

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Innovations in Nanoparticle Synthesis and Their classification: Green Strategies and Future Challenges: A review

Ahmed R. Sofy¹, Atef S. El-Gebaly^{1*}, Ahmed A. Hmed¹, and Ahmed M. Youssef²

Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt

²Packaging materials Department, National Research Centre, 33 El Bohouth St. (formerEl Tahrir St.), Dokki, Giza, P.O. 12622, Egypt

Abstract

Nanoparticles have increasingly become important in medicine, environmental science and materials engineering as they have properties that are distinct to their bulk type. This manuscript summarizes recent achievements made in nanoparticle manufacture focused on such methods as green synthesis, laser ablation, and chemical reduction methods. The present manuscript also addresses the challenges associated with nanoparticle synthesis, including scalability, reproducibility, and environmental impact, while proposing innovative solutions to overcome these hurdles. Furthermore, nanoparticles are valuable tools for controlling microbial infections, and emerging effective antiviral medicines against adenoviruses is a carefully connected and challenging issue. Moreover, several metal nanoparticles have antimicrobial properties that are active against a wide variety of microorganisms, including bacteria, fungus and viruses. Metal nanoparticles have efficiently suppressed several key microbial diseases. The current review seeks to assist readers in acquiring a more detailed view of nanoparticles with the hope that such knowledge would prompt more research in this fast-moving area.

Keywords: Green synthesis; Microbes; Nanotechnology; Nano-materials; Applications.

1. Introduction

One technique that deals with objects as small as micrometers is called nanotechnology [1]. Changes in materials, devices, and systems are likely to result from nanotechnology. Nanomaterials are currently the most advanced in terms of scientific understanding and practical applications. The physical and chemical characteristics of nanoparticles have long been investigated in association with their size[2]. Nanoparticles (NPs) are colloidal solid particles that are a few nano-meters to a few hundred nano-meters in size [3]. NPs have unique physicochemical properties due to their micro size, which results in significantly higher surface to volume ratios than bulk materials [4]. Among the uses for NPs include biosensing, medicine, lubrication, electronics, bioimaging, drug delivery, catalysis, nano manufacturing, textiles, and medicine [5, 6] and virus control [7].

2. Classification of nanoparticles

2D nanoparticles (nanotubes) or 3D nanoparticles (e.g., dendrites, spherical NPs) are categorized using a variety of methods. Organic (e.g., polymeric nanoparticles), hybrid, and biological materials include inorganic (e.g., metal oxide nanoparticles) [8]. Hybrid nanoparticles are formed from inorganic cores with organic shells or organic cores with inorganic shells [9]. Top-to-bottom and bottom-to-top are the two major processes used for NP synthesis [10]. In a top to bottom method, NPS is manufactured using various materials by the conventional solid-state method operations as (machining)& milling) or lithographic techniques [11]. From single molecules, Nanoparticles (NPs) are synthesized using a bottom-up approach, such as chemical reactions and aggregation [12].

2.1. Inorganic nanoparticles

Depending on the type of material and the size of the NP needed, inorganic NPs can be created using a variety of physical or chemical techniques[13]. To create inorganic NPs, a number of chemical (sol-gel, co-precipitation, pyrolysis, mineral salt reduction) and physical (vapor deposition, ball milling, and electrostatic spraying) processes are presented. Both organic and inorganic NPs are often produced using the micro emulsion approach [14].

2.2. Organic nanoparticles

Several synthetic processes like rapid expansion of a supercritical solution, dialysis, nano precipitation, and micro emulsion are used in the creation of organic NPs [15]. There are two primary steps to the micro emulsion process, which is frequently employed to generate organic NPs [16]. The process begins with dissolving an organic molecule, such as a polymer, in a specific solvent during emulsification. This polymer solution, known as the dispersed phase, is then emulsified

*Corresponding author e-mail <u>drahmadyoussef1977@gmail.com</u> . (Ahmed M. Youssef) Receive Date: 09 June 2025, Revise Date: 28 June 2025, Accept Date: 11 August 2025

DOI: 10.21608/ejchem.2025.392924.11885

into another solvent the continuous phase which is either partially or completely immiscible with the dispersed phase solvent [17]. Therefore, during the emulsification process, nano-sized droplets with a diameter of 10 to 500 nm are formed [18].

3. Nanoparticle types

The primary categories of nanoparticles include organic, inorganic, and carbon-based types.

3.1. Organic nanoparticles

Carbon-based, organic and inorganic nanoparticles are the main types of nanoparticles. Ferritin, micelles, liposomes, and Dendrimers are all examples of organic nanoparticles or polymers [10]. The hollow nucleus is an important component found in micelles and liposomes, which is also referred to as a Nano capsule which affected by heat and light [19].

3.2. Inorganic nanoparticles

Metal and metal oxides are the main components of inorganic nanoparticles such as non-carbon nanoparticles [20].

3.3. Carbon based nanoparticles

Carbon-based nanoparticles are those made from carbon black, carbon nanotubes (CNT), carbon Nano fibers, sometimes activated carbon at a Nano compound, graphene, and carbon-fullerenes[21]. Cells in live animals have a diameter of about 10 micrometers [22]. Cell fragments are significantly smaller, typically falling within the micrometer range [23]. Proteins are even tinier, averaging just 5 nm in size—comparable to the smallest nanoparticles. Due to this direct size correlation, nanoparticles can serve as exceptionally small probes for observing cellular machinery with minimal interference, making them valuable tools for biological studies [24].

4. Nanoparticles Synthesis

Various physical and chemical techniques are employed to produce nanoparticles (NPs)[25]. Biological synthesize is now preferred because they are clean, safe, affordable [26] and simple to scale up for large-scale NP synthesis [27]. NPS has applications in powder metallurgy, magnetic devices, anti-corrosion coatings, biomedicine, electro catalysts, photo catalysts as well as microelectronic devices [25, 28]. Due to their evolving nature, biotechnological applications of NPs are expanding day by day. Among these applications, are effective drug administration, biocompatibility, bioactivity, bioavailability, tumor targeting, anti-bacterial anti-inflammatory action, and bio sorption [29]. with desirable shapes. However, the drawbacks associated with these conventional methods can often be mitigated through green synthesis [13]. These include NP biosynthesis without the use of toxic or hazardous substances or external reducing, capping [30] or stabilizing agents at moderate pH, pressure, and temperature [31].

4.1. Synthetic methods for nanoparticles

Semi-nanomaterials, which are widely used in several fields, have been produced by some scientists using physical and chemical approaches [32]. Innovative ways for producing single geometries in NPs include microcontact printing, ion beam lithography, dip pen lithography, electrochemical composition, ball powdering, nanolithography, evaporation condensation, and optical lithography[33].

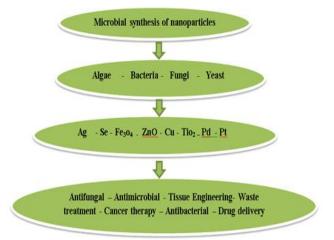


Figure 1: Flowchart of microbial synthesis of nanoparticles and their applications

Chemical and physical methodologies for the synthesis a range of NPs have been established in general due to their specificity and capacity to manufacture monodisperse NPs [34]. One method is to reduce metal ions with some type of dropping agent, such as sodium borohydride, sodium citrate or hydrazine hydrate [35]. Both laser ablation and micro emulsion were used to make metallic NPs and thermal solvent synthesis (sol-gel method and microwave-assisted synthesis) [36] as well as sterilization, gamma irradiation, electrochemical reduction, and ion spraying [37]. The biosynthetic approach represents a safe, biocompatible [6] biocompatible, and environmentally sustainable method for synthesizing nanoparticles for biomedical applications. This green synthesis process leverages biological entities such as fungi, algae, bacteria, and plants [38], offering a promising alternative to conventional chemical methods as shown in figure (1) [39, 40].

4.1.2. Green Nanoparticle Synthesis

Synthesis of NPs also at lower pressure, temperature, pH and costs is necessary to eliminate certain undesirable features associated with the green or biological synthesis approach [41]. Microorganisms and plant extracts are among the biological systems from which biomass filtrate is derived [39, 42] and (bacteria, fungus), has been reported to have

antimicrobial properties can be used to make green NPs [39, 43-45]. Different microorganisms, especially bacteria and fungi, have been examined for their capacity to synthesize some nanoparticles such as silver, copper, and magnesium NPs [39, 44, 46]. Various species, both unicellular and multicellular, have recently been employed in the green manufacture of Nanoparticles [30, 44, 47].

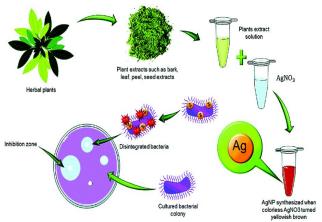


Figure 2: Green synthesis of nanoparticle and effect on bacterial cells [51]

Multiple biological sources, such as fungi, algae, bacteria, and plants, can be used in this synthesis process. Specific plant components, like leaves and stems, have been used in nanoparticle creation [42] because of their high concentration of phytochemicals, which act as reducing and stabilizing agents [30, 48]. The production of nanoparticles follows two principal approaches: the bottom-up method, where nanoparticles are built from molecular components, and the top-down method [49]. The generation of NPs by secreted biomaterials such as carbohydrates, oxidized proteins or reduced metal ions in the bottom-up strategy is the optimal green synthesis of NPs, as shown in Fig.(2)[50].

4.2. Bottom up process

Using small units such as molecules and atoms to create nanoparticles in a "bottom-up" strategy, which then evolve into a nanoscale unit using different chemical and biological mechanisms [52].

4.3 Top down process

With concentrated plant extracts, a concentrated mineral salt solution, the incubation period, and the use of temperature, all of these factors help maintain the stability, shape, and size of the nanoparticles. [53,54] provided a full technique for synthesizing palladium and platinum nan compounds, as well as their prospective applications as diagnostics, biosensors, medication, catalysts, and drugs as shown in figure(3).

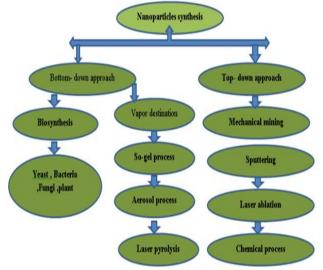


Figure 3: Diagram showed methods for nanoparticles synthesis

4.4 Creation of NPs with Plant Extracts

The fabrication of metallic nano-compounds using plant extracts, including the creation of Ag-NPs using Alfalfa sprouts, was initially described by [55] [6]. One of the most important and distinctive features of nano-compounds is that their surface area is greater than their volume ratio [6, 56]. Plant extracts, including soybean and *Tridax procumbens* leaf cell extract, are employed to make Cu and CuO-NPs [6, 30, 57]. Recent research has proven that plant-mediated biosynthesis produces therapeutic herbs such as Zingiber, *Sapindus rarak*, and *Parthenium hysterophorus* officinal [6, 48].

5. Determinants of Nanoparticle Synthesis

Metal nanoparticles' sizes and forms appear to be modified by functional molecules or compelled by their environmental development [59]. Several physicochemical parameters have been studied to enhance the reaction conditions

for the creation of nanoparticles. These factors, which have a major impact on the stability, size, and usefulness of nanoparticles, include pH, aeration, salt content, temperature, mixing ratio, incubation period, and radiation [60]. Adjusting these parameters increases the synthesis process's efficiency and reproducibility and offers accurate control over the properties of nanoparticles for a range of industrial and biomedical applications [61].

5.1. Plant-Based Green Synthesis of Nanoparticles

The ecologically approved "green chemistry" The method of biosynthesis of nanoparticles is to produce environmentally friendly and clean particles by using some microorganisms such as plants [6, 30] bacteria, fungi, and other microorganisms, and it is referred to as "green synthesis [62]. Unicellular and multicellular organisms are allowed to respond to nanoparticle synthesis in a biosynthetic method that uses the above-mentioned organisms as a green alternative to create nanoparticles with new traits [63].

The use of plants in the detoxification and accumulation of heavy metals helps to overcome environmental pollution because the minute residues of these heavy metals are harmful even in very low concentrations [6, 64]. Plants are considered natural chemical plants because they are low cost and low maintenance [30, 65]. The use of a plant extract in the synthesis of nanoparticles has benefits over other biosynthesis methods, such as the use of microorganisms because it may be accomplished through complicated operations such as keeping microbial colonies [6, 66]. One of the advantages of plant-assisted synthesis of nanoparticles is that its movement is much faster than other biosynthesis techniques [6, 30, 67]. Plant components such as stems, and leaves contain materials that are very rich in high-quality chemicals. They are frequently used in the production of nanoparticles in green ways [6, 30, 68].

The plant component needed for nanoparticle synthesis can be cleaned and cooked in distilled water. After the appropriate solutions are added, squeezed, and sieved, the solution's color were changes to show that nanoparticles are being produced, which we can then separate [30, 40]. The synthesis of materials using natural plant extracts is a cost-effective and environmentally sustainable approach that eliminates the need for intermediary base compounds. Certain plant species, including *Maytenus founieri*, *Arabidopsis helleri*, and *Brassica juncea*, have been documented in scientific literature for their ability to accumulate, detoxify, and contribute to the phytoremediation of hazardous metals [30, 69]. Due to their incredible potential for eliminating contaminants and reducing toxicity in a sustainable and eco-friendly manner, these plants have garnered significant attention for their application in the removal of heavy metals from aqueous solutions [70]. Many nanoparticles have been identified, including gold, silver, and zinc oxide.

6. Nanoparticle characterization techniques

Important criteria have been addressed to characterize the size and shape of nanoparticles. Additionally, we can evaluate the level of aggregation, charge, and surface area as well as evaluate the surface chemistry [71, 72]. The structural configuration and spatial distribution of organic and nanoscale ligands on a material's surface can significantly impact its physicochemical properties and potential applications [73, 74]. Following nanoparticle synthesis, a thorough analysis of their crystal structure and chemical composition is conducted as an essential initial step to ensure their structural integrity and functional properties [8].

6.1. X-ray-based techniques

X-ray diffraction (XRD) is one of the most widely employed techniques for characterizing nanoparticles (NPs) [75, 76] providing insights into their crystalline structure and grain size [77]. Typically conducted on dried powder samples obtained from colloidal solutions, XRD offers statistically representative, volume-averaged data [76,78]. By analyzing peak positions and intensities using reference patterns from the International Centre for Diffraction Data (ICDD), the composition of the particles can be determined. However, XRD is not ideal for irregular materials, as peak broadening becomes pronounced for nanoparticles smaller than 3 nm. [79, 80] have shown that the average crystallite size of magnetite NPs ranges from 9 to 53 nm, with peak broadening primarily attributed to instrumental factors, particle size, and lattice strain. Additionally, X-ray absorption spectroscopy (XAS) is a valuable tool for structural and compositional analysis, comprising two major techniques: extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES, also known as NEXAFS) [76, 80]. Through XAS, the absorption spectrum of a substance can be thoroughly examined to elucidate its electronic and atomic environment [81].

6.2. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) is a widely employed technique for surface chemical analysis, particularly in the characterization of nanocomposite materials [82]. Its underlying principle is the photoelectric effect, which enables the precise quantification of an element's electronic structure, composition, and oxidation state [83]. XPS is instrumental in studying ligand exchange interactions, surface functionalization, and the core/shell architectures of nanoparticles. Notably, this method operates in ultra-high vacuum conditions, ensuring accurate and high-resolution data acquisition [84].

6.3. Additional ways of determining the other important NP characteristics

Additional ways to determining the structure, dimension, and essential features of nano-compound are also available. Fourier transform infrared (FTIR) spectroscopy is depending on measuring the absorption of electromagnetic radiation with wavelengths in the infrared range (400–4000 cm1) [74, 85]. The moment of the dipole was changed it absorbs infrared light and becomes more active. A spectrum records the position of bands associated with bond strength and type, this is in addition to the availability of information about molecular structures and interactions with the help of functional groups [86, 87]. [88] used a combination technique of in situ ATR-FTIR and differential electrochemical mass spectroscopy to investigate how Pt nanostructures during ethanol oxidation (DEMS). These methods were used to electrochemically probe adsorbents and identify volatile reaction products. Their findings corroborated prior findings, indicating that the preferred breakdown products were related to surface features, with COads forming on domains (100) and acetaldehyde/acetic acid forming on domains [87,89]. A spectrum records the position of bands associated with bond strength and type, in addition to having specific functional groups that help provide information about interactions and molecular organizations [90].

Another efficient evaluation method for identifying the quantitative and structural characteristics of Nano compound materials is nuclear magnetic resonance (NMR) spectroscopy [91]. It is based on the NMR phenomenon, which occurs when non-zero spin nuclei are exposed to a high magnetic field and results in a minor energy difference between the states of "spin-up" and "spin-down" [91]. Regular, uncomplicated analysis of NP synthesis and shape in situ, in both dissolved and solid phase, can be aided by NMR spectroscopy)[75]. It is especially beneficial for studying noble metal NPs' generation and ultimate architecture [92]. NMR has the benefit of allowing for the investigation of the complete NP population, offering more accurate data than TEM on the typical NP size [93]. Moreover, in situ analysis of NP size and capping ligand environment changes during catalytic processes was achieved by NMR [94].

6.4. Solid-state NMR (SS NMR)

Utilization of solid-state NMR (SS NMR) spectroscopy to study the performance of solid catalysts and chemical procedures happening along their surfaces is an essential characterization technique [95]. Such a strategy might aid in the determination of not just reactions with both ligands and solvents, but also bonding amongst ligand particles at the hard-soft contact [96].

6.5. The Brunauer-Emmett-Teller (BET)

Another characterization method for Nano scale materials is also done using (BET) technique [97]. It was termed after the inventors' initials, Emmett and Brunauer, this technique is founded on the principles of physical gas adsorption on solid surfaces. It is widely applied for determining the external surface area of nanostructures due to its high accuracy, speed, and ease of use, making it an essential tool in nanomaterial characterization [98]. A number of methodologies like BET, FTIR and others were used to describe the samples [99]. On the basis of the size distribution and density values of the material under inquiry, the surface area measured by BET was less than predicted this difference might be attributed to the accumulation of smaller NPs into greater ones, decreasing the collective surface area [100]. Because NP samples must be dried for such measurements, the danger of agglomeration is likely to be increased a lot of hydrogen NP surfaces, thus inducing a certain error [101].

6.6. Low-energy ion scattering (LEIS)

The (LEIS) is an analytical technique for rapid assessment of the width of self- collage monolayers (SAMs) like Au NPs [102]. This process exposes a sample of low-energy gas ions, and the initial composition of the surface of the outer layer may cause scattering of ions and energy loss [103].

6.7. UV-Vis spectroscopy (UV-Vis)

UV-Vis spectroscopy is a widely used characterization technique for nanoscale materials due to its simplicity, affordability, and effectiveness in surface analysis [106, 56]. In this method, the intensity of light reflected or absorbed by a sample is compared with that of a reference material, providing valuable information about nanoparticle composition, optical properties, and interactions [104]. Additionally, UV-Vis spectroscopy plays a crucial role in assessing the stability of nanoparticle colloidal solutions, offering insights into their aggregation behavior and dispersion quality [105].

6.8. Photoluminescence (PL)

Photoluminescence (PL) spectroscopy is a valuable technique for studying nanocomposite materials, as it measures the light emission of atoms and molecules following photon absorption. This method is frequently employed to characterize highly luminescent nanoparticles, including metallic Nano clusters [19]. Recently, intrinsic PL in metallic nanoparticles has garnered significant interest, despite their relatively low quantum efficiency in emission processes. However, the large excitation cross-sections at plasmon resonance effectively counterbalance this limitation, making PL spectroscopy a powerful tool for investigating their optical properties and electronic behavior [107]. Metal NPs also have a PL that is devoid of photo bleaching and photo blinking. As a result, for optical labeling applications, Photoluminescence can be considered an improved alternate to bright molecules [108]. PL has been obtained by utilizing Plasmon nanostructures of various forms for both one multi-photon excitations [109].

6.9. Dynamic light scattering (DLS)

DLS is a well-known method for estimating the size of Nano and sub micrometer NPs in colloidal solutions [110]. Brownian motion is maintained for NPs sprayed in a colloidal solution. DLS estimates the NP hydrodynamic diameter in solution by using dispersion light as a measure of time and the Stokes-Einstein assumption in solution [111]. In DLS, a fairly low NP content is necessary to avoid a multiple scattering effect [112]. DLS has several advantages, including the ability to operate monomodal suspensions quickly, easily, and precisely, Furthermore; it is an ensemble assessment approach that yields a statistically accurate representation of each NP sample. It is very sensitive and repeatable, with a narrow size distribution and homogenous materials. There are criteria that must be achieved in the DLS method to keep the nanoparticles in suspension and in Brownian motion [112]. As a result, it has a low resolution for polydisperse, heterogeneous samples. While working with polydisperse samples, DLS necessitates revolutionary computations with assumptions that must be considered when interpreting the findings [113]. Overall, DLS accurately estimates the hydrodynamic radius, but it lacks the precision required to detect tiny particles as shown in table 1[114].

Table 1. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent [115]

Techniques	Analyzed physicochemical properties
Zeta potential	Stability referring to surface charge
X-ray	Surface chemical and elemental composition
spectroscopy	
Spectroscopy in the infrared range (MS)	Functional group analysis, structure and conformation of bio
	conjugates.
Dynamic light scattering (DLS)	Size distribution in hydrodynamics.
Transmission electron microscopy	Aggregation, size and size distribution, form heterogeneity
(TEM)	
Scanning electron microscopy (SEM)	Aggregation, Shape, Size and size distribution.

7. Morphology of the nanoparticles

The atomic structure and shape of the surface are represented by surface imaging when the electron beam interacts with its sample to produce different signals. All this is done using the scanning electron microscopy (SEM) technique [116]. A three-dimensional image is taken using the back-scattered electrons from the sample of the material using the SEM technique [117,118]. A photomultiplier detects these electrons once they have escaped from the sample's surface. Because some nanoparticles are unable to redirect the electron beam far away, they are not seen with an electron microscope; as a result, sample preparation requires a tinny layer of metal coating to create a conductive layer on the sample [119]. Surface wear is decreased, heat damage is reduced, and the SEM's needed secondary electron signal is increased. SEM images may be used to determine nanoparticle form and size distribution, as well as the purity of the sample and its degree of aggregation [118, 120]. One of the disadvantages of this method is that preparing the sample is destructive and it is difficult for the researcher to be convinced of the validity of the observed image, potentially leading to skewed sample size distribution statistics [121].

Heterogeneous atomic force microscopy (AFM) is a valuable instrument for studying surface morphology with nonmetric precision as well as measuring sensory forces [122]. AFM pictures are recorded by sensing the positive and repulsive forces between the sample surface and the pointed probe. At the end of the force measurement, a laser photodiode device measures the voltage difference [123]. Surface wear is minimized, thermal damage is reduced, and the secondary electron signal required in the SEM is improved. AFM images are created by detecting the attracted repulsive forces between the sample surface and a pointed probe [124]. The AFM, like the SEM, is used to study the size, distribution of size, shape, and aggregation of nanoparticles, but it has the advantage of not requiring destructive sample preparation and allowing for images of a wide range of biomaterials in aqueous fluids, as well as real-time macromolecular movement of the sample [118, 125]. AFM is less expensive than SEM in terms of money. As well as needing less laboratory space and being easier to run [126]. By combining these two methods, one will compensate for the other. (TEM) is another technique that may be used to determine the shape and size of a sample. The picture is two-dimensional and is created by two electrons passing through the material. This method is very effective for assessing the thickness of nanoparticle polymer walls [49].

8. Conclusion and future Perspectives

The use of metal nanoparticles as an alternative to battling microbial infections has presented intriguing ideas for traditional therapy and may help reduce the effects of infectious disorders. Nanoparticles are valuable tools for controlling microbial infections, and developing effective antiviral medicines against adenoviruses is a closely connected and challenging issue. Several metal nanoparticles have antimicrobial properties that are active against a wide variety of microorganisms, including bacteria, fungus and viruses. Metal nanoparticles have efficiently suppressed several key microbial diseases. Nanoparticles, because they are not directly tied to chemical interactions, provide promise for the development of medications that viruses cannot withstand due to mutations. It has been determined that such complex nanoparticles with significant antiviral effects do not accumulate in living cells, proving their non-toxicity. As we advance into this promising era of nanotechnology, it is imperative to remain cognizant of the associated challenges, including toxicity, regulatory hurdles, and the need for standardized characterization methods. Future research should focus on the long-term effects of nanoparticles on human health and the environment, ensuring that their benefits are realized without compromising safety.

References

- [1] Youtie, J., Shapira, P., Reinsborough, M., & Fisher, E. (2019). Research network emergence: Societal issues in nanotechnology and the center for nanotechnology in society. *Science and Public Policy*, 46(1), 126-135.doi.org/10.1093/scipol/scy043
- [2] Mitrano, D. M., Wick, P., & Nowack, B. (2021).Placing nanoplastics in the context of global plastic pollution. *Nature Nanotechnology*, 16(5), 491-500.doi.org/10.1038/s41565-021-00888-2.
- [3] Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). An introduction to nanotechnology. In *Interface science and technology* (Vol. 28, pp. 1-27). Elsevier.doi.org/10.1016/B978-0-12-813586-0.00001-8
- [4] Wu, K., Su, D., Liu, J., Saha, R., & Wang, J. P. (2019). Magnetic nanoparticles in nanomedicine: a review of recent advances. *Nanotechnology*, 30(50), 502003.doi 10.1088/1361-6528/ab4241
- [5] Mughal, B., Zaidi, S. Z. J., Zhang, X., & Hassan, S. U. (2021). Biogenic nanoparticles: Synthesis, characterisation and applications. *Applied Sciences*, 11(6), 2598. doi.org/10.3390/app11062598
- [6] Youssef, A. M., El-Sayed, H. S., Islam, E. N., & El-Sayed, S. M. (2021). Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC advances, 11(37), 22571-22584. doi:10.1039/D1RA03819B
- [7] Sofy, A. R., Hmed, A. A., Abd EL-Aleem, M. A., Dawoud, R. A., Elshaarawy, R. F., & Sofy, M. R. (2020). Mitigating effects of Bean yellow mosaic virus infection in faba bean using new carboxymethyl chitosan-titania nanobiocomposites. *International Journal of Biological Macromolecules*, 163, 1261-1275. doi.org/10.1016/j.ijbiomac.2020.07.066
- [8] Harish, V., Ansari, M. M., Tewari, D., Gaur, M., Yadav, A. B., García-Betancourt, M. L., & Barhoum, A. (2022). Nanoparticle and nanostructure synthesis and controlled growth methods. *Nanomaterials*, 12(18),3226. doi.org/10.3390/nano12183226
- [9] Chiozzi, V., & Rossi, F. (2020). Inorganic-organic core/shell nanoparticles: progress and applications. *Nanoscale Advances*, 2(11), 5090-5105.doi.10.1039/D0NA00411A
- [10] Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. *Green chemistry letters and reviews*, 13(3), 223-245.doi.org/10.1080/17518253.2020.1802517
- [11] Chen, F., Yan, T. H., Bashir, S., & Liu, J. L. (2022). Synthesis of nanomaterials using top-down methods. Advanced nanomaterials and their applications in renewable energy, 37-60. doi.org/10.1016/B978-0-323-99877-2.00007-2

- [12] Yadav, A., Gerislioglu, B., Ahmadivand, A., Kaushik, A., Cheng, G. J., Ouyang, Z., & RamaKrishna, S. (2021). Controlled self-assembly of plasmon-based photonic nanocrystals for high performance photonic technologies. *Nano Today*, 37, 101072.doi.org/10.1016/j.nantod.2020.101072
- [13] Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. *Biological trace element research*, 199(1), 344-370.doi.org/10.1007/s12011-020-02138-3
- [14] Vaseghi, Z., & Nematollahzadeh, A. (2020). Nanomaterials: types, synthesis, and characterization. *Green synthesis of nanomaterials for bioenergy applications*, 23-82.doi.org/10.1002/9781119576785.ch2
- [15] Pulingam, T., Foroozandeh, P., Chuah, J. A., & Sudesh, K. (2022). Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. *Nanomaterials*, 12(3), 576. doi.org/10.3390/nano12030576
- [16] M. F., Saleem, M. A., Basharat, H., Nasrullah, A., Asif, H., Ashfaq, M., & Jamil, R. (2021). Architecting water-dispersible organic nanopowder from volatile microemulsion: an emerging colloidal technology. *Colloid and Interface Science Communications*, 45, 100536. doi.org/10.1016/j.colcom.2021.100536
- [17] Crucho, C. I., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. *Materials Science and Engineering: C, 80,* 771-784. doi.org/10.1016/j.msec.2017.06.004
- [18] Syed, U. T., Dias, A. M., de Sousa, H. C., Crespo, J., & Brazinha, C. (2022). Greening perfluorocarbon based nano emulsions by direct membrane emulsification: Comparative studies with ultrasound emulsification. *Journal of Cleaner Production*, 357, 131966. doi.org/10.1016/j.jclepro.2022.131966
- [19] Zhu, M., & Wang, S. (2021). Functional Nucleic-Acid-Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. Small Science, 1(3), 2000056.. doi.org/10.1002/smsc.202000056
- [19] Baby, R., Hussein, M. Z., Abdullah, A. H., & Zainal, Z. (2022). Nanomaterials for the treatment of heavy metal contaminated water. *Polymers*, 14(3), 583. doi.org/10.3390/polym14030583
- [21] Gul, A., Ghaffari Khaligh, N., Nordin, N., Ma'amor, A., & Muhd Julkapli, N. (2023). Correlation on synthesis design and surface modification towards properties and applications of carbon nanofibers and carbon nanofibers based nanocomposites. *Polymer Composites*, *44*(1), 38-56.doi.org/10.1002/pc.27115
- [22] Wu, Y., Chang, Y., Shao, Y., Guo, G., Liu, Z., & Wang, X. (2022). Controllable Fabrication of Small-Size Holding Pipets for the Nondestructive Manipulation of Suspended Living Single Cells. *Analytical Chemistry*, 94(12), 4924-4929. doi.org/10.1021/acs.analchem.2c00418
- [22] Turner, N. L., Macrina, T., Bae, J. A., Yang, R., Wilson, A. M., Schneider-Mizell, C., & Seung, H. S. (2022). Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. *Cell*, 185(6), 1082-1100. doi. 10.1016/j.cell.2022.01.023
- [24] Chan, Q., Entezarian, M., Zhou, J., Osterloh, R., Huang, Q., Ellefson, M., & Swierczek, M. (2020). Gold nanoparticle mixture retention test with single particle detection: A fast and sensitive probe for functional pore sizes of ultrafiltration membranes. *Journal of Membrane Science*, 599, 117822. doi.org/10.1016/j.memsci.2020.117822
- [25] El-Sayed, S. M., El-Sayed, H. S., Ibrahim, O. A., & Youssef, A. M. (2020). Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on Roselle calyx extract for Ras cheese coating. *Carbohydrate polymers*, 239, 116234. doi.org/10.1016/j.carbpol.2020.116234
- [26] Hmed, A. A., Sofy, A. R., Sharaf, A. E. M. M., & El-Dougdoug, K. A. (2017). Effectiveness of chitosan as naturally-derived antimicrobial to fulfill the needs of today's consumers looking for food without hazards of chemical preservatives. J. Microbiol. Res, 7, 55-67. doi. 10.5923/j.microbiology.20170703.02
- [27] Ahmed, S. F., Mofijur, M., Rafa, N., Chowdhury, A. T., Chowdhury, S., Nahrin, M., ... & Ong, H. C. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. *Environmental Research*, 204, 111967...doi.org/10.1016/j.envres.2021.111967
- [28] Kobyliukh, A., Olszowska, K., Szeluga, U., & Pusz, S. (2020). Iron oxides/graphene hybrid structures-Preparation, modification, and application as fillers of polymer composites. Advances in Colloid and Interface Science, 285, 102285.doi.org/10.1016/j.cis.2020.102285
- [29] Madkour, L.H., Biogenic-biosynthesis metallic nanoparticles (MNPs) for pharmacological, biomedical and environmental nanobiotechnological applications. Chron. Pharm. Sci. J, 2018. 2(1): p. 384-444.
- [30] Sofy, A. R., Sofy, M. R., Hmed, A. A., Dawoud, R. A., Alnaggar, A. E. A. M., Soliman, A. M., & El-Dougdoug, N. K. (2021). Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. *Molecules*, 26(5), 1337..doi.org/10.3390/molecules26051337
- [31] Usman, A. I., Aziz, A. A., & Noqta, O. A. (2019). Green sonochemical synthesis of gold nanoparticles using palm oil leaves extracts. *Materials Today: Proceedings*, 7, 803-807..doi.org/10.1016/j.matpr.2018.12.078
- [32] Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. *Materials advances*, 2(6), 1821-1871. doi. 10.1039/D0MA00807A
- [33] Capek, I., Nanocomposite structures and dispersions. Vol. 23. 2019: Elsevier.
- [34] Vishwanath, R., & Negi, B. (2021). Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. *Current Research in Green and Sustainable Chemistry*, 4, 100205..doi.org/10.1016/j.crgsc.2021.100205
- [35]. Yousefi, R., & Cheraghizade, M. (2018). Semiconductor/graphene nanocomposites: synthesis, characterization, and applications. In *Applications of nanomaterials* (pp. 23-43). Woodhead Publishing. .doi.org/10.1016/B978-0-08-101971-9.00002-8
- [36] Balachandran, A., Sreenilayam, S. P., Madanan, K., Thomas, S., & Brabazon, D. (2022). Nanoparticle production via laser ablation synthesis in solution method and printed electronic application-A brief review. *Results in Engineering*, 16, 100646.doi.org/10.1016/j.rineng.2022.100646

- [37] Phuoc, T. X. (2014). Complete green synthesis of gold nanoparticles using laser ablation in deionized water containing chitosan and starch. *J Mater Sci Nanotechnol*, 2(2), 1-7.doi: 10.15744/2348-9812.1.401
- [38] Razavi, M., Salahinejad, E., Fahmy, M., Yazdimamaghani, M., Vashaee, D., & Tayebi, L. (2015). Green chemical and biological synthesis of nanoparticles and their biomedical applications. *Green processes for nanotechnology:* From inorganic to bioinspired nanomaterials, 207-235.doi.org/10.1007/978-3-319-15461-9
- [39] Mekky, A. E., Farrag, A. A., Hmed, A. A., & Sofy, A. R. (2021). Preparation of zinc oxide nanoparticles using aspergillus niger as antimicrobial and anticancer agents. *J. Pure Appl. Microbiol*, 15(3), 1547-1566. doi.org/10.22207/JPAM.15.3.49
- [40] Rónavári, A., Igaz, N., Adamecz, D. I., Szerencsés, B., Molnar, C., Kónya, Z., & Kiricsi, M. (2021). Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. *Molecules*, 26(4), 844.doi.org/10.3390/molecules26040844
- [41] A Mohamed, A., Fouda, A., S Elgamal, M., EL-Din Hassan, S., I Shaheen, T., & S Salem, S. (2017). Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium keratoplasticum A1-3. *Egyptian journal of chemistry*, 60(Conference Issue (The 8th International Conference of The Textile Research Division (ICTRD 2017), National Research Centre, Cairo 12622, Egypt.)), 63-71. doi.10.21608/ejchem.2017.1626.1137
- [42] Sofy, A. R., Sharaf, A. E. M. A., Al Karim, A. G., Hmed, A. A., & Moharam, K. M. (2017). Prevalence of the harmful Gram-negative bacteria in ready-to-eat foods in Egypt. Food Public Health, 7(3), 59-68. doi. 10.5923/j.fph.20170703.02
- [43] Maťátková, O., Michailidu, J., Miškovská, A., Kolouchová, I., Masák, J., & Čejková, A. (2022). Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. *Biotechnology advances*, 58, 107905.doi.org/10.1016/j.biotechadv.2022.107905
- [44] El-Sayed, H. S., El-Sayed, S. M., & Youssef, A. M. (2021). Novel approach for biosynthesizing of zinc oxide nanoparticles using Lactobacillus gasseri and their influence on microbiological, chemical, sensory properties of integrated yogurt. Food Chemistry, 365, 130513.doi.org/10.1016/j.foodchem.2021.130513
- [45] Fouda, H., & Sofy, M. (2022). Effect of biological synthesis of nanoparticles from Penicillium chrysogenum as well as traditional salt and chemical nanoparticles of zinc on canola plant oil productivity and metabolic. *Egyptian Journal of Chemistry*, 65(3), 507-516.doi.10.21608/ejchem.2021.95120.4469
- [46] Al-Radadi, N. S., & Abu-Dief, A. M. (2024). Silver nanoparticles (AgNPs) as a metal nano-therapy: possible mechanisms of antiviral action against COVID-19. *Inorganic and nano-metal chemistry*, 54(8), 709-727.doi.org/10.1080/24701556.2022.2068585
- [47] Ettadili, F. E., Aghris, S., Laghrib, F., Farahi, A., Saqrane, S., Bakasse, M., ... & El Mhammedi, M. A. (2022). Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. *Journal of Molecular Structure*, 1248, 131538.doi.org/10.1016/j.molstruc.2021.131538
- [48] Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. B., ... & Bradley, D. A. (2022). Biological agents for synthesis of nanoparticles and their applications. *Journal of King Saud University-Science*, 34(3), 101869.doi.org/10.1016/j.jksus.2022.101869
- [49] Nikolaidis, P. (2020). Analysis of green methods to synthesize nanomaterials. Green synthesis of nanomaterials for bioenergy applications, 125-144.doi.org/10.1002/9781119576785.ch5
- [50] Habeeb Rahuman, H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., & Muthupandian, S. (2022). Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. *IET nanobiotechnology*, 16(4), 115-144.doi.org/10.1049/nbt2.12078
- [51] Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. *Nanoscale*, 14(7), 2534-2571.doi.org/10.1039/D1NR08144F
- [52] Kumar, S., Bhushan, P., & Bhattacharya, S. (2017). Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others. In *Environmental, chemical and medical sensors* (pp. 167-198). Singapore: Springer Singapore.doi.org/10.1007/978-981-10-7751-7_8
- [53] Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. *Heliyon*, 7(9).doi.10.1016/j.heliyon.2021.e08033
- [54] Siddiqi, K. S., & Husen, A. (2016).Green synthesis, characterization and uses of palladium/platinum nanoparticles. *Nanoscale research letters*, 11, 1-13. doi.org/10.1186/s11671-016-1695-z
- [55] Kushwah, K. S., & Verma, D. K. (2021). Biological synthesis of metallic nanoparticles from different plant species. IntechOpen. doi: 10.5772/intechopen.101355
- [56] Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., ... & Khan, M. I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. *Catalysts*, 12(11), 1386.doi.org/10.3390/catal12111386
- [57] Rafique, M., Shafiq, F., Gillani, S. S. A., Shakil, M., Tahir, M. B., & Sadaf, I. (2020). Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. *Optik*, 208, 164053. doi.org/10.1016/j.ijleo.2019.164053
- [58] Ahn, E. Y., Jin, H., & Park, Y. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. *Materials Science and Engineering: C, 101*, 204-216. doi.org/10.1016/j.msec.2019.03.095

- [59] Vijayaraghavan, K., & Ashokkumar, T. (2017). Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. *Journal of environmental chemical engineering*, 5(5), 4866-4883. doi.org/10.1016/j.jece.2017.09.026
- [60] Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. *Trends in biotechnology*, 34(7), 588-599. doi: 10.1016/j.tibtech.2016.02.006
- [61] Verma, A., & Mehata, M. S. (2016). Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. *Journal of radiation Research and applied sciences*, 9(1), 109-115. doi.org/10.1016/j.jrras.2015.11.001
- [62] Pal, G., Rai, P., & Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green synthesis, characterization and applications of nanoparticles (pp. 1-26). Elsevier.doi.org/10.1016/B978-0-08-102579-6.00001-0
- [63] Patil, S., & Chandrasekaran, R. (2020). Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. *Journal of Genetic Engineering and Biotechnology*, 18(1), 67.doi.org/10.1186/s43141-020-00081-3
- [64] Sofy, A. R., Hmed, A. A., Abd El Haliem, N. F., Zein, M. A. E., & Elshaarawy, R. F. (2019). Polyphosphonium-oligochitosans decorated with nanosilver as new prospective inhibitors for common human enteric viruses. *Carbohydrate polymers*, *226*, 115261.doi.org/10.1016/j.carbpol.2019.115261
- [65] Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. *Journal of hazardous materials*, 325, 36-58.doi.org/10.1016/j.jhazmat.2016.11.063
- [66] Mustapha, T., Misni, N., Ithnin, N. R., Daskum, A. M., & Unyah, N. Z. (2022). A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. *International Journal of Environmental Research and Public Health*, 19(2), 674.doi.org/10.3390/ijerph19020674
- [67] Bukhari, A., Ijaz, I., Gilani, E., Nazir, A., Zain, H., Saeed, R., & Naseer, Y. (2021). Green synthesis of metal and metal oxide nanoparticles using different plants' parts for antimicrobial activity and anticancer activity: a review article. *Coatings*, 11(11), 1374. doi.org/10.3390/coatings11111374
- [68] Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. *Environmental Technology & Innovation*, 26, 102336.doi.org/10.1016/j.eti.2022.102336
- [69] Jadoun, S., Chauhan, N. P. S., Zarrintaj, P., Barani, M., & Varma, R. S. (2021). Nanomaterials for sustainability: a review on green synthesis of nanoparticles using microorganisms. doi.org/10.21203/rs.3.rs-1132888/v1
- [70] Maciel, M. V. D. O. B., da Rosa Almeida, A., Machado, M. H., Elias, W. C., da Rosa, C. G., Teixeira, G. L.,& Barreto, P. L. M. (2020). Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. *Biocatalysis and Agricultural Biotechnology*, 28, 101746.doi.org/10.1016/j.bcab.2020.101746
- [71] Minelli, C. (2016). Measuring nanoparticle properties: are we high and dry or all at sea? *Proceedings of the Nanoparticle Characterisation—Challenges for the Community'event—IOP Institute of Physics, Book of Abstracts.*
- [72] Hasanin, M. S., & Youssef, A. M. (2022). Ecofriendly bioactive film doped CuO nanoparticles based biopolymers and reinforced by enzymatically modified nanocellulose fibers for active packaging applications. Food Packaging and Shelf Life, 34, 100979.doi.org/10.1016/j.fpsl.2022.100979
- [73] Ridolfo, R., Tavakoli, S., Junnuthula, V., Williams, D. S., Urtti, A., & van Hest, J. C. (2020). Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium. *Biomacromolecules*, 22(1), 126-133.doi.org/10.1021/acs.biomac.0c00726
- [74] Moustafa, H., Darwish, N. A., & Youssef, A. M. (2022). Rational formulations of sustainable polyurethane/chitin/rosin composites reinforced with ZnO-doped-SiO2 nanoparticles for green packaging applications. *Food Chemistry*, *371*, 131193.doi.org/10.1016/j.foodchem.2021.131193
- [75] Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. *Nanoscale*, 10(27), 12871-12934.doi: 10.1039/C8NR02278J
- [76] Youssef, A. M., Hasanin, M. S., Abd El-Aziz, M. E., & Turky, G. M. (2021). Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs. *International Journal of Biological Macromolecules*, 167, 1435-1444.doi.org/10.1016/j.ijbiomac.2020.11.097
- [77] Heimann, R., & Hunt, A. M. W. (2017). X-ray powder diffraction (XRPD) (pp. 327-341). Oxford University Press, Oxford, UK.
- [78] Khan, H., Yerramilli, A. S., D'Oliveira, A., Alford, T. L., Boffito, D. C., & Patience, G. S. (2020). Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. *The Canadian journal of chemical engineering*, *98*(6), 1255-1266.doi.org/10.1002/cjce.23747
- [79] Dong, W., Su, X., Xu, M., Hu, M., Sun, Y., & Zhang, P. (2018). Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique. *Asian journal of pharmaceutical sciences*, 13(6), 546-554.doi.org/10.1016/j.ajps.2018.08.010
- [80] Upadhyay, S., Parekh, K., & Pandey, B. (2016). Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. *Journal of Alloys and Compounds*, 678, 478-485. doi.org/10.1016/j.jallcom.2016.03.279
- [81] Zhu, Y., Kuo, T. R., Li, Y. H., Qi, M. Y., Chen, G., Wang, J., ... & Chen, H. M. (2021). Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy. *Energy & Environmental Science*, 14(4), 1928-1958. doi.org/10.1039/D0EE03903A

- [82] Stevie, F. A., & Donley, C. L. (2020). Introduction to x-ray photoelectron spectroscopy. *Journal of Vacuum Science* & *Technology A*, 38(6).doi.org/10.1116/6.0000412
- [83] Shard, A. G. (2020). X-ray photoelectron spectroscopy. In *Characterization of Nanoparticles* (pp. 349-371). Elsevier.doi.org/10.1016/B978-0-12-814182-3.00019-5
- [84] Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I.,& Kanaras, A. G. (2019). The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. *Chemical reviews*, 119(8), 4819-4880.doi.org/10.1021/acs.chemrev.8b00733
- [85] Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. H., & Kim, J. H. (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. *Nanomaterials*, 9(12), 1719.doi.org/10.3390/nano9121719
- [86] Lorenz-Fonfria, V. A. (2020). Infrared difference spectroscopy of proteins: from bands to bonds. *Chemical reviews*, 120(7), 3466-3576.doi.org/10.1021/acs.chemrev.9b00449
- [87] Badawy, A. A., Ghanem, A. F., Yassin, M. A., Youssef, A. M., & Rehim, M. H. A. (2021). Utilization and characterization of cellulose nanocrystals decorated with silver and zinc oxide nanoparticles for removal of lead ion from wastewater. *Environmental Nanotechnology, Monitoring & Management*, 16, 100501.doi.org/10.1016/j.enmm.2021.100501
- [88] Rizo, R., & Roldan Cuenya, B. (2019). Shape-controlled nanoparticles as anodic catalysts in low-temperature fuel cells. *ACS Energy Letters*, 4(6), 1484-1495.doi.org/10.1021/acsenergylett.9b00565
- [89] Buso-Rogero, C., Brimaud, S., Solla-Gullon, J., Vidal-Iglesias, F. J., Herrero, E., Behm, R. J., & Feliu, J. M. (2016). Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study. *Journal of Electroanalytical Chemistry*, 763, 116-124.doi.org/10.1016/j.jelechem.2015.12.034
- [90] Liu, Q., Yuan, Y. M., Zhang, Y. H., Qin, X., Yu, Y. J., Wang, H., & Xu, N. N. (2022). Fourier transform infrared spectroscopy (FTIR) characteristics of ancient amber artifacts of the Han Dynasty from Hunan, China. *Palaeoentomology*, 5(4), 354-361. doi. 10.11646/PALAEOENTOMOLOGY.5.4.8
- [91] Fan, R., Liao, G., Mao, R., Luo, X., Hou, L., Zhang, H., & Xiao, L. (2023). Nuclear magnetic resonance response characteristics and quantitative evaluation method of fluid saturation of lacustrine shale oil. *Frontiers in Earth Science*, 11, 1117193.doi.org/10.3389/feart.2023.1117193
- [92] Ibrahim Khan, K. S., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.doi.org/10.1016/j.arabjc.2017.05.011
- [93] McAlpine, J. B., Chen, S. N., Kutateladze, A., MacMillan, J. B., Appendino, G., Barison, A., & Pauli, G. F. (2019). The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. *Natural product reports*, *36*(1), 35-107.doi.10.1039/C7NP00064B
- [94] Mashiach, R., Weissman, H., Avram, L., Houben, L., Brontvein, O., Lavie, A., & Bar-Shir, A. (2021). In situ NMR reveals real-time nanocrystal growth evolution via monomer-attachment or particle-coalescence. *Nature Communications*, 12(1), 229.doi.org/10.1038/s41467-020-20512-6
- [95] El Hariri El Nokab, M., Habib, M. H., Alassmy, Y. A., Abduljawad, M. M., Alshamrani, K. M., & Sebakhy, K. O. (2022). Solid state NMR a powerful technique for investigating sustainable/renewable cellulose-based materials. *Polymers*, *14*(5), 1049. doi.org/10.3390/polym14051049
- [96] Geißler, D., Nirmalananthan-Budau, N., Scholtz, L., Tavernaro, I., & Resch-Genger, U. (2021). Analyzing the surface of functional nanomaterials—how to quantify the total and derivatizable number of functional groups and ligands. *Microchimica Acta*, 188, 1-28. doi.org/10.1007/s00604-021-04960-5
- [97] Jayawardena, H. S. N., Liyanage, S. H., Rathnayake, K., Patel, U., & Yan, M. (2021). Analytical methods for characterization of nanomaterial surfaces. *Analytical chemistry*, 93(4), 1889-1911. doi.org/10.1021/acs.analchem.0c05208
- [98] Peyrovi, M. H., & Abolhassanzadeh Parizi, M. (2022). The Modification of the BET Surface Area by Considering the Excluded Area of Adsorbed Molecules. *Physical Chemistry Research*, *10*(2), 173-177. doi.10.22036/PCR.2021.290859.1924
- [99] Tkachenko, Y., & Niedzielski, P. (2022). FTIR as a method for qualitative assessment of solid samples in geochemical research: a review. *Molecules*, 27(24), 8846.doi.org/10.3390/molecules27248846
- [100] Rizzi, F., Castaldo, R., Latronico, T., Lasala, P., Gentile, G., Lavorgna, M., ... & Fanizza, E. (2021). High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: insights on the size and porosity control mechanisms. *Molecules*, 26(14), 4247. doi.org/10.3390/molecules26144247
- [101] Nandi, A., Nag, P., Panda, D., Dhar, S., Hossain, S. M., Saha, H., & Majumdar, S. (2019). Outstanding room-temperature hydrogen gas detection by plasma-assisted and graphene-functionalized core–shell assembly of SnO2 nanoburflower. *ACS omega*, 4(6), 11053-11065.doi.org/10.1021/acsomega.9b01372
- [102] Zahid, A. A., Hanif, M. A., Lee, I., Islam, M. A., & Hahn, J. R. (2019). Effect of amino, hydroxyl, and carboxyl terminal groups of alkyl chains of self-assembled monolayers on the adsorption pattern of gold nanoparticles. *Surface and Interface Analysis*, *51*(11), 1102-1112. doi.org/10.1002/sia.6697
- [103] Strehblow, H. H. (2021). Ion scattering as a surface analytical tool for the study of passive layers. *Journal of The Electrochemical Society*, 168(2), 021510.doi. 0.1149/1945-7111/abdfe2
- [104] Bachmann, L. M., & Miller, W. G. (2020). Spectrophotometry. In Contemporary practice in clinical chemistry (pp. 119-133). Academic Press. doi.org/10.1016/B978-0-12-815499-1.00007-7
- [105] Mekkaoui, A. A., Orfi, H., Bejtka, K., Laayati, M., Labyad, S. A., El Firdoussi, L.& El Houssame, S. (2023). Carboxymethyl cellulose nanocolloids anchored Pd (0) nanoparticles (CMC@ Pd NPs): synthesis, characterization,

- and catalytic application in transfer hydrogenation. *Environmental Science and Pollution Research*, 30(34), 81619-81634. doi.org/10.1007/s11356-022-21838-y
- [106] Nizamov, S., Sazdovska, S. D., & Mirsky, V. M. (2022). A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. *Analytica Chimica Acta*, 1204, 339633. doi.org/10.1016/j.aca.2022.339633
- [107] Ho, W. J., Liu, J. J., & Chen, J. C. (2021). Characterization of plasmonic scattering, luminescent down-shifting, and metal-enhanced fluorescence and applications on silicon solar cells. *Nanomaterials*, 11(4), 1013. doi.org/10.3390/nano11041013
- [108] Hesemans, E., Buttiens, K., Manshian, B. B., & Soenen, S. J. (2022). The role of optical imaging in translational nanomedicine. *Journal of Functional Biomaterials*, 13(3), 137. doi.org/10.3390/jfb13030137
- [109] Pniakowska, A., & Olesiak-Banska, J. (2022). Plasmonic enhancement of two-photon excited luminescence of gold nanoclusters. *Molecules*, 27(3), 807. doi.org/10.3390/molecules27030807
- [110] Austin, J., Minelli, C., Hamilton, D., Wywijas, M., & Jones, H. J. (2020). Nanoparticle number concentration measurements by multi-angle dynamic light scattering. *Journal of Nanoparticle Research*, 22(5), 108.doi.org/10.1007/s11051-020-04840-8
- [111] Danaei, M. R. M. M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., ... & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. *Pharmaceutics*, 10(2), 57. doi.org/10.3390/pharmaceutics10020057
- [112] Caputo, F., Clogston, J., Calzolai, L., Rösslein, M., & Prina-Mello, A. (2019). Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. *Journal of Controlled Release*, 299, 31-43. doi.org/10.1016/j.jconrel.2019.02.030
- [113] Singh, P., Bodycomb, J., Travers, B., Tatarkiewicz, K., Travers, S., Matyas, G. R., & Beck, Z. (2019). Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. *International journal of pharmaceutics*, *566*, 680-686. doi.org/10.1016/j.ijpharm.2019.06.013
- [114] Kim, A., Ng, W. B., Bernt, W., & Cho, N. J. (2019). Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. *Scientific reports*, 9(1), 2639. doi.org/10.1038/s41598-019-38915
- [115] Gamboa, S. M., Rojas, E. R., Martinez, V. V., & Vega-Baudrit, J. J. I. J. B. B. (2019). Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. *Int. J. Biosen. Bioelectron*, 5(5), 166-173.
- [116] Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018.
- [117] Röding, M., Fager, C., Olsson, A., Von Corswant, C., Olsson, E., & Loren, N. (2021). Three-dimensional reconstruction of porous polymer films from FIB-SEM nanotomography data using random forests. *Journal of Microscopy*, 281(1), 76-86.doi.org/10.1111/jmi.12950
- [118] Saada, N. S., Abdel-Maksoud, G., Abd El-Aziz, M. S., & Youssef, A. M. (2021). Green synthesis of silver nanoparticles, characterization, and use for sustainable preservation of historical parchment against microbial biodegradation. *Biocatalysis and Agricultural Biotechnology*, 32, 101948. doi.org/10.1016/j.bcab.2021.101948
- [119] Ye, C., & Huan, Y. (2022). Studies on electron escape condition in semiconductor nanomaterials via photodeposition reaction. *Materials*, 15(6),2116. doi.org/10.3390/ma15062116
- [120] Zhang, X., Zhao, X., Li, H., Hao, X., Xu, J., Tian, J., & Wang, Y. (2022). Detection methods of nanoparticles synthesized by gas-phase method: a review. *Frontiers in Chemistry*, 10, 845363. doi.org/10.3389/fchem.2022.845363
- [121] Afanasyev, S. S., Kychkina, T. V., & Savvinova, L. N. (2019). Scanning electron microscope (advantages and disadvantages). In *Colloquium-journal* (No. 2-2 (26), pp. 25-27). Голопристанський міськрайонний центр зайнятості.
- [122] Kiio, T. M., & Park, S. (2020). Nano-scientific application of atomic force microscopy in pathology: from molecules to tissues. *International Journal of Medical Sciences*, 17(7), 844. doi: 10.7150/ijms.41805
- [123] Shi, X., Qing, W., Marhaba, T., & Zhang, W. (2020). Atomic force microscopy-Scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: Principles, applications and perspectives. *ElectrochimicaActa*, 332,135472.doi.org/10.1016/j.electacta.2019.135472
- [124] Nguyen-Tri, P., Ghassemi, P., Carriere, P., Nanda, S., Assadi, A. A., & Nguyen, D. D. (2020). Recent applications of advanced atomic force microscopy in polymer science: A review. *Polymers*, 12(5), 1142. doi.org/10.3390/polym12051142
- [125] Venkateshaiah, A., Padil, V. V., Nagalakshmaiah, M., Waclawek, S., Černík, M., & Varma, R. S. (2020). Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. *Polymers*, *12*(3), 512. doi.org/10.3390/polym12030512
- [126] Lei, X., Li, H., Han, Y., Li, J., Yu, F., & Liang, Q. (2022). Modulus characterization of cells with submicron colloidal probes by atomic force microscope. *Microscopy Research and Technique*, 85(3), 882-891. doi.org/10.1002/jemt.23957

•