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Abstract

Nanoparticles have increasingly become important in medicine, environmental science and materials engineering as they have properties that
are distinct to their bulk type. This manuscript summarizes recent achievements made in nanoparticle manufacture focused on such methods
as green synthesis, laser ablation, and chemical reduction methods. The present manuscript also addresses the challenges associated with
nanoparticle synthesis, including scalability, reproducibility, and environmental impact, while proposing innovative solutions to overcome
these hurdles. Furthermore, nanoparticles are valuable tools for controlling microbial infections, and emerging effective antiviral medicines
against adenoviruses is a carefully connected and challenging issue. Moreover, several metal nanoparticles have antimicrobial properties that
are active against a wide variety of microorganisms, including bacteria, fungus and viruses. Metal nanoparticles have efficiently suppressed
several key microbial diseases. The current review seeks to assist readers in acquiring a more detailed view of nanoparticles with the hope
that such knowledge would prompt more research in this fast-moving area.
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1. Introduction
One technique that deals with objects as small as micrometers is called nanotechnology [1]. Changes in materials,
devices, and systems are likely to result from nanotechnology. Nanomaterials are currently the most advanced in terms of
scientific understanding and practical applications. The physical and chemical characteristics of nanoparticles have long been
investigated in association with their size[2]. Nanoparticles (NPs) are colloidal solid particles that are a few nano-meters to a
few hundred nano-meters in size [3]. NPs have unique physicochemical properties due to their micro size, which results in
significantly higher surface to volume ratios than bulk materials [4]. Among the uses for NPs include biosensing, medicine,
lubrication, electronics, bioimaging, drug delivery, catalysis, nano manufacturing, textiles, and medicine [5, 6] and virus
control [7].
2. Classification of nanoparticles
2D nanoparticles (nanotubes) or 3D nanoparticles (e.g., dendrites, spherical NPs) are categorized using a variety of
methods. Organic (e.g., polymeric nanoparticles), hybrid, and biological materials include inorganic (e.g., metal oxide
nanoparticles) [8]. Hybrid nanoparticles are formed from inorganic cores with organic shells or organic cores with inorganic
shells [9]. Top-to-bottom and bottom-to-top are the two major processes used for NP synthesis [10]. In a top to bottom
method, NPS is manufactured using various materials by the conventional solid-state method operations as (machining|&
milling) or lithographic techniques [11]. From single molecules, Nanoparticles (NPs) are synthesized using a bottom-up
approach, such as chemical reactions and aggregation [12].
2.1. Inorganic nanoparticles
Depending on the type of material and the size of the NP needed, inorganic NPs can be created using a variety of
physical or chemical techniques|[13]. To create inorganic NPs, a number of chemical (sol-gel, co-precipitation, pyrolysis,
mineral salt reduction) and physical (vapor deposition, ball milling, and electrostatic spraying) processes are presented. Both
organic and inorganic NPs are often produced using the micro emulsion approach [14].
2.2. Organic nanoparticles
Several synthetic processes like rapid expansion of a supercritical solution, dialysis, nano precipitation, and micro
emulsion are used in the creation of organic NPs [15]. There are two primary steps to the micro emulsion process, which is
frequently employed to generate organic NPs [16]. The process begins with dissolving an organic molecule, such as a
polymer, in a specific solvent during emulsification. This polymer solution, known as the dispersed phase, is then emulsified
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into another solvent the continuous phase which is either partially or completely immiscible with the dispersed
phase solvent [17]. Therefore, during the emulsification process, nano-sized droplets with a diameter of 10 to 500 nm are
formed [18].
3. Nanoparticle types

The primary categories of nanoparticles include organic, inorganic, and carbon-based types.
3.1. Organic nanoparticles

Carbon-based, organic and inorganic nanoparticles are the main types of nanoparticles. Ferritin, micelles,
liposomes, and Dendrimers are all examples of organic nanoparticles or polymers [10]. The hollow nucleus is an important
component found in micelles and liposomes, which is also referred to as a Nano capsule which affected by heat and light
[19].
3.2. Inorganic nanoparticles

Metal and metal oxides are the main components of inorganic nanoparticles such as non-carbon nanoparticles [20].
3.3. Carbon based nanoparticles

Carbon-based nanoparticles are those made from carbon black, carbon nanotubes (CNT), carbon Nano fibers,
sometimes activated carbon at a Nano compound , graphene, and carbon-fullerenes[21]. Cells in live animals have a diameter
of about 10 micrometers [22]. Cell fragments are significantly smaller, typically falling within the micrometer range [23].
Proteins are even tinier, averaging just 5 nm in size—comparable to the smallest nanoparticles. Due to this direct size
correlation, nanoparticles can serve as exceptionally small probes for observing cellular machinery with minimal
interference, making them valuable tools for biological studies [24].
4. Nanoparticles Synthesis

Various physical and chemical techniques are employed to produce nanoparticles (NPs)[25]. Biological synthesize
is now preferred because they are clean, safe, affordable [26] and simple to scale up for large-scale NP synthesis [27]. NPS
has applications in powder metallurgy, magnetic devices, anti-corrosion coatings, biomedicine, electro catalysts, photo
catalysts as well as microelectronic devices [25, 28]. Due to their evolving nature, biotechnological applications of NPs are
expanding day by day. Among these applications, are effective drug administration, biocompatibility, bioactivity,
bioavailability, tumor targeting, anti-bacterial anti-inflammatory action, and bio sorption [29]. with desirable shapes.
However, the drawbacks associated with these conventional methods can often be mitigated through green synthesis [13].
These include NP biosynthesis without the use of toxic or hazardous substances or external reducing, capping [30] or
stabilizing agents at moderate pH, pressure, and temperature [31].
4.1. Synthetic methods for nanoparticles

Semi-nanomaterials, which are widely used in several fields, have been produced by some scientists using
physical and chemical approaches [32]. Innovative ways for producing single geometries in NPs include microcontact
printing, ion beam lithography, dip pen lithography, electrochemical composition, ball powdering, nanolithography,
evaporation condensation, and optical lithography[33].
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Figure 1: Flowchart of microbial synthesis of nanoparticles and their applications

Chemical and physical methodologies for the synthesis a range of NPs have been established in general due to
their specificity and capacity to manufacture monodisperse NPs [34]. One method is to reduce metal ions with some type of
dropping agent, such as sodium borohydride, sodium citrate or hydrazine hydrate [35]. Both laser ablation and micro
emulsion were used to make metallic NPs and thermal solvent synthesis (sol-gel method and microwave-assisted synthesis)
[36] as well as sterilization, gamma irradiation, electrochemical reduction, and ion spraying [37]. The biosynthetic approach
represents a safe, biocompatible [6] biocompatible, and environmentally sustainable method for synthesizing nanoparticles
for biomedical applications. This green synthesis process leverages biological entities such as fungi, algae, bacteria, and
plants [38], offering a promising alternative to conventional chemical methods as shown in figure (1) [39, 40].
4.1.2. Green Nanoparticle Synthesis

Synthesis of NPs also at lower pressure, temperature, pH and costs is necessary to eliminate certain undesirable
features associated with the green or biological synthesis approach [41]. Microorganisms and plant extracts are among the
biological systems from which biomass filtrate is derived [39, 42| and (bacteria, fungus), has been reported to have
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antimicrobial properties can be used to make green NPs [39, 43-45]. Different microorganisms, especially bacteria and fungi,
have been examined for their capacity to synthesize some nanoparticles such as silver, copper, and magnesium NPs [39, 44,
46]. Various species, both unicellular and multicellular, have recently been employed in the green manufacture of
Nanoparticles [30, 44, 47].

Plants extract
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Herbal plants
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\
\
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Figure 2: Green synthesis of nanoparticle and effect on bacterial cells [51]

Multiple biological sources, such as fungi, algae, bacteria, and plants, can be used in this synthesis process.

Specific plant components, like leaves and stems, have been used in nanoparticle creation [42] because of their high
concentration of phytochemicals, which act as reducing and stabilizing agents [30, 48]. The production of nanoparticles
follows two principal approaches: the bottom-up method, where nanoparticles are built from molecular components, and the
top-down method [49]. The generation of NPs by secreted biomaterials such as carbohydrates, oxidized proteins or reduced
metal ions in the bottom-up strategy is the optimal green synthesis of NPs, as shown in Fig.(2)[50].
4.2. Bottom up process

Using small units such as molecules and atoms to create nanoparticles in a “bottom-up” strategy, which then evolve
into a nanoscale unit using different chemical and biological mechanisms [52].
4.3 Top down process

With concentrated plant extracts, a concentrated mineral salt solution, the incubation period, and the use of
temperature, all of these factors help maintain the stability, shape, and size of the nanoparticles. [53,54] provided a full
technique for synthesizing palladium and platinum nan compounds, as well as their prospective applications as diagnostics,
biosensors, medication, catalysts, and drugs as shown in figure(3)

Figure 3: Diagram showed methods for nanoparticles synthesis
4.4 Creation of NPs with Plant Extracts
The fabrication of metallic nano-compounds using plant extracts, including the creation of Ag-NPs using Alfalfa
sprouts, was initially described by [55] [6]. One of the most important and distinctive features of nano-compounds is that their
surface area is greater than their volume ratio [6, 56]. Plant extracts, including soybean and 7ridax procumbens leaf cell extract,
are employed to make Cu and CuO-NPs [6, 30, 57]. Recent research has proven that plant-mediated biosynthesis produces
therapeutic herbs such as Zingiber, Sapindus rarak, and Parthenium hysterophorus officinal [6, 48].
5. Determinants of Nanoparticle Synthesis
Metal nanoparticles' sizes and forms appear to be modified by functional molecules or compelled by their
environmental development [59]. Several physicochemical parameters have been studied to enhance the reaction conditions
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for the creation of nanoparticles. These factors, which have a major impact on the stability, size, and usefulness of
nanoparticles, include pH, aeration, salt content, temperature, mixing ratio, incubation period, and radiation [60]. Adjusting
these parameters increases the synthesis process's efficiency and reproducibility and offers accurate control over the
properties of nanoparticles for a range of industrial and biomedical applications [61].

5.1. Plant-Based Green Synthesis of Nanoparticles

The ecologically approved "green chemistry” The method of biosynthesis of nanoparticles is to produce
environmentally friendly and clean particles by using some microorganisms such as plants [ ] bacteria, fungi, and other
microorganisms, and it is referred to as "green synthesis [62]. Unicellular and multicellular organisms are allowed to respond
to nanoparticle synthesis in a biosynthetic method that uses the above-mentioned organisms as a green alternative to create
nanoparticles with new traits [63].

The use of plants in the detoxification and accumulation of heavy metals helps to overcome environmental pollution
because the minute residues of these heavy metals are harmful even in very low concentrations [6, 64]. Plants are considered
natural chemical plants because they are low cost and low maintenance [30, 65]. The use of a plant extract in the synthesis of
nanoparticles has benefits over other biosynthesis methods, such as the use of microorganisms because it may be accomplished
through complicated operations such as keeping microbial colonies [6, 66]. One of the advantages of plant-assisted synthesis of
nanoparticles is that its movement is much faster than other biosynthesis techniques [6, 30, 67]. Plant components such as
stems, and leaves contain materials that are very rich in high-quality chemicals. They are frequently used in the production of
nanoparticles in green ways [6, 30, 68].

The plant component needed for nanoparticle synthesis can be cleaned and cooked in distilled water. After the
appropriate solutions are added, squeezed, and sieved, the solution's color were changes to show that nanoparticles are being
produced, which we can then separate [30, 40]. The synthesis of materials using natural plant extracts is a cost-effective and
environmentally sustainable approach that eliminates the need for intermediary base compounds. Certain plant species,
including Maytenus founieri, Arabidopsis helleri, and Brassica juncea, have been documented in scientific literature for their
ability to accumulate, detoxify, and contribute to the phytoremediation of hazardous metals [30, 69]. Due to their incredible
potential for eliminating contaminants and reducing toxicity in a sustainable and eco-friendly manner, these plants have
garnered significant attention for their application in the removal of heavy metals from aqueous solutions [70]. Many
nanoparticles have been identified, including gold, silver, and zinc oxide.

6. Nanoparticle characterization techniques

Important criteria have been addressed to characterize the size and shape of nanoparticles. Additionally, we can
evaluate the level of aggregation, charge, and surface area as well as evaluate the surface chemistry [71, 72]. The structural
configuration and spatial distribution of organic and nanoscale ligands on a material's surface can significantly impact its
physicochemical properties and potential applications [73, 74]. Following nanoparticle synthesis, a thorough analysis of their
crystal structure and chemical composition is conducted as an essential initial step to ensure their structural integrity and
functional properties [8].

6.1. X-ray-based techniques

X-ray diffraction (XRD) is one of the most widely employed techniques for characterizing nanoparticles (NPs) [75,
76] providing insights into their crystalline structure and grain size Typically conducted on dried powder samples
obtained from colloidal solutions, XRD offers statistically representative, volume-averaged data [76,78]. By analyzing peak
positions and intensities using reference patterns from the International Centre for Diffraction Data (ICDD), the composition of
the particles can be determined. However, XRD is not ideal for irregular materials, as peak broadening becomes pronounced
for nanoparticles smaller than 3 nm.[79, 80] have shown that the average crystallite size of magnetite NPs ranges from 9 to 53
nm, with peak broadening primarily attributed to instrumental factors, particle size, and lattice strain.Additionally, X-ray
absorption spectroscopy (XAS) is a valuable tool for structural and compositional analysis, comprising two major techniques:
extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES, also known as
NEXAFS) [76, 80]. Through XAS, the absorption spectrum of a substance can be thoroughly examined to elucidate its
electronic and atomic environment [81].

6.2. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) is a widely employed technique for surface chemical analysis,
particularly in the characterization of nanocomposite materials [82]. Its underlying principle is the photoelectric effect, which
enables the precise quantification of an element's electronic structure, composition, and oxidation state [83]. XPS is
instrumental in studying ligand exchange interactions, surface functionalization, and the core/shell architectures of
nanoparticles. Notably, this method operates in ultra-high vacuum conditions, ensuring accurate and high-resolution data
acquisition [84].

6.3. Additional ways of determining the other important NP characteristics

Additional ways to determining the structure, dimension, and essential features of nano-compound are also available.
Fourier transform infrared (FTIR) spectroscopy is depending on measuring the absorption of electromagnetic radiation with
wavelengths in the infrared range (400-4000 cm1) |74, 85]. The moment of the dipole was changed it absorbs infrared light
and becomes more active. A spectrum records the position of bands associated with bond strength and type, this is in addition
to the availability of information about molecular structures and interactions with the help of functional groups [86, 87]. [88]
used a combination technique of in situ ATR-FTIR and differential electrochemical mass spectroscopy to investigate how Pt
nanostructures during ethanol oxidation (DEMS). These methods were used to electrochemically probe adsorbents and identify
volatile reaction products. Their findings corroborated prior findings, indicating that the preferred breakdown products were
related to surface features, with COads forming on domains (100) and acetaldehyde/acetic acid forming on domains [87,89]. A
spectrum records the position of bands associated with bond strength and type, in addition to having specific functional groups
that help provide information about interactions and molecular organizations [90].
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Another efficient evaluation method for identifying the quantitative and structural characteristics of Nano
compound materials is nuclear magnetic resonance (NMR) spectroscopy [91]. It is based on the NMR phenomenon, which
occurs when non-zero spin nuclei are exposed to a high magnetic field and results in a minor energy difference between the
states of "spin-up" and "spin-down" [91]. Regular, uncomplicated analysis of NP synthesis and shape in situ, in both dissolved
and solid phase, can be aided by NMR spectroscopy)|75]. It is especially beneficial for studying noble metal NPs' generation
and ultimate architecture [92]. NMR has the benefit of allowing for the investigation of the complete NP population, offering
more accurate data than TEM on the typical NP size [93]. Moreover, in situ analysis of NP size and capping ligand
environment changes during catalytic processes was achieved by NMR [94].

6.4. Solid-state NMR (SS NMR)

Utilization of solid-state NMR (SS NMR) spectroscopy to study the performance of solid catalysts and chemical
procedures happening along their surfaces is an essential characterization technique [95]. Such a strategy might aid in the
determination of not just reactions with both ligands and solvents, but also bonding amongst ligand particles at the hard-soft
contact [96].

6.5. The Brunauer—Emmett-Teller (BET)

Another characterization method for Nano scale materials is also done using (BET) technique [97]. It was termed
after the inventors' initials, Emmett and Brunauer, this technique is founded on the principles of physical gas adsorption on
solid surfaces. It is widely applied for determining the external surface area of nanostructures due to its high accuracy, speed,
and ease of use, making it an essential tool in nanomaterial characterization [98]. A number of methodologies like BET, FTIR
and others were used to describe the samples [99]. On the basis of the size distribution and density values of the material under
inquiry, the surface area measured by BET was less than predicted this difference might be attributed to the accumulation of
smaller NPs into greater ones, decreasing the collective surface area [100]. Because NP samples must be dried for such
measurements, the danger of agglomeration is likely to be increased a lot of hydrogen NP surfaces, thus inducing a certain
error [101].

6.6. Low-energy ion scattering (LEIS)

The (LEIS) is an analytical technique for rapid assessment of the width of self- collage monolayers (SAMs) like Au
NPs [102]. This process exposes a sample of low-energy gas ions, and the initial composition of the surface of the outer layer
may cause scattering of ions and energy loss [103].

6.7. UV-Vis spectroscopy (UV-Vis)

UV-Vis spectroscopy is a widely used characterization technique for nanoscale materials due to its simplicity,
affordability, and effectiveness in surface analysis [106, 56]. In this method, the intensity of light reflected or absorbed by a
sample is compared with that of a reference material, providing valuable information about nanoparticle composition, optical
properties, and interactions [104]. Additionally, UV-Vis spectroscopy plays a crucial role in assessing the stability of
nanoparticle colloidal solutions, offering insights into their aggregation behavior and dispersion quality [105].

6.8. Photoluminescence (PL)

Photoluminescence (PL) spectroscopy is a valuable technique for studying nanocomposite materials, as it measures
the light emission of atoms and molecules following photon absorption. This method is frequently employed to characterize
highly luminescent nanoparticles, including metallic Nano clusters [19]. Recently, intrinsic PL in metallic nanoparticles has
garnered significant interest, despite their relatively low quantum efficiency in emission processes. However, the large
excitation cross-sections at plasmon resonance effectively counterbalance this limitation, making PL spectroscopy a powerful
tool for investigating their optical properties and electronic behavior [107]. Metal NPs also have a PL that is devoid of photo
bleaching and photo blinking. As a result, for optical labeling applications, Photoluminescence can be considered an improved
alternate to bright molecules [108]. PL has been obtained by utilizing Plasmon nanostructures of various forms for both one
multi-photon excitations [109].

6.9. Dynamic light scattering (DLS)

DLS is a well-known method for estimating the size of Nano and sub micrometer NPs in colloidal solutions [110].
Brownian motion is maintained for NPs sprayed in a colloidal solution. DLS estimates the NP hydrodynamic diameter in
solution by using dispersion light as a measure of time and the Stokes-Einstein assumption in solution [111]. In DLS, a fairly
low NP content is necessary to avoid a multiple scattering effect [112]. DLS has several advantages, including the ability to
operate monomodal suspensions quickly, easily, and precisely, Furthermore; it is an ensemble assessment approach that yields
a statistically accurate representation of each NP sample. It is very sensitive and repeatable, with a narrow size distribution and
homogenous materials. There are criteria that must be achieved in the DLS method to keep the nanoparticles in suspension and
in Brownian motion [112]. As a result, it has a low resolution for polydisperse, heterogencous samples. While working with
polydisperse samples, DLS necessitates revolutionary computations with assumptions that must be considered when
interpreting the findings [113]. Overall, DLS accurately estimates the hydrodynamic radius, but it lacks the precision required
to detect tiny particles as shown in table 1[114].

Table 1. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent [115]

Techniques Analyzed physicochemical properties
Zeta potential Stability referring to surface charge
X-ray Surface chemical and elemental composition
spectroscopy
Spectroscopy in the infrared range (MS) Functional group analysis, structure and conformation of bio
conjugates.
Dynamic light scattering (DLS) Size distribution in hydrodynamics.
Transmission electron microscopy Aggregation, size and size distribution, form heterogeneity
(TEM)
Scanning electron microscopy (SEM) Aggregation, Shape, Size and size distribution.
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7. Morphology of the nanoparticles
The atomic structure and shape of the surface are represented by surface imaging when the electron beam interacts
with its sample to produce different signals. All this is done using the scanning electron microscopy (SEM) technique [116]. A
three-dimensional image is taken using the back-scattered electrons from the sample of the material using the SEM technique
[117,118]. A photomultiplier detects these electrons once they have escaped from the sample's surface. Because some
nanoparticles are unable to redirect the electron beam far away, they are not seen with an electron microscope; as a result,
sample preparation requires a tinny layer of metal coating to create a conductive layer on the sample [119]. Surface wear is
decreased, heat damage is reduced, and the SEM's needed secondary electron signal is increased. SEM images may be used to
determine nanoparticle form and size distribution, as well as the purity of the sample and its degree of aggregation [118, 120].
One of the disadvantages of this method is that preparing the sample is destructive and it is difficult for the researcher to be
convinced of the validity of the observed image, potentially leading to skewed sample size distribution statistics [121].
Heterogeneous atomic force microscopy (AFM) is a valuable instrument for studying surface morphology with
nonmetric precision as well as measuring sensory forces [122]. AFM pictures are recorded by sensing the positive and
repulsive forces between the sample surface and the pointed probe. At the end of the force measurement, a laser photodiode
device measures the voltage difference [123]. Surface wear is minimized, thermal damage is reduced, and the secondary
electron signal required in the SEM is improved. AFM images are created by detecting the attracted repulsive forces between
the sample surface and a pointed probe [124]. The AFM, like the SEM, is used to study the size, distribution of size, shape,
and aggregation of nanoparticles, but it has the advantage of not requiring destructive sample preparation and allowing for
images of a wide range of biomaterials in aqueous fluids, as well as real-time macromolecular movement of the sample [118,
125]. AFM is less expensive than SEM in terms of money. As well as needing less laboratory space and being easier to run
[126]. By combining these two methods, one will compensate for the other. (TEM) is another technique that may be used to
determine the shape and size of a sample. The picture is two-dimensional and is created by two electrons passing through the
material. This method is very effective for assessing the thickness of nanoparticle polymer walls [49].
8. Conclusion and future Perspectives
The use of metal nanoparticles as an alternative to battling microbial infections has presented intriguing ideas for
traditional therapy and may help reduce the effects of infectious disorders. Nanoparticles are valuable tools for controlling
microbial infections, and developing effective antiviral medicines against adenoviruses is a closely connected and challenging
issue. Several metal nanoparticles have antimicrobial properties that are active against a wide variety of microorganisms,
including bacteria, fungus and viruses. Metal nanoparticles have efficiently suppressed several key microbial diseases.
Nanoparticles, because they are not directly tied to chemical interactions, provide promise for the development of medications
that viruses cannot withstand due to mutations. It has been determined that such complex nanoparticles with significant
antiviral effects do not accumulate in living cells, proving their non-toxicity. As we advance into this promising era of
nanotechnology, it is imperative to remain cognizant of the associated challenges, including toxicity, regulatory hurdles, and
the need for standardized characterization methods. Future research should focus on the long-term effects of nanoparticles on
human health and the environment, ensuring that their benefits are realized without compromising safety.
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