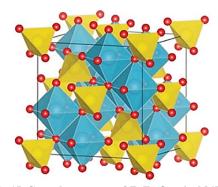


Fig.15. Crystal structures of ZnFe₂O₄ spinel [65].

Adsorption of metal cations by activated carbon or biochar can be explained by cation exchange reaction and complexation or ionic interactions (Figure 16). The cation exchange reactions can occur between proton or metal cation such as Na⁺ with adsorbate metal cations. The surface complexation reaction can be occurred between oxy functional groups such as -COO⁻ and \equiv SiO⁻. The exchange reactions can be Bronsted-Lowry or Lewis acid base reactions. However, the carboneous materials which release the dissolved proton in adsorption through exchange reaction are Arrhenius acids.

-COOH (s) +
$$M^+$$
 (aq) + H_2O (l) \longrightarrow COO $^{\cdot}$ M^+ (s) + H_3O^+ (aq) Lewis base/Bronsted acid Lewis acid Bronsted base



Fig. 16. Adsorption mechanism of heavy metal cations by carboneous materials [66].

In the chemical industry, cement is made by calcining the mixed ground limestone (CaCO₃) and aluminosilicates sources (clay, shale, sand) to 1500° C in a rotary kiln [30]. In calcination process, limestone decomposes to lime (CaO) which reacts with the silicates to form molten calcium silicates such as Ca₂SiO₄, Ca₃SiO₅, and Ca₃Al₂O₆. In this reaction CaO is Lewis base whereas SiO₂ and Al₂O₃ are Lewis acid [67]. These reactions are impossible to explain using both Bronsted-Lowry concept and Arrhenius concept due to no proton transfer and no water solvent, respectively.

The ordinary Portland cement consists of four major inorganic phases, including 50–70% tricalcium silicate, 3CaO·SiO₂ or Ca₃SiO₅ (C₃S), 10–20% dicalcium silicate, 2CaO·SiO₂ or Ca₂SiO₄ (C₂S), 5–10% tricalcium aluminate, 3CaO·Al₂O₃ or Ca₃Al₂O₆ (C₃A), and 5–15% tetracalcium alumino ferrite, 4CaO·Al₂O₃·Fe₂O₃(C₄AF) [67]. The some cement components such as Lewis bases (CaO, MgO), and Lewis adducts (C₃A, C₄AF, C₃S, C₂S) in across section of the cement grain is shown in Figure 17 with crystal structures in Figure 18. Based on Figure 18, there are different chemical silicate structures of Ca₂SiO₄ and Ca₃SiO₅. The SiO₄²⁻¹ anions are separated as monomers for the former while [O₃Si-O-SiO₃]⁶⁻¹ anions as dimers for the later and negative charges are neutralized by Ca²⁺ cations. In Ca₃Al₂O₆, Every Al³⁺ is arrounded by six O²⁻¹ anions, four of them make brigdes of Al-O-Al and two of them are neutralized by Ca²⁺ cations. In Figure 18 we can see that Lewis acids (Ca²⁺) make the ionic bond with Lewis bases (AlO and SiO sites) of their each polyhedron structure. Both Bronsted-Lowry and Arrhenius theory are impossible to explain them due to no proton transfer nor no solvent reaction, respectively.

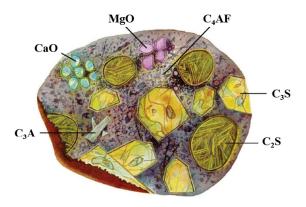


Fig. 17. Lewis bases and Lewis adducts in a cross section of a cement grain [68].

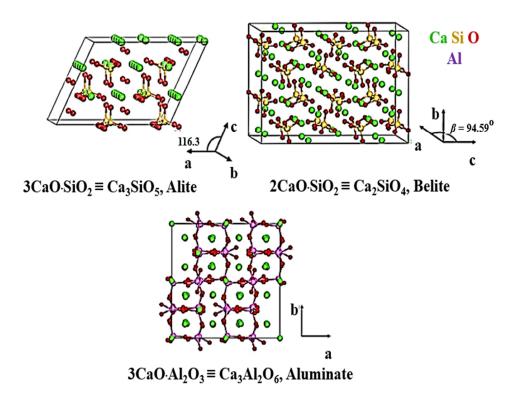


Fig. 18. Crystal structure unite cell of some cement components [67].

Another new type of acid-base cement, ferrous oxalate cement (FOC), is prepared at room temperature by chemical reactions of iron-rich copper slag (CS), oxalic acid/ $H_2C_2O_4\cdot 2H_2O$ (OA), borax/ $Na_2B_4O_7\cdot 10H_2O$ (B) and water to form paste. Borax is commonly used to retard cement acid base reaction. The cement which was resulted without borax had higher compressive strength than with borax. CS contains iron oxides and silica totally (81%). The cement formation reaction can be explained by decreasing of the dissolved oxalate and Fe(II) after cementation reactions to 24 h (Figure 19). There was increasing of pH from 1.5 to 5.2 after 24 h. At pH > 4.5 the oxalic acid species are $C_2O_4^{\ 2^-}$ (> 65%) and $HC_2O_4^{\ -}$ anions (> 35%). There were $C_2O_4^{\ 2^-}$, $HC_2O_4^{\ -}$, Fe(II), and H_2O in the paste, thus cementation reactions can be predicted as Lewis acid-base reactions as follows [24]:

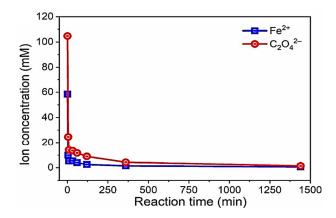


Fig. 19. Concentrations of Fe(II) and C₂O₄²⁻ ions in cementation reaction times [24].

Figure 20 shows that every Lewis acid Fe(II) is arrounded by two Lewis base $C_2O_4^{2-}$ anions and two Lewis base H_2O molecules which form octahedral polyhedrons with Fe(II) centres. Thus, they are match with Lewis acid/base in the chemical equations. Although H_2O contains H atoms, the O atom of H_2O molecules which has the role as donor atom of Lewis base to make coordination bond with Fe(II) metal cations. Therefore, Bronsted-Lowry is not applicable to explain both reactions and crystal structure. Arrhenius is also not applicable due to the solid state phase.

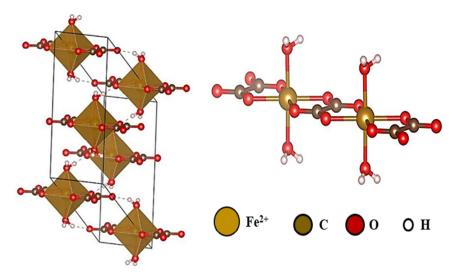


Fig. 20. Crystal structure of FeC₂O₄.2H₂O [69].

Degradation of cementation materials in various acid solutions can be explained by using Bronsted-Lowry method. For example, the cement samples were immersed in four different acid solutions (acetic acid, citric acid, tartaric, oxalic acid) with same concentration of acid (0.28M) at pH 0.085 for oxalic acid but at pH 4 for acetic acid, tartaric acid, and citric acid by addition of NaOH solution. The cement contained CaO (64.87%), SiO₂ (21.19%), Al₂O₃ (3.94%), Fe₂O₃ (2.36%), MgO (2.37%) and minor components (TiO₂, Na₂O, K₂O, MnO) for each less than 0.3%. The immersed cements (for 1 year) in those each solutions showed the different mass losses (Figure 21). Sequence of their mass losses by using citric acid > tartaric acid > acetic acid > oxalic acid. Reason of mass loss was considered from solubility of CaO in acid solution and solubility of salts which were formed by Ca²⁺ with anions which were produced by deprotonation reaction of acids [70]. This is due to its highest and much higher content in the cement than some other oxides such as Al₂O₃, Fe₂O₃, MgO which are also soluble in acid solution.

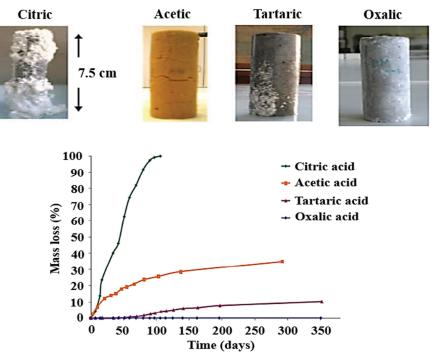


Fig. 21. Degradation of cement after the specimens immersion for 1 month in the various acids [70].

In cement, Ca²⁺ cations make ionic bonding with silicates and aluminate sites. When the cement was immersed in the acid solution, ion exchanges occurred between Ca2+ and H+ without destroy silicate structure as follows:

$$(\equiv SiO^{-})_{2} Ca^{2+}(s) + 2H_{3}O^{+}(aq) \longrightarrow 2\equiv Si-OH(s) + Ca^{2+}(aq) + 2H_{2}O(l)$$

Aluminate structure in cement can be destroyed by H^+ due to its amphoteric characteristics. However, the discussion is focused on Ca^{2+} dissolution by acid solution due to its much higher content in the cement. Based on K_a values and calculation of anion and acid substance concentration ratios (Table 8) and Figure 22, the anions in the solutions at pH 4 are CH_3COO^- , $C_4H_5O_6^{--}$, $C_4H_4O_6^{2-}$, $C_6H_7O_7^{--}$, $C_6H_6O_7^{2-}$, and $C_6H_5O_7^{3-}$. Among those anions, both $C_4H_4O_6^{2-}$ anion of tartaric acid and $C_6H_5O_7^{3-}$ anion of citric acid can form precipitation with Ca^{2+} cations as $CaC_4H_4O_6$ and $Ca_3(C_6H_5O_7)_2$ on surface of the cement. Based on K_{sp} values (Table 9), precipitation of calcium citrate tetrahydrate is easier than calcium tartrate. However, for the same concentration of acid (0.28M), the $C_6H_5O_7^{3-}$ concentration in the citric acid solution is much lower than $C_4H_4O_6^{2-}$ in tartaric acid solution (Table 8). Thus, mass loss of cement in the citric acid solution much larger than in tartaric acid solution.

Table 8: Formula and pK_a of various Bronsted acid

No.	Bronsted acid	Formula	pK_a	Ka	pН	Bronsted bases in solution
1.	Oxalic acid	$H_2C_2O_4$	$pK_{a1} = 1.25$ $pK_{a2} = 4.27$	5.62 X 10 ⁻² 5.37 X 10 ⁻⁵	0.085	$[HA^{-}]/[H_{2}A] = 0.068$ $[A^{2-}]/[H_{2}A] = 4.47 \times 10^{-6}$
2.	Acetic acid	CH₃COOH	$pK_a = 4.76$	1.74 X 10 ⁻⁵	4	$[A^{-}]/[HA] = 0.174$
3,	Tartaric acid	$C_4H_6O_6$	$pK_{a1} = 3.04$ $pK_{a2} = 4.37$	9.12 X 10 ⁻⁴ 4.27 X 10 ⁻⁵	4	$[HA^{-}]/[H_{2}A] = 9.12$ $[A^{2-}]/[H_{2}A] = 3.89$
4.	Citric acid	$C_6H_8O_7$	$\begin{aligned} pK_{a1} &= 3.13 \\ pK_{a2} &= 4.76 \\ pK_{a3} &= 6.4 \end{aligned}$	7.41 X 10 ⁻⁴ 1.74 X 10 ⁻⁵ 3.98 X 10 ⁻⁷	4	$[H_2A^-]/[H_3A] = 7.41$ $[HA^2^-]/[H_3A] = 1.29$ $[A^3^-]/[H_3A] = 5.13 \times 10^{-3}$

Source: [70]; *[37]

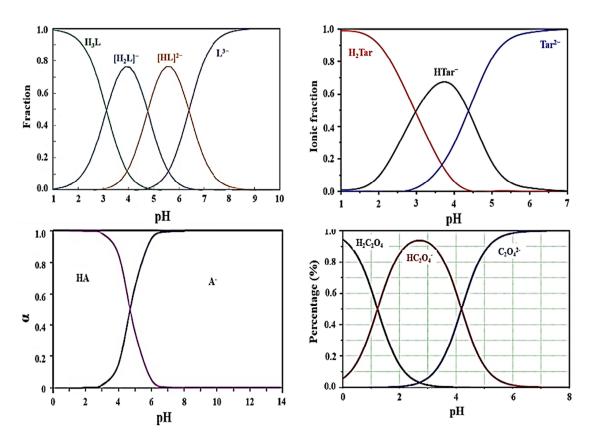


Fig. 22. Species of citric acid, tartaric acid, and acetic acid at various pH [24, 71.72, 73].

Acetic acid provided CH_3COO^- in the solution. This anion can't precipitate Ca^{2+} , while tartaric acid solution provided $C_4H_4O_6^{2-}$ anion which can precipitate Ca^{2+} on the cement surface, therefore mass loss of cement in acetic acid is larger than in tartaric acid. The CH_3COO^- anions in the acetic acid solution attracted the Ca^{2+} cations to dissolve them in the cation exchange reaction as follows:

Although acetic anion can't precipitate $Ca2^+$ due to solubility of $Ca(CH_3COO)_2$ and citrate anion in the acid solution can do it (Table 9) on the cement surface, the mass loss in the citric acid was much higher than in the acetic acid. It is probably presence of $C_6H_7O_7^{-1}$ and $C_6H_6O_7^{-2}$ anions in the solution which can't precipitate Ca^{2+} but can attract Ca^{2+} to dissolve it into the solution system as follows:

$$(\equiv SiO^{\circ})_{2} Ca^{2+}(s) + 2H_{3}O^{+}(aq) + 2C_{6}H_{7}O_{7}^{-}(aq) \longrightarrow 2 \equiv Si-OH(s) + Ca(C_{6}H_{7}O_{7})_{2}(aq)$$
Bronsted acid Lewis base Bronsted adduct Lewis adduct
$$(\equiv SiO^{\circ})_{2} Ca^{2+}(s) + 2H_{3}O^{+}(aq) + C_{6}H_{6}O_{7}^{2-}(aq) \longrightarrow 2 \equiv Si-OH(s) + CaC_{6}H_{6}O_{7}(aq)$$
Bronsted acid Lewis base Bronsted adduct Lewis adduct

Table 9: Data of solubility	and Ken of	some acids
-----------------------------	------------	------------

No.	Salt	Chemical formula	Solubility $/K_{\rm sp}$	Reference
1.	Calcium citrate tetrahydrate	$Ca_3(C_6H_5O_7)_2 \cdot 4H_2O$	$0.30807 \text{ g/}100 \text{ mL } (25^{\circ}\text{C})$ $7.6 \pm 0.5 \times 10^{-17}$	[74]
2.	Calcium acetate monohydrate	Ca(CH ₃ COO) ₂ .H ₂ O	34.7 g/100 mL (20 °C)	[70]
3.	Calcium tartrate tetrahydrate	$CaC_4H_4O_6\cdot 4H_2O$	0.0266 g/100 mL (0 °C)	[70]
	Calcium tartrate	$CaC_4H_4O_6$	$7.7 \times 10^{-7} \text{ mol}^2/\text{L}^2$	[75]
4.	Calcium oxalate monohydrate	$CaC_2O_4 \cdot H_2O$	Insoluble $6.7 \times 10^{-9} \text{ mol}^2/\text{L}^2$	[70] [76]

Acid base reactions occur in the body, for example in erythrocyte (Figure 23). Erythrocyte contains 68 –70% % H₂O in human [77]. The CO₂ gasses which are formed in tissue by metabolism diffuse into red blood cell (erythrocyte). About 5% of them remains as a gas and 90-95% is converted to H2CO3 by water enzymatically by the cytosolic enzyme carbonic anhydrase II [78]. The carbonic anhydrase enzyme (CA) can reduce this reaction time from several minutes to second [79]. H₂CO₃ (Bronsted acid) makes further reaction with H₂O (Bronsted base) to form H₃O⁺ and HCO₃. Therefore, CO₂ in erythrocyte is Arrhenius acid because it produces H⁺ by water presence and decrease the blood pH. The oxyhemoglobin (HbO₂) acts as Bronsted base and accept the released H⁺ to form the protonated deoxyhemoglobin (HHb) by releasing O₂ into the tissue cell [78]. Thus, H⁺ production by H₂CO₃ does not change pH. The increased bicarbonate ions in the erythrocyte migrate into the plasma [80]. The HCO₃ anion leaves these cells towards the plasma by exchanging with chloride. Erythrocytes with the protonated deoxyhemoglobin (HHb) formed in the tissue capillaries travel to the lungs. The uptake of oxygen gas transforms the protonated deoxyhemoglobin (HHb) into oxyhemoglobin (HbO2) by releasing proton. This proton combines again with HCO₃ to form H₂CO₃ by carbonic anhydrase II, generating water liquid and CO₂ gas [78]. All those reactions in the blood cell such as deptotonation of H₂CO₃ and HHb and protonation of Hb and bicarbonate ions are Bronsted-Lowry acid-base reactions due to the proton transfers. Both H₂CO₃ and HHb are Arrhenius acids due to formation of the dissolved proton in the water. Lewis acid base reaction took the role in reaction of CO₂ and H₂O to form H₂CO₃.

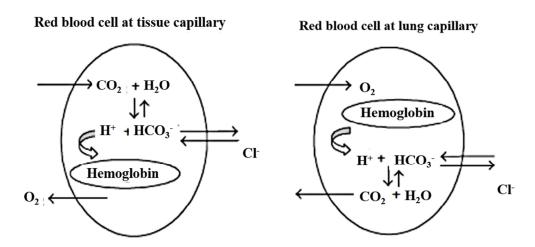


Fig. 23. Acid base reactions in erythrocyte of tissue and lung caplillaries [78].

Lewis acid base concept is useful to explain the reactions in organometal synthesis than Bronsted-Lowry and Arrhenius theories especially for the reactions with no proton transfer and production of dissolved proton or hydroxide, respectively. For example, in synthesis of boron substance which contains telurrium metal cation, Lewis acid-base theory can be used to explain chemical reaction in Figure 24.

$$(C_{6}F_{5})_{2}F_{3}Te O (C_{6}F_{5})_{2}F_{3}Te O N^{2}$$

$$O B O TeF_{3}(C_{6}F_{5})_{2} \xrightarrow{C_{5}H_{5}N} O B O O O TeF_{3}(C_{6}F_{5})_{2}$$

$$(C_{6}F_{5})_{2}F_{3}Te K_{A} (C_{6}F_{5})_{2}F_{3}Te$$

Fig. 24. Acid-base reaction of B[OTeF₃(C_6F_5)₂]₃ and C_5H_5N [81].

One of reasons for Lewis acid base reaction is to complete a molecule octet of valence electrons by accepting an electron pair [30]. Figure 20 shows that Lewis acid of $B[OTeF_3(C_6F_5)_2]_3$ can make reaction with Lewis base of C_5H_5N because chemically B atom can accept an electron pair from N donor atom of the C_5H_5N to complete its octet. In this reaction there is changing of hybridization from sp^2 (triangular molecular shape) to sp^3 (tetrahedral). Physically, this reaction can be performed due to its stability in tetrahedral shape toward repulsion among the substituents. Boron atom is Lewis acid and pyridine (C_5H_5N) is Lewis base. The reaction can't be explained using Bronsted-Lowry or Arrhenius due to lone pair transfer.

Another example of Lewis acid-base reaction in organotelurrium synthesis is ligand substitution reaction of Au(III) complexe compound. In this reaction, the F- ligand was substituted with $[OTeF_3(C_6F_5)_2]^-$ in Figure 25. In Figure 25 no addition of $[Au(CF_3)_4]^-$ Lewis base toward B atom Lewis acid in $B[OTeF_3(C_6F_5)_2]_3$ to complete its octet, probably due to its big size to minimize its repusion with other substituents. Alternatively, all $OTeF_3(C_6F_5)_2$ substituens are substituted by smaller F ion to form the smaller molecule (BF_3) by sustaining its trigonal planar. Another reason, the Au(III) hard acid makes the favourable interaction with hard base O atom of $[OTeF_3(C_6F_5)_2]^-$ ion. The organometallic reaction is impossibly explained using Bronsted – Lowry and Arrhenius theories due to no proton transfer and no water solvent, respectively.

Fig. 25. Acid-base reaction of $B[OTeF_3(C_6F_5)_2]_3$ and $[PPh_4][Au(CF_3)_4]$ [81].

An advanced material such as Hb–PVP micro and nanofiber composite was prepared from haeomoglobin (Hb) and PVP (polyvinylpyrrolidone) using 2,2,2-Trifuoroethanol (TFE) 99% as the solvent. The material was synthesized for carbon monoxide capture. The codes of products include Hb-O (Hb-TFE) and Hb/PVP-X (Hb-PVP-TFE with x wt.% PVP) [19]. Characterization by FTIR spectrometry was used to identify presence of PVP based on new bands from PVP and wavenumber swift related to chemical interaction of Lewis acid (Fe²⁺ of Hb) and Lewis base (N or O atoms of PVP). Chemical structures of Hb and PVP also FTIR spectra of Hb and Hb-PVP composite are presented in Figure 26. In Figure 22 the additional C-N vibration appeared significantly for the composite which contains 16% and 32% PVP. No significant band swift for the Fe²⁺- N vibration at about 500 cm⁻¹. It indicates that the chemical interactions of Lewis acid Fe²⁺ in Hb and Lewis bases N or O in PVP are more about molecular attraction force than about coordination bonding. This interaction is impossible to be explained using both Arrhenius and Bronsted-Lowry concepts due to solid phase and no proton transfer, respectively.

Effects of different Lewis acids (metal cations) on thermal stability of the metal complexes were studied using the synthesized pyrimidine and H_2O as ligands and Cl^- anions as the counter ions. The thermal stability was identified using TGA (Tabel 10). Table 10 shows that the metal complexe formation increased the ligand thermal decomposition temperature range from 25-600 to 30-1000°C. Beside that, two different metal cations gave 2 different thermal decomposition range especially for the first step, including 30-250°C for usage of Co^{2+} cation but 30-400°C for usage of Ni^{2+} cation. Both metal cations are Lewis intermediate acids but Ni(II) has smaller size than Co(II) so that it makes shorter M-N bonding with pyrimidine ligand and shorter M-Cl with Cl^- ligand than Co(II) ion. The metal complexe cations in this research are Lewis adduct, resulted from reaction between Lewic acid $(Co^{2+}$ or $Ni^{2+})$ and Lewis bases (H_2O) and pyrimidine).

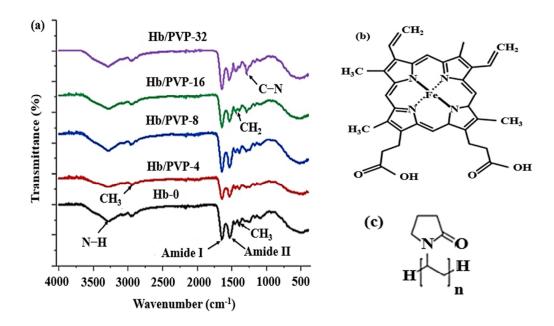


Fig. 26. a) FTIR spectra of pristine Hb-O and Hb/PVP composites at various % PVP, b) Hb structure, c) PVP structure [26].

Table 10: TGA data of pyrimidine and metal-pyrimidine complexes

Ligan and metal	M^{2+}	d ⁿ	H/I/S	M-O	M-N	M-Cl	TGA data **	
complexes	free radius (pm)*	$(M^{2+})^*$	acid (M ²⁺)*	(pm)*	(pm)*	(pm)*	T (°C)	Mass loss (%)
Pyrimidine (L)							25-250 250-600	37.73 62.25
$[\text{Co}(\text{L})_2(\text{H}_2\text{O})_2]\text{Cl}_2$	74	d^7	I	205	220	240	30-250 250-1000	38.68 52.17
$[\mathrm{Ni}(\mathrm{L})_2(\mathrm{H}_2\mathrm{O})_2]\mathrm{Cl}_2$	69	d^8	I	205	210	235	30-400 400-1000	39.63 51.37

Source: *[82]; **[83]; Code: H = Hard; I = Intermediete, S = Soft

3. Conclusions

Study of comparison of three popular acid-base theories has been done. The comparisons include their concepts and applications. In the concept study, the superiority sequence is Lewis > Bronsted-Lowry > Arrhenius based on presence of solvent, solvent type, and protic/unprotic system, dissolve/undissolved products, and phase. Lewis reactions are not limited to the breaking of compound like Bronsted-Lowry. However, Bronsted acid or base strength can be determined quantitatively while Lewis acidity in sequence only.

The reactions in some application study can be explained by single or multi acid-base theories, including Bronsted-Lowry for cement degradation, Lewis for synthesis of cement thermally, organometal, metal complexe, and spinel/CNS, Arrhenius and Bronsted-Lowry for the acid activations of kaolinite or sea sand, Lewis and Bronsted-Lowry for room temperature cement formation, and those all three ones for metal ion adsorption by carboneous materials and metabolism reactions in erythrocyte.

4. Conflicts of interest

"There are no conflicts to declare".

5. Acknowledgement

This paper is published as a collaborative publication for Visiting Lecturer Program Batch 5 2025 for undergraduate course of Element Chemistry class C before middle test in odd semester 2025/2026 in Department of

Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia. This paper was written by myself as the Host of Visiting Lecturer (Dr. Tutik Setianingsih, MSi). Thank so much Prof. Dr. Ewies Fawzy Ewies Mahmoud from Organometallic and Organometalloid Department, National Research Centre, Egypt for his collaboration as Visiting Lecturer, as suggested Reviewer in publication process, and as Co Author in my published paper.

6. References

- [1] Setiyanto AER, Susilowati AD, Safira AD (2023) Senyawa-Senyawa Asam dalam Bahan Alam. Yogyakarta, Deepublish.
 - https://deepublishstore.com/produk/buku-senyawa-senyawa-asam/?srsltid=AfmBOopgbZ9oa2GQmA3qSG-QEFXAUNQMxbTqifILjfCtJtf0lG_4DIES
- [2] Singh J, Srivastav AN, Singh N, Singh A (2019) Stability Constants of Metal Complexes in Solution. In: Srivastva AN, ed. Stability and Applications of Coordination Compounds. London, IntechOpen. http://dx.doi.org/10.5772/intechopen.90183
- [3] Nuryanti S, Matsjeh S, Anwar C, Raharjo TJ (2010) Indicator of Acid-Base Titration from the Extract of *Hibiscus* rosa sinensis L Flower. Agritech 30 (3): 178 183. https://journal.ugm.ac.id/agritech/article/view/9671
- [4] Charifson PS, Walters WP (2014) Acidic and Basic Drugs in Medicinal Chemistry: A Perspective. Journal of Medicinal Chemistry 57(23): 9701–9717. https://doi.org/10.1021/jm501000a
- [5] Groenendijk DJ, Bouwmeester R, van Wunnik JNM (2021) Spectrophotometric Determination of Ca2+ and Ca-Complex Formation Constants: Application to Chemical Enhanced Oil Recovery. ACS Omega 6(7): 5027–5032. https://dx.doi.org/10.1021/acsomega.0c06185
- [6] Short MB, Baygents JC, Goldsteina RE (2005) Stalactite growth as a free-boundary problem. Physics of Fluids 17: 083101. https://doi.org/10.1063/1.2006027
- [7] Pokrovskya OS, Probst A, Leviel E, Liao B (2012) Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration. Journal of Hazardous Materials 199–200: 358–366. https://doi.org/10.1016/j.jhazmat.2011.11.027
- [8] Miessler GL, Fischer PJ, Tarr DA (2014) Inorganic Chemistry. 5th Edition. Boston, Pearson Education. https://celqusb.wordpress.com/wp-content/uploads/2017/12/inorganic-chemistry-g-l-miessler-2014.pdf
- [9] Miessler GL, Tarr DA (2004) Inorganic Chemistry. 3rd Edition. Boston, Pearson Education. https://tech.chemistrydocs.com/Books/InOrganic/Inorganic-Chemistry-By-Gary-L.-Miessler-3rd-Edition.pdf
- [10] Bunsupa N (2023) Importance of Bronsted-Lowry Theory in Acid Base Reactions in Solutions. Modern Chemistry & Applications 11 (2): 409. http://dx.doi.org/10.35248/2329-6798.23.11.409
- [11] Corey HE (2003) Stewart and beyond: New models of acid-base balance. Kidney International 64 (3): 777–787. https://doi.org/10.1046/j.1523-1755.2003.00177.x
- [12] Romero MF, Rossano AJ (2019) Acid-Base Basics. Seminars in Nephrology 39(4): 316–327. https://doi.org/10.1016/j.semnephrol.2019.04.002
- [13] Sivaev IB, Bregadze VI (2014) Lewis acidity of boron compounds. Coordination Chemistry Reviews 270–271: 75–88. http://dx.doi.org/10.1016/j.ccr.2013.10.017
- [14] Pohan LA, Syahwin (2017) Identification of Acid-Based Concept Understanding Using the Assessment of A TwoTier Multiple Choice Diagnostic Instrument. Proceedings of The 7th Annual International Conference (AIC). 735–744. https://jurnal.usk.ac.id/AICS-Social/article/view/10840/8734
- [15] Leach MR (2001) Lewis Acid/Base Reaction Chemistry. Journal of Chemical Education 78 (2): 166. https://doi.org/10.1021/ed078p166
- [16] Erdmann P, Greb L (2022) What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angewandte Chemie International Edition 61 (4): e202114550. https://doi.org/10.1002/anie.202114550
- [17] Hu P, Jiang W, Zhong L, Zhou S-F (2018) Determination of the Lewis acidity of amide–AlCl3 based ionic liquid analogues by combined in situ IR titration and NMR methods. RSC Advances 8: 13248–13252. https://doi.org/10.1039/c8ra01845f
- [18] Gaffen JR, Bentley JN, Torres LC, Chu C, Baumgartner T, Caputo CB (2019) A Simple and Effective Method of Determining Lewis Acidity by Using Fluorescence. Chem 5 (6): 1567–1583. https://doi.org/10.1016/j.chempr.2019.03.022
- [19] Ranasinghe S, Li Y, Andrews ME, Akram MO, Thornton RA, Martin CD (2025) Müller versus Gutmann–Beckett for assessing the Lewis acidity of boranes. Chemical Communications 61: 10182–10185. https://doi.org/10.1039/d5cc02299a
- [20] Yang Y-L, Kou Y (2004) Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chemical Communications: 226–227. https://doi.org/10.1039/b311615h
- [21] Bhide R, Feltenberger CN, Phun GS, Barton G, Fishman D, Ardo S (2022) Quantification of Excited-State Brønsted-Lowry Acidity of Weak Photoacids Using Steady-State Photoluminescence Spectroscopy and a Driving-Force-Dependent Kinetic Theory. Journal of the American Chemical Society 144 (32): 14477–1448. https://doi.org/10.1021/jacs.2c00554
- [22] Trachta M, Bludský O, Vaculík J, Bulánek R, Rubeš M (2023) Investigation of Brønsted acidity in zeolites through adsorbates with diverse proton afnities. Scientifc Reports 13: 12380. https://doi.org/10.1038/s41598-023-39667-5
- [23] Ndlovu BP (2024) Exploring the Kinetics of Acid-Base Reactions: Fundamental Principles to Practical Applications.

 Organic Chemistry: Current Research 14(2): 423. https://www.longdom.org/open-access/exploring-the-

- dynamics-of-acidbase-reactions-from-fundamental-principles-to-practical-applications.pdf
- [24] J Luo Z, Ma Y, He H, Mu W, Zhou X, Liao W, Ma H (2020) Preparation and characterization of ferrous oxalate cement—A novel acid-base cement. Journal of the American Ceramic Society 104 (2): 1120–1131. https://doi.org/10.1111/jace.17511
- [25] Ewies EF, El-Hussieny M, El-Sayed NF, Fouad MA (2019) Design, synthesis and biological evaluation of novel α-Aminophosphonate Oxadiazoles via Optimized Iron Triflate Catalyzed reaction as apoptotic inducers. European Journal of Medicinal Chemistry 180: 310–320. https://doi.org/10.1016/j.ejmech.2019.07.029
- [26] Pham A, Subeshan B, Asmatulu E, Asmatulu R (2025) Design and Synthesizing of Hemoglobin-Based Multifunctional Fibers for Improved Carbon Monoxide Absorption Rates. BioNanoScience 15: 184. https://doi.org/10.1007/s12668-025-01807-8
- [27] Lin Q, Kundu D, Skyllas-Kazacos M, Lu J, Zhao D, Amine K, Dai L, Wang D-W (2024) Perspective on Lewis Acid-Base Interactions in Emerging Batteries. Advanced Materials 36 (42): 2406151. https://doi.org/10.1002/adma.202406151
- [28] Coumans FJAG, Mezari B, Hensen EJM (2024) Identifying the Role of Brønsted and Lewis Acid Sites in the Diels-Alder Cycloaddition of 2,5-DMF and Ethylene. ChemCatChem 16 (2): e202301216. https://doi.org/10.1002/cctc.202301216
- [29] Viswanadham B, Singh S, Friedrich HB, Mahomed AS (2018) The Role of Brønsted and Lewis Acidity in the Green Synthesis of Homopropargyl Alcohols over HZSM-5. South African Journal of Chemistry 71: 62–67. https://doi.org/10.17159/0379-4350/2018/v71a8
- [30] Atkins PW, Overton TL, Rourke JP, Weller MT, Armstrong FA (2010) Shriver and Atkins' Inorganic Chemistry. 5th Edition. Oxford, Oxford University Press. https://dl.iranchembook.ir/ebook/inorganic-chemistry-639.pdf
- [31] Daley RF, Daley SJ (2005) Organic Chemistry Chapter 5 Acid-Base Theory. Research Triangle, Lulu Press. <a href="https://books.google.co.id/books?hl=en&lr=&id=jDSIBQAAQBAJ&oi=fnd&pg=PP3&dq=Daley+Organic+Chemistry+Chapter+5+Acid-Base+Theory&ots=KOPwDN1wBA&sig=i8Hs4b-PM1r-VixT_SR8NpqWw6w&redir_esc=y#v=onepage&q=Daley%20Organic%20Chemistry%20Chapter%205%20Acid-Base%20Theory&f=false
- [32] Oxtoby DW, Gillis HP, Campion A (2008) Principles of Modern Chemistry. 6th Edition. Boston, Thomson Learning. https://libgen.ac/book/15449564
- [33] Smith MB (2023) Organic Chemistry An Acid–Base Approach. 3rd Edition. Boca Raton, CRC Press. <a href="https://www.google.co.id/books/edition/Organic Chemistry/xxmbEAAAQBAJ?hl=id&gbpv=1&dq=Smith+MB+(2023)+Organic+Chemistry+An+Acid%E2%80%93Base+Approach.+3rd+Edition.+Boca+Raton.+CRC+Press&printsec=frontcover
- [34] Krebs RE, Rost M, Lembens A (2023) Developing and evaluating a multiple-choice knowledge test about Brønsted-Lowry acidbase reactions for upper secondary school students. Chemistry Teacher International 5 (2): 177–188. https://doi.org/10.1515/cti-2022-0038
- [35] Mamari HHA (2023) Developments and Uses of Lewis Acids: From Conventional Catalysts to Modern Green Catalysts. In: Akitsu T, ed. Electrophile and Lewis Acid. London, IntechOpen. http://dx.doi.org/10.5772/intechopen.1001154
- [36] Harding C, Janes R, Johnson (2002) Elements of the P-Block. Cambridge, Royal Society of Chemistry. https://www.google.co.id/books/edition/Elements of the p_Block/OHEoDwAAQBAJ?hl=id&gbpv=1
- [37] Housecroft CE, Sharpe AG (2005) Inorganic Chemistry. 2nd edition. Boston, Pearson Education Limited. https://www.davcollegekanpur.ac.in/assets/ebooks/Chemistry/Inorganic%20Chemistry,%202nd%20ed%20-%20Catherine%20E.%20Housecroft.pdf
- [38] Olmsted JA, Williams GM, Burk RC (2021) Chemistry, 4th Canadian Edition. Hoboken, John Willey & Sons. https://www.google.co.id/books/edition/Chemistry/tmKdEAAAQBAJ?hl=id&gbpv=1&dq=resonance+structure+h2po4-&pg=PA266&printsec=frontcover
- [39] Chang R (2005) Physical Chemistry for the Biosciences. Sausalito, University Science Books. https://www.google.co.id/books/edition/Physical Chemistry for the Biosciences/PNH1fHj5Tw0C?hl=id&gbpv=1&dq=resonance+structure+h2po4-&pg=PA221&printsec=frontcover
- [40] Griffiths EF, Dixon JA, Caffyn AJM, Langley SK, Maciá B, Caprio V, Mewis RE (2024) Determination of the pKa Value of a Brønsted Acid by 19F NMR Spectroscopy. Magnetic Resonance in Chemistry 63 (1): 17–23. https://doi.org/10.1002/mrc.5485
- [41] Elavarasan P, Kishore KVK, Upadhyayula S (2009) Relative acidity measurement of Bronsted acid functional ionic liquids by UV-spectroscopy. Bulletin of the Catalysis Society of India 8: 107–113. https://d1wqtxts1xzle7.cloudfront.net/90598989/Relative acidity measurement of Bronsted acid functional ionic liquids by UV spectroscopy.pdf?1738530167=&response-content-disposition=inline%3B+filename%3DRelative acidity measurement of Bronsted.pdf&Expires=1757940328&Signature=F5piiBahPeS9VwmGy02YQ8ba-UlwOvOFf8ZAOLFqO76lBIEh-trFm0bBhJ4BdW-UJaQwlp1vIHazZlm3O3n0EoJAsgv7RzO--4Q3TSXT14u4KWKQYEswADyW5PPjo7jJHvtH8rl~c7Zclo55f1Ujxpf449FAomd928W6Cim97GoahV7lWKIsnjDEMpaPtCIKYoyNcW6Zsts0fDXd~G64UgAQTXCe3~TdVuHVmcC8x0EmVIiyNvuS6ROGAuVwdz91jH5l92NHQs-4ffy5rd4agzaHMHxZ0SWkP9UaLuSBtXTeTzmCxNRh2izMaqqBEoeShZVtlsw9RbZYqdKqrcN9TA &Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
- [42] Scotti N, Borsacchi S, Monti S, Zimina A, Evangelisti C, Geppi M, Dambruoso P, Barcaro G, Bossola F, Dal Santo V,
 - Ravasio N (2024) Spectroscopic and theoretical investigation of Brønsted acid sites in amorphohus mixed Zr-Si

oxide nanoparticles. Journal of Alloys and Compounds 992: 174545.

- oxide nanoparticles. Journal of Alloys and Compounds 992: 174545. https://doi.org/10.1016/j.jallcom.2024.174545
- [43] Saito K, Nakagawa M, Ishikita H (2020) p*Ka* of the ligand water molecules in the oxygenevolving Mn4CaO5 cluster in photosystem II. Communications Chemistry 3(89): 1 7. https://doi.org/10.1038/s42004-020-00336-7
 [44] Hill CAS, Cetin NS, Ozmen N (2000) Potential Catalysts for the Acetylation of Wood, Holzforschung, 54(3): 269–
- [44] Hill CAS, Cetin NS, Ozmen N (2000) Potential Catalysts for the Acetylation of Wood. Holzforschung, 54(3): 269–272. https://doi.org/10.1515/HF.2000.045
- [45] Nguyen VS, Kannankutty K, Chen Y-H, Wang D-C, Yeh C-Y, Wei T-C (2024) Investigation on the coordination between methylpyridine additives and the [Cu(dmp)2]2+/+ redox couple and its improvement towards the stability of the dye-sensitized solar cells. Sustainable Energy Fuels 8: 2256. https://doi.org/10.1039/d3se00983a
- [46] Langlois BR, Roques, N (2007) Nucleophilic trifluoromethylation of aryl halides with methyl trifluoroacetate. Journal of Fluorine Chemistry 128(10): 1318 1325. https://doi.org/10.1016/j.jfluchem.2007.08.001
- [47] Chmielewski T, Wódka J, Iwachów Ł (2009) Ammonia Pressure Leaching for Lubin Shale Middlings. Physicochemical Problems of Mineral Processing 43 (1): 5–20. https://www.journalssystem.com/ppmp/pdf-79184-15224?filename=Ammonia%20pressure%20leaching.pdf
- [48] Kamireddy SR, Li J, Tucker M, Degenstein J, Ji Y (2013) Effects and Mechanism of Metal Chloride Salts on Pretreatment and Enzymatic Digestibility of Corn Stover. Industrial & Engineering Chemistry Research 52 (5): 1775–1782. https://doi.org/10.1021/ie3019609
- [49] Pokrovski GS, Akinfiev NN, Borisova AY, Zotov AV, Kouzmanov K (2014) Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling. Chapter in Geological Society London Special Publications 402: 9 – 70. https://doi.org/10.1144/SP402.4
- [50] Assis M, Filho FCG, Pimentel DS, Robeldo T, Gouveia AF, Castro TFD, Fukushima HCS, de Foggi CC, da Costa JPC, Borra RC, Andrés J, Longo E (2020) Ag Nanoparticles/AgX (X=Cl, Br and I) Composites with Enhanced Photocatalytic Activity and Low Toxicological Effects. ChemistrySelect 5: 4655 –4673. https://doi.org/10.1002/slct.202000502
- [51] Lozins M, Vivoda MB, Dragomir M (2023) Crystal structure reinvestigation of silver(I) fluoride, AgF. IUCrData 8: x230018. https://doi.org/10.1107/S2414314623000184
- [52] Al-Qasir I, Qteish A (2017) Neutron filter efficiency of beryllium and magnesium fluorides. Journal of Applied Crystallography 50: 1-10. https://doi.org/10.1107/S1600576717000851
- [53] Breuer S, Lunghammer S, Kies A, Wilkening M (2018) F anion dynamics in cation-mixed nanocrystalline LaF3: SrF2. Journal of Materials Science 53: 13669–13681. https://doi.org/10.1007/s10853-018-2361-x
- [54] Cadatal-Raduban M, Mui LV, Yamashita M, Shibazaki Y, Shimizu T, Sarukura N, Yamanoi K (2024) Pressure-controlled luminescence in fast-response barium fluoride crystals. NPG Asia Materials 16, 50. https://doi.org/10.1038/s41427-024-00570-8
- [55] Wang H, Li C, Peng Z, Zhang S (2011) Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry 105: 157–160. https://doi.org/10.1007/s10973-011-1385-0
- [56] Bala KC, Khan RH (2013) Characterization of Beach/River Sand for Foundry Application. Leonardo Journal of Sciences 23: 77–83. http://irepo.futminna.edu.ng:8080/jspui/bitstream/123456789/3591/1/LJS%20Characterization%20of%20beach%20sand.pdf
- [57] Setianingsih T, Purwonugroho D, Mutrofin S, Rohma TN (2021) Effect of Grafting-Intercalation Combination Toward Delamination of Kaoline. AIP Conference Proceedings 2384: 050009. https://doi.org/10.1063/5.0071553
- [58] Setianingsih T (2019) Doping kaolin dengan berbagai kation logam transisi. Laporan penelitian DPP SPP, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang
- [59] Setianingsih T (2023) Modifikasi Mineral Kaolin dengan metode fasa padat menggunakan tanur konvensional, Sintesis fasa padat komposit nano kaolin CNS Termodifikasi Fe(III) dan Zn(II) dengan tanur microwave. In: Setianingsih T, Darjito, Kamulyan B, eds. Sintesis Fasa Padat Komposit Nano Kaolin CNS Termodifikasi Fe(III) dan Zn(II) Dengan Tanur Microwave. Malang, MNC Publishing. <a href="https://www.google.co.id/books/edition/Sintesis Fasa Padat Komposit Nano Kaolin/euPpEAAAQBAJ?hl=id/@gbpv=1&dq=Sintesis+Fasa+Padat+Komposit+Nano+Kaolin+%E2%80%93+CNS+Termodifikasi+Fe(III)+da/n+Zn(II)+Dengan+Tanur+Microwave&printsec=frontcover
- [60] Yudistira D, Purwonugroho D, Setianingsih T (2021) Synthesis of Organo-Quartz from Lumajang Sea Sand Using Sodium Dodecyl Benzene Sulfonate (SDBS) Modifier for Adsorption of Fe3+. The Journal of Pure and Applied Chemistry Research 10 (1): 44–52. https://doi.org/10.21776/ub.jpacr.2021.010.01.530
- [61] Hsu C-Y, Mahmoud ZH, Abdullaev S, Ali FK, Naeem YA, Mizher RM, Karim MM, Abdulwahid AS, Ahmadi Z, Habibzadeh S, Kianfar E (2024) Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Studies in Chemical and Environmental Engineering 9: 100626. https://doi.org/10.1016/j.cscee.2024.100626
- [62] Setianingsih T, Susilo B, Mutrofin S, Ismuyanto B, Endaryana AN, Yoniansyah YN (2021) Synthesis of MFe2O4/CNS (M = Zn, Ni, Mn) Composites Derived from Rice Husk by the Hydrothermal-Microwave Method for Remediation of Paddy Fields. *Processes* 9: 1349. https://doi.org/10.3390/pr9081349
- [63] Setianingsih T, Purwonugroho D, Prananto YP (2021) Influence of Pyrolysis Parameters Using Microwave toward Structural Properties of ZnO/CNS Intermediate and Application of ZnCr2O4/CNS Final Product for Dark Degradation of Pesticide in Wet Paddy Soil. ChemEngineering 5: 58. https://doi.org/10.3390/chemengineering5030058
- [64] Setianingsih T, Darjito, Kamulyan B, Prananto YP, Mutrofin S (2025) Principles of Solid State Synthesis Method and Their Applications for Inorganic Synthesis. Egyptian Journal of Chemistry 68 (13): 37 – 55.

- https://doi.org/10.21608/EJCHEM.2025.400966.12002
- [65] Galinetto P, Albini B, Bini M, Mozzati MC (2018) Raman Spectroscopy in Zinc Ferrites Nanoparticles. In: do Nascimento GM, ed. Raman Spectroscopy. London, IntechOpen. http://dx.doi.org/10.5772/intechopen.72864
- [66] Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal 366: 608–621. https://doi.org/10.1016/j.cej.2019.02.119
- [67] Heinz O, Heinz H (2021) Cement Interfaces: Current Understanding, Challenges, and Opportunities. Langmuir 37 (21): 6347–6356. https://doi.org/10.1021/acs.langmuir.1c00617
- [68] Saleh HM, Rahman ROA (2018) Introductory Chapter: Properties and Applications of Cement-Based Materials. In:
 Saleh HEDM, Rahman ROA, eds. Cement Based Materials. London, Intechopen.
 http://dx.doi.org/10.5772/intechopen.73784
- [69] Müller H, Bourcet L, Hanfland M (2021) Iron(II)oxalate Dihydrate—Humboldtine: Synthesis, Spectroscopic and Structural Properties of a Versatile Precursor for High Pressure Research. Minerals 11(2): 113. https://doi.org/10.3390/min11020113
- [70] Larreur-Cayol S, Bertron A, Escadeillas G (2011) Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cement and Concrete Research 41 (8): 882–892. http://dx.doi.org/10.1016/j.cemconres.2011.04.007
- [71] Serban EA, Diaconu I, Mirea CM, Ruse E, Nechifor G (2016) Partition of Indole-3-acetic Acid in Biphasic Systems. Revista de Chimie 67(4): 634 638. https://bch.ro/pdfRC/SERBAN%20E%204%2016.pdf
- [72] Silwamba M, Ito M, Tabelin CB, Park I, Jeon S, Takada M, Kubo Y, Hokari N, Tsunekawa M, Hiroyoshi N (2021) Simultaneous extraction and recovery of lead using citrate and micro-scale zero-valent iron for decontamination of polluted shooting range soils. Environmental Advances 5: 100115. https://doi.org/10.1016/j.envadv.2021.100115
- [73] Liu G, Wu D, Chen G, Halim R, Liu J, Den H (2021) Comparative study on tartaric acid production by two-chamber and three-chamber electro-electrodialysis. Separation and Purification Technology 263: 118403. https://doi.org/10.1016/j.seppur.2021.118403
- [74] Vavrusova M, Skibsted LH (2016) Aqueous solubility of calcium citrate and interconversion between the tetrahydrate and the hexahydrate as a balance between endothermic dissolution and exothermic complex formation. International Dairy Journal 57: 20-28. http://dx.doi.org/10.1016/j.idairyj.2016.02.033
- [75] Gómez J, Lasanta C, Cubillana-Aguilera LM, Palacios-Santander JM, Arnedo R, Casas JA, Arroyo L (2015) Acidification of musts in warm regions with tartaric acid and calcium sulfate at industrial scale. BIO Web of Conferences 5: 02007. https://doi.org/10.1051/bioconf/20150502007
- [76] Ibis F, Dhand P, Suleymanli S, van der Heijden AEDM, Kramer HJM, Eral HB (2020) A Combined Experimental and Modelling Study on Solubility of Calcium Oxalate Monohydrate at Physiologically Relevant pH and Temperatures. Crystals 10(10): 0924. https://doi.org/10.3390/cryst10100924
- [77] Bogner P, Csutora P, Cameron IL, Wheatley DN, Miseta A (1998) Augmented Water Binding and Low Cellular Water Content in Erythrocytes of Camel and Camelids. Biophysical Journal 75 (6): 3085–3091. https://doi.org/10.1016/S0006-3495(98)77749-5
- [78] Adeva-Andany MM, Carneiro-Freire N, Donapetry-García C, Rañal-Muíño E, López-Pereiro Y (2014) The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans. BioMed Research International 2014: 95281. http://dx.doi.org/10.1155/2014/695281
- [79] [49] Shaw I, Gregory K (2022) Acid-base balance: a review of normal physiology. BJA Education, 22(10): 396–401. http://dx.doi.org/10.1016/j.bjae.2022.06.003
- [80] Awati MN, Vandana M, Minal C, Samduyatha TJ (2014) Physiology of Acid Base Balance. Journal of Evidence based Medicine and Healthcare 17(1): 2140-2152. https://www.jebmh.com/articles/physiology-of-acid-base-balance.pdf, description.
- [81] Wegener D, Pérez-Bitrián A, Limberg N, Wiesner A, Hoffmann KF, Riedel S (2024) A Highly Sterically Encumbered Boron Lewis Acid Enabled by an Organotellurium-Based Ligand. Chemistry A European Journal 30 (36): e202401231. https://doi.org/10.1002/chem.202401231
- [82] Lawrance GA (2010) Introduction to Coordination Chemistry. Hoboken, John Wiley & Sons. https://chandand.weebly.com/uploads/9/2/2/7/92278224/ inorganic chemistry a textbook series lawrance https://chandand.weebly.com/uploads/9/2/2/7/92278224/ inorganic chemistry a textbook series lawrance https://chandand.weebly.com/uploads/9/2/2/7/92278224/ inorganic chemistry a textbook series lawrance
- [83] Hassaballah AI, El-Ziaty AK, Ewies EF, Zayed EM, Mohamed GG (2023) Synthesis of pyrimidine ligand and its mononuclear metal(II)/(III) complexes: Spectroscopic characterization, thermal, DFT, molecular docking, antimicrobial and anticancer studies. Inorganic Chemistry Communications 155: 110989. https://doi.org/10.1016/j.inoche.2023.110989