

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Influence of Some Biostimulants on Growth, Yield and Quality of Grafted Watermelon "Citrullus lanatus" Using Cucurbita Maxima Rootstock Mohamed A. A. El-Kersh¹, Amira S. Soliman², Rasha R. Afify³, Sona S. El-Nwehy⁴, Amani H. A. M. Gharib ^{5*}

¹ Green Seed Company for Agricultural Investment, Egypt.

- ²Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Egypt
- ³ Department of Plant Nutrition, Agriculture and Biological Research Institute, National Research Centre, Dokki, Egypt
 - ⁴ Department of Fertilization Technology, Agriculture and Biological Research Institute, National Research Centre, Dokki, Egypt
- ⁵ Vegetable, Medicinal and Aromatic Plant Breeding Department, Horticulture Research Institute, Agriculture Research Center, Giza, Egypt

Abstract

Bio-stimulants and grafting represent pivotal sustainable strategies to enhance crop productivity and quality while minimizing dependence on chemical fertilizers. Bio-stimulants activate plant defense mechani

sms against biotic and abiotic stresses while improving metabolic efficiency, whereas grafting serves as an eco-friendly alternative to pesticides, mitigating soil-borne diseases and boosting yield. The present study was carried out at El kottna area, El Dakahlia governorate, Egypt during the period from 2022 to 2023 to Study the effect of applying different sources of biostimulant (Condensed molasses soluble (CMS) and Algae extract) on grafted watermelon Seedlings on growth, yield and quality of watermelon. Two experiments were carried out; greenhouse and field experiment including one grafting method, i.e., as follows one cotyledon grafting method (Splice), and one scion of watermelon with rootstocks. Treatments were; 100% Control (recommendation R), 100% R + 10 ml/liter Algae extract, 100% R + 15 ml/liter CMS, and 100% R + 20 ml/liter Algae extract, 100% R + 10 ml/liter CMS, 100% R + 15 ml/liter CMS, and 100% R + 20 ml/liter CMS. Results indicated that CMS at 20 mL/L significantly enhanced fruit weight (23% in 2022 and 31.4% in 2023) compared to control and TSS (31.2% in 2022 and 37.2% in 2023) over the control. Also, Algae extract at 20 mL/L also improved fruit weight by (22.2% in 2022 and 26.8% in 2023) over control and TSS by (15.5% in 2022 and 23.5 % in 2023), over the control. Biostimulants significantly increased yield per plant, CMS at 20 ml/L showing the highest yield per plant (24.2% in 2022, 31.5% in 2023), closely followed by algae extract (23.42% and 26.8% in 2022 and 2023, respectively). Highly recommend CMS at 20 ml/L as a biostimulant spray for grafted watermelon seedlings and crops. CMS improves production quality, increases yield, and enhances Brix and TSS of watermelons.

Keywords: Watermelon, Grafting, , Algae extracts, Condensed molasses soluble, Yield Enhancement. .

1. Introduction

Watermelon (*Citrullus lanatus*) is a variety of a family *Cucurbitacea*. It has been asserted that about 6.8% of the total area in the world dedicated to fruit production is for watermelon production. [1, 2] watermelon contains several bioactive compounds besides vitamins A and C, which are available in most fruits.. [1, 3] There is an urgent need to improve agricultural practices to ensure that food production is balanced with environmental sustainability, Formulations based on organic wastes, including Bio-stimulation, are considered fertilizers in organic and conventional agriculture. [2]

Grafting of vegetable Stared in the 1920s to control soil-borne diseases, and is now a common processing in Asia, parts of Europe, and the Middle East. Grafting has gained popularity and has the potential to be used in vegetable propagation to address problems that arise and limit vegetable output in agricultural systems. However, as food demand rises, growers are more likely to disregard crop rotation, which results in the cultivation of the same crop repeatedly or in the same growing season or area. These practices alter soil conditions, which can lead to a variety of physiological and pathological disorders that cause severe crop loss. [4][5, 6] Grafting can be a useful strategy in this situation to mitigate the negative impacts of the soil and shield the scions or crops from these unfavorable circumstances. One efficient method for managing biotic and abiotic challenges is grafting watermelon (*Citrullus lanatus*) onto resistant rootstocks. [5-7]According to Johnson, 2012, grafted watermelon can be 30–50% more productive than nongrafted plants. Grafted plants can offer the best results when planted at two-thirds of the non-grafted stock.

* Corresponding author: dramani_gharib@hotmail.com, Amani H. Gharib Received Date: 01 June 2025, Revised Date: 29 July 2025, Accepted Date: 05 August 2025 DOI: 10.21608/EJCHEM.2025.391248.11856 ©2026 National Information and Documentation Center (NIDOC) Grafting is generally considered a novel and promising technique in Egypt and Sudan's vegetable agriculture. Consequently, there are many nurseries interested in producing grafted vegetable transplants, and they have to choose between several grafting techniques, such as splice, tongue approach, hole insertion, and side graft, in addition to a variety of rootstock cultivars or hybrids from the genus *Cucurbita maxima*, *Cucurbita moschata*.

Algae extracts, categorized into green, brown, and red, have been found to positively impact various vegetable crops. [8] Algae extracts have been shown to enhance plant growth, blooming, and fruit setting by acting as natural growth regulators, preventing leaf fall, flowering, fruiting, yellowing, retaining chlorophylls, encouraging cell division, and promoting root growth. Additionally, algae include natural organic elements and a growth stimulant that raise soil efficiency and promote the growth of microorganisms in the soil, which enhances nutrient and water absorption. By accelerating the process of photosynthesis, the application of algal extracts to the leaf enhances its internal metabolism; they are natural bio active materials rich in minerals, protein, lipids, carbohydrates, vitamins and microelements. [9, 10] And it is safe to humans, animals and the environment. [11]Algae also include natural phenols like tannins and lignin, which makes them more disease tolerant. Additionally, because they include alginic acid, a naturally occurring chelating agent that chelates nutrients with a soil solution, they aid in accelerating the absorption of nutrients. They also include some vitamins, including C, B1, B2, and B12. Because algae contain free amino acids that support healthy, balanced plant development and improve the plant's response to fertilization, they act as natural growth regulators and antibiotics inside the plant. [12] There are many studies on the use of algae extract sprays that recorded the best results of obtaining the highest vegetative growth parameters, yield, and chemical components.[13-15]

Decreasing of chemical fertilizers became more significant due to increasing their prices, which ever reduce ground water pollution as well as for human health.[16]In compare to chemical fertilizers and biostimulants as algae extracts are safe and non-toxic, decomposable, and safe for both people and other living things. [17] They may be used as soil conditioning agents and biofertilizers to increase soil fertility and plant productivity. [18-21]

Condensed molasses soluble (CMS) is a byproduct of various fermentation processes involved in yeast production. Molasses serves as a nutritional reactant in numerous fermentations manufacturing processes, including yeast production. In this process, the sugar content of the molasses is used by microbiological activity. The output fluid waste has very little residual sugar content and this waste is condensed, further processed and commercial as CMS. [22] It has motivational influences on plants. [23, 24] is one of the affluent reason amino acids like lysine, tryptophan etc., include the macro and micronutrients and the best reason of the B-complex vitamins such as B1, B2, B6 and B12. Its beneficial function during both vegetative and reproductive phases is evident, as it enhances flower emergence and their eventual setting in certain plants due to the increase in auxin and cytokinin levels, as well as improved carbohydrate accumulation. [25] It was noted that it promotes effects on cell division and growth, the synthesis of proteins and nucleic acids, and the composition of chlorophyll., [26] On the other way, using CMS in organic farming as biofertilizer and biostimulants is 'zero impact' on the environment. [27]CMS, a rich source of mineral nutrients and organic matter, has the potential to be a new organic fertilizer for crops, but its full potential remains unexplored(Li et al., 2020). It has several benefits for plant growth, including lowering plant parasitic nematodes and changing the C: N ratio, which benefits the soil microbial community, cleanses soil and enhances nitrogen fixation.. [28, 29] Molasses aids in rebuilding soil structure and reduces surface crusting in soils that are susceptible to becoming hard. [30] Compared to artificial fertilizers, studies have shown that CMS increases the availability of nitrogen (N), phosphorous (P), potassium (K), and other organic matter in the soil, improving crop output overall. When compared to artificial fertilization, the CMS alteration in sugarcane enhanced yield, chlorophyll content, surfacing rate, average root weight, root yield and polar sugar content and tillering rate. It also helped to improve the soil's chemical and physical characteristics.[31, 32]

The study aims to highlight the value of biosimulate as a modern agricultural practice, offering an economical and eco-friendly solution to enhance grafted watermelon quality and yield. This ultimately benefits nurseries, farmers, and consumers alike.

2. Material sand Methods

The present study was carried out at El kottna area El Dakahlia governorate during the period from 2022 to 2023. Study the effect of applying different sources of biostimulant for grafted watermelon variety and rootstock on growth, yield and quality of watermelon. The experiment included one grafting method, i.e., as follows one cotyledon grafting method (Splice)[33] and one scions of watermelon with rootstocks.

2.1. 1. Plant material

Watermelon (*Citrullus lanatus*) 'Aswan F1' produced by (Sakata Company, Japan) was used, it is widely grown in commercial production of watermelon in Egypt. This variety of watermelon grafted on Rootstock (*Cucurbita maxima*), produced in India as local variety of bottle gourd was obtained from seed

department, agriculture research center, Egypt. The grafting method was by the one cotyledon grafting method (Splice). (Figure 1)



Figure 1: The one cotyledon grafting method (Splice)Steps. (Elkersh et al. 2016) [34]

2.2. Biostimulant Materials

Algae extract: The source of algae was the Algal Biotechnology Unit, NRC., Egypt. The chemical composition, mineral content, HPLC chromatogram hormones, and amino acid content of the algae extract are available in Table 1 and Table 2.

By-product of yeast production (CMS): Condensed molasses soluble (CMS) are by-products of various fermentation processes in yeast production. The chemical analysis of by-product of yeast production is available in Table 3.

Table 1: Chemical composition and mineral of algae extract and HPLC chromatogram hormones of algae extract.

	%						Ppm			
Element	N	P	K	Mg	Na	Ca	Fe	Zn	Mn	Cu
Conc.	13.30	2.22	2.13	0.22	0.01	0.33	1936.00	68.00	21.00	18.00
HPLC chromato	gram horm	ones of a	algae ext	ract sam	ple, mg	. g ⁻¹				
	Indole aceti	c acid	_	Indole	butyric	acid		Gibbere	ellic acid	
13.66				3.25				1.19		

Table 2: Amino acids content of the used algae extract

Amino acid	Appreviation	Concentration	Amino acid	Appreviation	concentration
Aspartic	ASP	1.85	Threonine	THR	0.83
Serine	SER	0.70	Glutamic	GLU	2.24
Proline	PRO	0.67	Glycine	GLY	1.07
Alanine	ALA	1.55	Valine	VAL	1.11
Methionine	MET	0.33	Isoleucine	ISOL	0.71
Leucine	LEU	0.29	Tyrosine	TYR	0.53
Phenylalanine	PHE	0.87	Histidine	HIS	0.24
Lysine	LYS	0.70	Arginine	ARG	0.98
Cysteine	CYC	0.22			
Total amino acids	3	15.89			

Amino acid(g/100 m	nl)	Nutrient content(%)	Growth Regulator	rs(mg/L)
Aspartic acid	0.58	Total Amino Acid	20.00	Cytokine	762.6
Threonine	0.14	Free Amino Acid	7.00	Gibriline	495.2
Serine	0.21	Total –N	4.62	Others	
Glutamic acid	4.80	P_2O_5	0.20	(%)	
Glycine	0.25	K ₂ O	9.80	Organic matter	59.75
Alanine	0.38	Ca	0.87	Organic carbon	34.66
Valine	0.17	Mg	0.16	-	
Isoleucine	0.12	S	10.04	рН	7.23
Leucinc	0.17	(mg/L)			
Phenyl alanine	0.10	В	8.5		
Hisitidine	0.04	Mo	5.3		
Lysine	0.13	Fe	71.0		
Arginine	0.04	Mn	11.3		
Proline	0.14	Zn	483.9		
Cystine	0.03	Cu	5.3		
Methionine	0.06				

Table 3: Chemical analysis of by-product of yeast production (CMS)*

Treatments were: 100% Control (recommendation from fertilizers), 100% recommendation + 10 ml/liter Algae extract, 100% recommendation + 15 ml/liter Algae extract, 100% recommendation + 20 ml/liter Algae extract, 100% recommendation + 10 ml/liter CMS, 100% recommendation + 15 ml/liter CMS, and 100% recommendation + 20 ml/liter CMS.

2.3. Greenhouse experiment (Nursery of scion and rootstocks; grafting)

The grafting experiment was carried out to produce the seedlings in nursery located in El kottna area Dakahlia governorate during 2022 and 2023 seasons. In the first season, the watermelon seeds of section were sown in the nursery on 20th January 2022, while the rootstock seeds were sown on 1st February 2022. In second season, the watermelon seeds of section were sown in the nursery on 16th January 2023, while the rootstock seeds were sown on 28th January 2023 (The seeds of the scion were sown in nursery 10: 13 days earlier than the seeds of the rootstocks to ensure both seedlings reach the right stem size for grafting at the same time). The experimental design was completely randomized blocks with three replications.

Seeds of sections and rootstock were sown in 216-cell Styrofoam trays filled with a mixture of peat moss and perlite at the ratio of 7:3 (v: v) enriched by 1g potassium sulfate, 1 g calcium nitrate, 2 g mono potassium phosphate and 0.25 g fungicide for each 1 liter of the mixture. During the greenhouse experiment fertilization applied during irrigation and the solution content has all macro and micro elements (ml-mol/liter), its electric conductivity (EC) was 1.8: 2.0 ms and its component was as follow in Table 4.

Table 4: Chemical analysis of the fertigation solution

Elements	NH ₄ ⁺	K ⁺	Na ⁺	Ca ⁺⁺	Mg^{++}	NO ₃ -	Cl-	S0 ₄	H ₃ PO ₄ -	Fe	Mn	Zn	В	Cu	Mo
Conc.	12.18	1.42	3.30	5.26	4.45	20.71	1.40	5.03	0.11	16.3	105.0	22.5	104.6	4.3	1.3

The fertilizers were put on three tanks which are diluted in water, tank (A); ammonium nitrate (2.0g/liter), calcium nitrate (2.5g/liter), Fe EDEHA (0.5g/liter). Tank (B); potassium sulfate (1.6g/liter), mono potassium phosphate (3.0g/liter) and Tank (C); magnesium nitrate (1.0g/liter), Micro elements (0.25g/liter).

The grafting was conducted when the rootstocks and scion were ready to graft (10-13 days after rootstocks seeds were sown). The grafted seedlings were located under plastic tunnel completely closed under temperature (24–26°C) and humidity (>85%RH) for 7 days for acclimatization and hardening which were the important factors for the survival of grafted plants. The tunnel was left completely closed for 3 days. After that, the hardening process started on the fourth day by opening the tunnel for 2-3 hours followed by wetting the grafted plants with fine water before sealing the tunnel again. The tunnel was again opened for 6 hours or less on the fifth day and re-opened for half a day in the sixth day, and the tunnel plastic cover was removed entirely on the seventh day of grafting. Grafted seedlings were applied with biostimulant products with recommended levels of the fertilizers one time before delivering the seedlings to the open field

2.4. Field experiment

The field experiment was carried out on a privet farm in Dakahlia government. Grafted seedlings were transplanted on 14th March 2022 and 10th March 2023 in rows 3.0 m in width, 9 m in length and spaced 1.0 m

apart in the open field. The graft union of grafted seedlings was kept above the soil surface to avoid development of adventitious roots from the scion that connect the soil that may lead to infection and death of the entire plant.

The experimental design was completely randomized blocks with 7 treatments (6 biostimulants products) + control (recommendation) with 3 replicates and the plot area was 81 m² included 27 plants. In both seasons, all field practices (irrigation, fertilization, weeding, and pest control) were performed according to the recommendations of the Egyptian Ministry of Agriculture for watermelon production. Mean physical and chemical characteristics of soil of the experimental site were determined according to Chapman & Pratt [34] and are shown as follows: Texture: clay, pH 7.93, EC (ds/m) 2.42, N 30.3, P 19.21, K 670, Fe 21.1, Mn 7.5, Zn 2.24, Cu 24ppm.

Applying the treatments during growth stages: vegetative growth, flowering and fruit Set, fruit development; the treatments of the biosimulate products were applied by foliar application one time during each stage.

2.5. Data recorded

2.5.1. Seedlings growth characters

Seedlings growth characters were recorded after 50 days from planting date in nursery. Samples of four Seedlings were chosen randomly from each treatment to evaluate Chlorophyll as SPAD readings by Minolta chlorophyll meter, Seedling length (cm) and Seedling diameter (mm).

2.5.2. Vegetative growth characters

Vegetative growth characters were recorded after 50 days in field on samples of four plants were chosen randomly from each plot to record the following parameters,[35]Number of leaves per plant, Number of branches per plant, Plant length (m)

2.5.3. Yield and fruit characters

Total yield after harvest all fruit (early yield and final yield) according to Islam et al., and Petropoulos et al.[36, 37]The fruits were harvested two harvest times, after 85 and 95 days from transplanting, respectively. Three ripen fruits were randomly collected from each experimental plot's subsamples for fruit quality measurements, thickness peel, fruit weight, fruit length and fruit diameter.

2.5.4. Fruit quality

Three fruits were taken randomly from each plot and subjected to measure content of total soluble solids (TSS) in fruit juice by using a hand refract meter. This was estimated according to the methods of AOAC international [38]. Total sugar (TS %) was determined using the sulfuric acid/phenol technique described by Dubois et al.[39]

2.5.5. Nutrient content of leaves

Leaf samples from the fourth upper leaf of 6 plants were taken at 50 days from transplanting was used to determine nutrient content according to Cottenie et al. [40]

2.6. Statistical analysis

The data will be triplicate and analyzed by analysis of variance (ANOVA) using static 8 computer program. The significance of differences will determine according to DMRT. P values \leq 0.05 were considered to be significant. [40]

3. Results

3.1. Greenhouse experiment

3.1.1. Effect of biostimulants application on Seedling growth characters:

Seedling growth characters (chlorophyll, Seedling length and stem diameter) are presented in (Table 5 and Pic 2). The highest chlorophyll index was recorded in plants treated with CMS at 20 ml/L, with values of 51.30 and 52.17 in the 2022 and 2023 seasons, respectively, resulting in an overall mean of 51.73. This treatment was statistically superior to all others. The next highest chlorophyll index was recorded for the algae extract at 20 ml/L, with a mean of 50.60 for 2022 and 2023. The control treatment consistently recorded the lowest chlorophyll values, (46.00 and 45.96 in 2022 and 2023, respectively). Both CMS and algae extract treatments significantly enhanced chlorophyll index compared to the control. It also shows that the application of CMS at 20 ml/L resulted in the longest seedlings, with a mean length of 17.37 cm across seasons. This was followed closely by the algae extract at 20 ml/L, which achieved a mean seedling length of 16.50 cm across seasons. There was no statistically significant difference between these two treatments, indicating comparable effectiveness. The control treatment recorded the shortest seedling length; with a mean of 12.27 cm across

seasons. The algae extract also showed consistent performance across different concentrations, with mean seedling lengths of 12.98 cm and 14.05 cm at 10 and 15 ml/L, respectively.

As shown in Table 5 **and Figure 2**, the highest stem diameter was recorded with the application of CMS at 20 ml/L, reaching a mean value of 0.32 mm. This was followed closely by algae extract at 20 ml/L, which produced a mean stem diameter of 0.31 mm. The lowest stem thickness was observed in the control treatment, with a mean of 0.27 mm. These findings indicate that the application of both CMS and algae extract at higher concentrations positively affected stem development, contributing to greater seedling vigor and structural robustness. Memorable, CMS at 20 ml/L consistently performed best across all measured seedling parameters during both growing seasons.

Figure 2: Effect of biostimulants application on grafted watermelon seedlings.

Table 5: Effect of biostimulants application on chlorophyll index, seedling length and diameter of watermelon during 2022 and 2023 seasons

Biostimul	lants	Chl	loroph	yll index		Seedl	ing l	ength(cm)		Seedlin	g dia	meter (mm	n)
Treatme	nts	2022	2	2023		2022		2023		2022		2023	
	10	48.43	ab	47.03	bc	14.03	С	13.17	d	0.291	e	0.293	b
CMS	15	48.90	ab	50.37	ab	15.57	b	13.97	С	0.297	c	0.300	b
	20	51.30	a	52.17	a	17.80	a	16.93	a	0.316	a	0.318	a
A1	10	46.57	b	45.40	c	12.87	d	13.10	d	0.281	f	0.285	С
Algae extract	15	48.87	ab	47.17	bc	14.17	С	13.93	С	0.295	d	0.296	b
Extract	20	49.50	ab	51.70	a	16.97	a	16.03	b	0.314	b	0.315	a
Contro	ol	46.00	b	45.96	c	12.63	d	11.90	e	0.269	g	0.269	d

3.2. Field experiment

3.2.1. Effect of biostimulants foliar application on vegetative growth characters

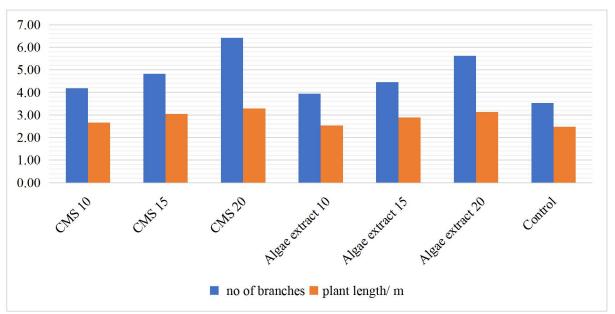

Both CMS and Algae extract significantly increased the Vegetative growth characters and that shown in Table 6. At 20 ml/L of CMS, produced the highest total number of leaves (Mean = 245.00), reveling a significant dose- dependent response. The control number of leaves also consistently had the lowest leaf count (Mean = 132.51) representing the positive effects of the biostimulants. CMS at 20 ml/L increases leaf numbers above algae extract and control by 84.9% and 62.13, respectively.

Table 6andFigure 3 show that the highest number of branches was recorded with the application of CMS at 20 ml/L, which produced a mean value of 6.41 branches per plant. This was followed by algae extract at the same concentration, with a mean value of 5.62 branches per plant. The control treatment resulted in the lowest number of branches, with a mean of 3.53. These data indicate a notable increase in branching due to

the application of biostimulants, particularly CMS at 20 ml/L, which outperformed both algae extract and the untreated control. The increase in branch number per plant for the CMS treatment was 81.86 % compared to the control.

As presented in Table 6 and Figure 3, the tallest plants were recorded in the CMS with 20 ml/L treatment, with a mean length of 3.29 m, followed closely by the Algae extract 20 ml/L treatment (Mean = 3.14 m). Lower concentrations of both treatments resulted in intermediate plant length, suggesting a possible dose-response effect. The control treatment produced the shortest plants, with a mean length of 2.48 m. In terms of relative improvement over the control, Algae extract at 20 ml/L resulted in a 26.6% relative increase in plant length, whereas CMS at the same concentration increased by 32.66%. These results indicate that both biostimulants significantly enhanced plant length compared to untreated controls.

Figure 3: Effect of biostimulants foliar application on number of branches/plant and plant length of watermelon during 2022 and 2023 seasons

Table 6: Effect of biostimulants foliar application on number of leaves, number of branches and plant length of watermelon during 2022 and 2023 seasons.

Biostimula	nts	numbei	r of l	eaves/plan	ts	number	of br	anches/pla	ants	Pla	nt le	ngth (m)
Treatmen	ts	2022		2023		2022	?	2023	1	202	2	202	3
	10	160.67	d	163.44	С	4.03	d	4.34	d	2.76	c	2.57	c
CMS	15	187.67	С	218.33	b	4.73	С	4.93	С	2.90	bc	3.18	ab
	20	247.67	a	242.33	a	6.17	a	6.66	a	3.21	a	3.37	a
Almaa	10	156.67	d	158.00	С	3.80	d	4.08	e	2.54	d	2.52	c
Algae extract	15	178.00	С	165.67	С	4.47	С	4.45	d	2.76	c	3.00	b
extract	20	204.67	b	225.00	b	5.50	b	5.73	b	3.09	ab	3.19	ab
Control		122.33	e	142.69	d	3.40	e	3.66	f	2.47	d	2.48	c

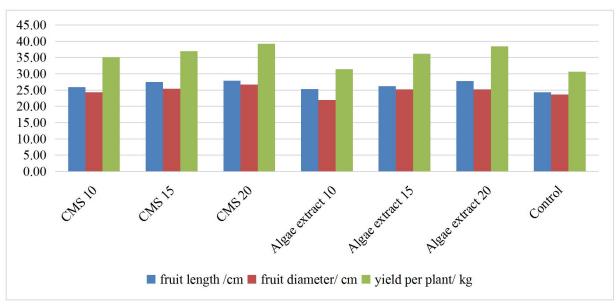
3.2.2. Effect of biostimulants foliar application on yield and fruits characters

As shown in Table 7, thickness peel increased significantly with higher doses of CMS. In 2023, the thickest peel (1.62 cm) was recorded for the 20 ml/L CMS treatment. Across both seasons, this treatment also achieved the highest mean peel thickness (1.57 cm), significantly higher than the control (1.02 cm). Algae extract exhibited a similar trend, though with slightly lower values; the 20 ml/L algae extract treatment resulted in a mean peel thickness of 1.40 cm. In both years of the study, the control treatment consistently recorded the lowest peel thickness values. Particularly, the 20 ml/L CMS treatment yielded the largest increase in peel thickness, representing a 53.92% improvement compared to the control. The most pronounced effects for both biostimulants were observed at the highest concentration (20 ml/L), demonstrating a clear dose-dependent relationship in peel thickness enhancement.

CMS treatments significantly increased fruit weight (Table 7), with the highest mean (11.20 kg) recorded at the 20 ml/L concentration. Algae extract also led to improved fruit weight, though to a lesser extent, with the highest mean value (10.34 kg) observed at the 15 ml/L concentration. The control treatment had the lowest mean fruit weight (8.81 kg) across both seasons. Among all treatments, CMS at 20 ml/L achieved the greatest enhancement in fruit weight, showing a 27.13% relative increase over the control. Algae extract treatments in the 15–20 ml/L range also resulted in notable increases in fruit weight, although slightly below the levels achieved with CMS.

Table 7: Effect of biostimulants foliar application on thickness peel and fruit weight of watermelon during 2022 and 2023 seasons.

Biostimulant Treatments	~	thickness (mm) 20	-	thickness (mm) 20	-	fruit weight 2022	t (kg)	fruit weight 2023	(kg)
	10	1.17	bc	1.12	cd	9.79	c	10.27	c
CMS	15	1.40	a	1.28	b	10.33	b	10.65	bc
	20	1.53	a	1.62	a	10.97	a	11.43	a
	10	1.10	cd	1.12	cd	8.83	d	9.06	d
Algae extract	15	1.24	b	1.14	c	10.06	bc	10.62	bc
	20	1.44	a	1.37	b	10.90	a	11.03	ab
Control		1.00	d	1.04	d	8.92	d	8.70	d


Table 8 and Figure 4 present data of the effect of biostimulants foliar application on fruit length, fruit diameter and yield / plant of watermelon during 2022 and 2023 seasons. The highest fruit length was recorded with the application of CMS at 20 ml/L, reaching 27.95 cm, corresponding to a 13.72% relative increase over the control. Algae extract at 20 ml/L produced a slightly lower but still considerable fruit length of 27.66 cm. The control treatment yielded the shortest fruits, with an average length of 24.62 cm. In the 2023 season, algae extract at 20 ml/L again produced the longest fruits of 27.87 cm, while the control recorded the lowest mean fruit length of 24.03 cm.

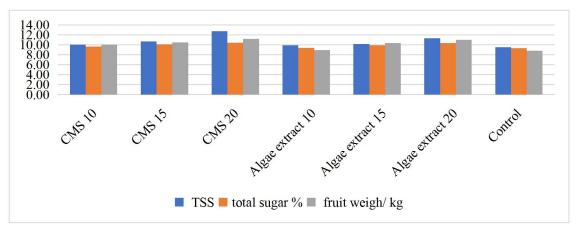
The highest fruit diameter (Table 8 and Figure 4) was recorded with the application of algae extract at 20 ml/L (mean of 25.67 cm), while the control treatment exhibited the lowest fruit diameter (21.60 cm). In terms of fruit diameter, CMS at 20 ml/L recorded the highest values. Both CMS and algae extract treatments at 20 ml/L significantly increased fruit length and diameter compared to the control, with the most substantial improvements observed at the highest concentration applied.

Table 8 and Figure 4present the impact of two biostimulants—algae and CMS—applied at three different doses (10, 15, and 20 ml/L) on the yield per watermelon plant during the 2022 and 2023 seasons, compared to a control. The data reveals a clear trend where increased doses of biostimulants positively influenced watermelon yield across both seasons, with CMS at 20 ml/L, yielding the highest production. The use of biostimulants such as algae and CMS significantly enhanced the yield per plant in both years compared to the control. particularly: CMS at 20 ml/L was the most effective treatment in both seasons, showing 24.16% increase in 2022 and 31.36% increase in 2023 compared with control. Algae at 20 ml/L also provided high yield improvement, nearly matching CMS, with 23.42% (2022) and 22.07% (2023) increases compared with control.

Table 8: Effect of biostimulants foliar application on fruit length, fruit diameter and yield / plant of watermelon during 2022 and 2023 seasons.

Biostimula Treatmen		fruit lei (cm) 20	_	fruit len (cm) 20	_	fruit diamete (cm) 202		fruit diamet (cm) 20	er	Yield / pl (kg) 202		Yield/p (kg) 20	
	10	26.00	b	25.87	bc	24.12	С	24.56	cd	34.26	c	35.95	c
CMS	15	27.60	a	27.37	a	25.16	b	25.27	bc	36.16	b	37.82	bc
	20	27.95	a	27.87	a	26.70	a	26.65	a	38.38	a	40.00	a
Almaa	10	25.31	bc	25.23	c	23.30	d	23.90	d	31.23	d	31.71	d
Algae extract	15	26.17	b	26.31	b	25.15	b	25.27	bc	35.21	bc	37.17	bc
extract	20	27.66	a	27.87	a	25.20	b	25.67	b	38.15	a	38.61	ab
Control		24.62	c	24.03	d	22.27	е	21.60	e	30.91	d	30.45	d

Figure 4:Effect of biostimulants foliar application on fruit length, fruit diameter and yield/ plant of watermelon during 2022 and 2023 seasons


3.2.3. Effect of biostimulants foliar application on fruits quality characters:

In 2022, as presented in Table 9 and **Figure 5**, the highest total soluble solids (TSS) value was observed in the CMS treatment at 20 ml/L, recording 12.83%, while the control recorded the lowest value of 9.78%. In 2023, the same trend was noted, with CMS at 20 ml/L achieving the highest TSS value of 12.59% compared to the control of 9.18%. Algae extract at 20 ml/L also demonstrated an improvement in TSS across both years, with a noted increase of 19.41% over the control. Overall, CMS at 20 ml/L achieved the most substantial increase in TSS across both years, with a mean enhancement of 34.07%.

As shown in Table 9 and **Figure 5** and **Figure 6**, the highest total sugar percentage was observed with the application of CMS at 20 ml/L, which recorded a mean value of 10.44%. Algae extract at 20 ml/L also led to an important increase in sugar content, reaching a mean value of 10.34%. In contrast, the control treatment showed the lowest mean sugar content of 9.31%. The CMS treatment at 20 ml/L demonstrated the most pronounced increase in total sugars, with a percentage gain of 12.14% over the control. Algae extract at 20 ml/L followed closely, contributing to a 11.06% increase compared to the control.

Table 9: Effect of biostimulants foliar application on TSS and Total sugar of watermelon during 2022 and 2023 seasons.

Biostimulants			TS	S %			Total s	sugar %	
Treatments		2022		2023		2022	2	202	3
	10	10.03	d	10.00	d	9.50	cd	9.82	ab
CMS	15	10.83	c	10.49	С	9.97	abc	10.18	ab
	20	12.83	a	12.59	a	10.34	a	10.53	a
	10	10.00	d	9.83	d	9.25	d	9.53	b
Algae extract	15	10.18	d	10.16	cd	9.70	bcd	10.13	ab
	20	11.30	b	11.34	b	10.25	ab	10.43	a
Control	·	9.78	d	9.18	e	9.15	d	9.47	b

Figure 5:Effect of biostimulants foliar application on TSS, Total sugar and fruit wight of watermelon during 2022 and 2023 seasons

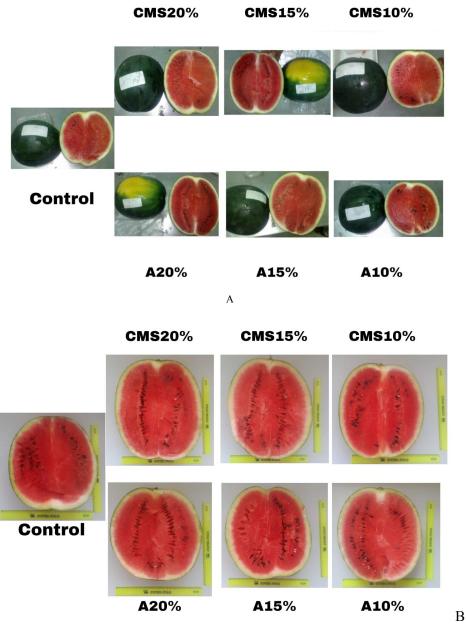


Figure 6: Effect of biostimulants application on yield quality of watermelon

3.2.4. Effect of biostimulants foliar application on Nutrient content of leaves:

As shown in Table 10, the highest nitrogen (N %) concentration was recorded with the CMS treatment at 20 ml/L, reaching a mean value of 3.43%. The algae extract at the same concentration also resulted in a high N% value of 3.40%. In contrast, the control treatment had the lowest N% of 2.65%. The greatest percentage increase in nitrogen content (29.43%) was observed with the CMS 20 ml/L treatment compared to the control.

The data presented in Table 10show that the highest phosphorus content (P%) was observed in the CMS treatment at 20 ml/L, with a value of 0.79%, followed closely by the algae extract at 20 ml/L (0.78%). The control treatment recorded the lowest P% of 0.58%. The greatest improvement in phosphorus content was observed with the CMS 20 ml/L treatment, representing a +36.21% increase compared to the control.

The potassium content (K %) (Table 10) was the highest in the CMS treatment at 20 ml/L, with a recorded value of 5.32%. The algae extract at 20 ml/L also resulted in a high K% value of 5.26%. The lowest K% was recorded in the control treatment of 4.97%. The CMS at 20 ml/L demonstrated the greatest improvement over the control in K%, representing a 7.04% increase compared to the control.

Biostimula	nte		Nº	1/2			D	%			K	0/2	
Treatmen		202		2023	3	202		202	3	2022		2023	3
	10	3.10	b	3.22	b	0.67	b	0.69	d	5.09	d	5.12	e
CMS	15	3.22	ab	3.48	a	0.74	a	0.76	b	5.17	c	5.22	С
	20	3.33	a	3.53	a	0.78	a	0.80	a	5.29	a	5.34	a
Algaa	10	2.92	c	3.16	b	0.60	c	0.62	e	5.07	d	5.12	e
Algae extract	15	3.19	ab	3.25	b	0.72	ab	0.73	c	5.16	c	5.18	b
extract	20	3.29	a	3.52	a	0.78	a	0.79	ab	5.24	b	5.28	b
Control		2.61	d	2.69	c	0.57	c	0.59	f	4.94	e	5.00	f

Table 10: Effect of biostimulants foliar application on N%, P% and K% of watermelon leaves during 2022 and 2023 seasons.

Table 11 presents the effects of two biostimulants—CMS and algae extract—applied at three concentrations on magnesium (Mg) content in watermelon leaves. The highest magnesium content was recorded in the treatment with CMS at 20 ml/L (0.42%), followed closely by the algae extract at 20 ml/L (0.40%) and shows that calcium (Ca) content in watermelon leaves was the highest with the application of CMS at 20 ml/L. The algae extract at 20 ml/L also resulted in a notable increase in calcium content, though slightly less than that observed with CMS.

Table 11 indicates that the Iron content was significantly increased by CMS 20 ml/L (53.03 ppm) - possibly due to the soil being more acidic and Fe in greater availability. Algae extract 20 ml/L increased Iron content by also allowing access to Fe by siderophores and/or phytohormone-like effects. Control had Iron content of 44.10 ppm, the high Fe level for the CMS 20 ml/L treatment (53.03 ppm) increased from the peak Fe concentration by 20%, Algae extract at 20 ml/L increased Fe (49.47 ppm), however the lower doses, especially 10 ml/L did show less increase.

Biostimulants	Mg%	Ca%	Fe (ppm)
2022 and 2023 seasons.	viiiuiuiiu ioiiui uppiiuuii	on on 111g/v, cu/v unu 1 v pr	on or waverment reaves auring
Table 11: Effect of bios	timulants foliar application	on on Mg% Ca% and Fe pr	om of watermelon leaves during

Biostimulants	3		Mg	%			Ca	%			Fe	(ppm)	
Treatments		202	2	2023	}	2022		2023		2022		202	.3
	10	0.31	d	0.33	e	3.85	d	3.88	d	44.77	С	45.33	cd
CMS	15	0.35	c	0.37	d	3.91	c	3.93	c	45.67	С	48.00	bc
	20	0.41	a	0.43	a	4.12	a	4.18	a	52.07	a	54.00	a
	10	0.30	de	0.33	e	3.74	d	3.78	d	44.00	С	44.83	d
Algae extract	15	0.35	c	0.34	c	3.84	b	3.83	b	45.00	С	47.00	bcd
	20	0.39	b	0.40	b	4.04	b	3.93	b	49.50	b	49.43	b
Control		0.29	e	0.31	f	3.72	d	3.80	d	43.93	С	44.27	d

The data copper (Cu) content represented in Table 12 shows that the copper (Cu) content in watermelon leaves varies significantly among treatments. The highest Cu content was recorded with the CMS

20 ml/L treatment, reaching 33.80 ppm, which represented a 17.36% increase compared to the control. The Algae extract at 20 ml/L also showed a strong response, with a Cu content of 33.05 ppm, corresponding to a 14.76% increase. The control treatment exhibited the lowest Cu content of 28.80 ppm. All biostimulant treatments led to increased Cu content compared to the control.

Table 12 reported the zinc (Zn) content in watermelon leaves under different treatments. The control treatment showed a mean Zn content of 37.78 ppm. The highest Zn content was observed with CMS at 20 ml/L, reaching 44.83 ppm, representing an 18.66% increase over the control. The Algae extract at 20 ml/L also improved Zn content to 43.65 ppm and a 15.5% relative increase compared to the control. All treatments significantly increased Zn levels compared to the control, with CMS consistently outperforming Algae extract across all concentration.

In Table 12, the mean manganese (Mn) content in the control treatment was 22.83 ppm. The CMS treatment at 20 ml/L increased Mn to 24.76 ppm, representing an 8.45% increase over the control. The Algae extract at 20 ml/L showed a moderate increase in Mn content to 23.95 ppm and a 4.9% improvement compared to the control.

Biostimulants		Cu ppm				Zn ppm				Mn ppm			
Treatments		2022		2023		2022		2023		2022		2023	
CMS	10	30.50	b	31.48	С	41.81	c	41.97	e	23.00	e	23.18	d
	15	31.33	b	32.47	b	42.57	bc	43.17	c	23.33	c	23.64	c
	20	33.50	a	34.10	a	44.50	a	45.17	a	24.61	a	24.92	a
Algae extract	10	29.31	c	29.57	d	40.90	d	41.93	e	22.93	f	23.15	d
	15	30.80	b	31.70	c	42.07	c	42.57	d	23.07	d	23.49	c
	20	32.83	a	33.50	a	43.20	b	44.10	b	23.71	b	24.19	b
Control		28.47	C	20.13	А	37.47	_	38 10	f	22.55	σ	23.10	А

Table 12: Effect of biostimulants foliar application on Cu, Zn and Mn ppm of watermelon leaves during 2022 and 2023 seasons.

4. Discussion

4.1. Seedling growth characters

The observed increase in chlorophyll index in plants treated with 20 ml/L CMS (mean values of 51.73 in 2022, 52.10 in 2023) aligns with previous studies. Similar enhancements were reported in grafted plants [41-44] and in response to beet molasses carbon dots [45] and molasses treatments in pepper and tomato. [46, 47]These effects are attributed to cytokinin and other growth regulators in molasses and algae extracts, which enhance chlorophyll synthesis and delay senescence, [45, 47, 48] supported by nitrogen's role in chlorophyll structure). [49] Seedling length (11.90–17.80 cm) was consistent with findings by Basavaraja et al. [50] and Muthurakku, O. and Sadhana, B. [51]which highlighted the role of algal extracts in enhancing growth via hormones and improved photosynthesis. [52]also noted that CMS improves early vegetative development, while Karaağaç [53]and Yang et al. [54]emphasized the influence of treatments and environment on hypocotyl growth. Mean stem diameters reached 0.32 mm (molasses) and 0.31 mm (algae), supported by reports that algal biostimulants, rich in auxins and brassinosteroids, enhance stem development. [55, 56]Overall, the improvements in chlorophyll content, seedling length, and stem thickness confirm that biostimulants promote early seedling vigor through nutritional and hormonal pathways.

4.2. Vegetative growth characters

The application of CMS and algae extract at 20 ml/L significantly enhanced the vegetative growth parameters of watermelon compared to the control (Table 6). CMS treatment resulted in an increase in number of leaves by 62.40% (2022) and 45.79% (2023), branches by 46.47% (2022) and 45.08% (2023), and plant length by 19.84% (2022) and 22.58% (2023). Algae extract produced similar trends, with respective increases of 46.96% and 28.17% in leaf number, 35.00% and 29.23% in branches, and 13.36% and 16.94% in plant length across the two seasons. These results align with findings by Goñi et al., [57] Ali et al. [58] **Zaki et al.** and Nugroho et al., [59] who emphasized the role of leaf number as an indicator of photosynthetic potential and plant sustainability. CMS, rich in sugars, amino acids, and micronutrients, supports growth through leaf initiation and expansion. Algal extracts, containing hydroxylated algal acids and phytohormones, promote chloroplast development and cell division, thereby enhancing vegetative growth—a mechanism also supported by Rouphael et al.[60]The observed improvements in branching further highlight the biostimulants' role in promoting stem and shoot development, with CMS showing superior efficacy. Previous studies [24, 57, 61]have attributed such effects to enhanced nutrient uptake and hormonal balance restoration. Algal extracts

also stimulate the expression of expansin genes, facilitating cell wall loosening and elongation, contributing to increased shoot and branch formation. Contrasting views were reported by Khalid et al.,[62] who favored grafting as a more sustainable solution for increasing plant vigor and mitigating climate-related stress. Rootstocks such as *Cucurbita moschata* have been shown[63, 64]to enhance early growth and disease resistance in grafted plants. Similarly, Mohamed and El-Tawashy[65]reported improved strength and length in grafted plants. Further supporting the role of algae-based products, several studies [66, 67] indicated that algal extracts, rich in macro- and micronutrients, improve plant vigor, water absorption, and nutrient uptake while enhancing resistance to pathogens. Likewise, sugar beet molasses has been shown to improve soil microbial activity and nutrient efficiency, [46, 68]with economic benefits such as reduced fertilizer use and increased cost efficiency.

4.3. Yield and fruits characters

The application of CMS and algae extract at 20 ml/L significantly improved various fruit quality and yield parameters in watermelon. CMS at 20 ml/L produced the greatest increases in peel thickness (by 54.90% over the control), fruit weight, length, and diameter, as well as yield per plant across both 2022 and 2023. These enhancements reflect the biostimulants' ability to promote both vegetative and reproductive development. In terms of fruit quality, CMS 20 ml/L application led to the highest increase in total soluble solids (TSS), with an improvement of 34.07%, and recorded the highest total sugar content at 12.14%. Peel thickness—a critical trait for postharvest durability and shelf life—was important enhanced by both biostimulants, likely due to improved uptake of calcium and boron, facilitated by increased microbial activity in the rhizosphere. [69]Algal extracts, through activation of secondary metabolic pathways and pectin biosynthesis, also contributed to cell wall reinforcement and peel firmness. [58, 70]

Improvements in fruit weight and morphology (length and diameter) were associated with enhanced vegetative growth (e.g., increased leaf and branch number), leading to better photosynthetic efficiency and carbohydrate allocation. Similar effects have been reported in various crops with foliar applications of biostimulants.[71, 72] These effects are attributed to the presence of trace elements, plant growth hormones, and organic matter in CMS and algae extracts, which stimulate nutrient uptake and metabolic activity.[72, 73]

The observed enhancement in TSS and total sugars likely stems from the rich content of carbohydrates, vitamins, and micronutrients in molasses, which promote sugar biosynthesis and enzymatic activity. Algae extract's phytohormones (e.g., cytokinin and auxins) further enhance photosynthesis and nutrient translocation. [57]Supporting studies have reported increased TSS and sugar accumulation in various crops following biostimulant applications. [74-76] Moreover, biostimulant treatments may up regulate sugar metabolism genes (e.g., sucrose synthase, invertase, sugar transporter genes), leading to better sugar partitioning into the fruit. [58] These findings suggest that biostimulants not only improve fruit yield but also enhance overall fruit quality, contributing to greater marketability and postharvest performance.

4.4. Nutrient content of leaves

Data reveals that CMS at 20 ml/L resulted in the highest concentrations of N (3.43%), P (0.79%), and K (5.32%), slightly surpassing algae extract at the same concentration (N: 3.40%, P: 0.78%, K: 5.26%). Compared to the control, molasses achieved a 7.05% increase in K%. The enhanced nitrogen levels with CMS are likely due to its rich organic carbon content, which promotes microbial activity and nitrogen mineralization, improving N availability. [69]Algal extracts, rich in amino acids and growth regulators, further support nitrogen metabolism and uptake. [57] The increase in phosphorus content is attributed to organic acids in CMS and chelating compounds in algae extract, which solubilize bound phosphorus and facilitate its uptake. These effects align with findings by El-Nwehy et al. and zaki et al. [24, 77, 78] highlighting enhanced nutrient accumulation under biostimulant treatments. Potassium accumulation improved due to biostimulant-induced enhancement of root function, microbial mineralization, and the presence of cytokinin that stimulate photosynthesis and biomass production. [79, 80] Both biostimulants thus enhance macro-nutrient acquisition through synergistic effects on soil biology and plant physiology.

Data in Table 11 shows that CMS at 20 ml/L resulted in the highest uptake of Mg (0.42%), Ca (4.15 %) Fe (53.03 ppm), and Cu. With algae extract at 20 ml/L closely following for all elements (Mg: 0.40%, Fe: 49.47 ppm). Compared to the control, CMS improved Fe content by ~20%, while lower concentrations showed reduced efficacy. The enhanced Mg uptake is linked to improved chlorophyll synthesis, cation exchange capacity, and microbial activity induced by organic acids and polysaccharides in both biostimulants.[79, 81]Calcium accumulation increased due to improved root development and chelation effects from CMS and algae extracts. Phytohormones like auxins and cytokinin in algae stimulated root proliferation, enhancing Ca uptake critical for cell wall integrity and fruit quality. [57] These effects support micronutrient solubility, transporter activation, and overall nutrient assimilation.[82]

Data in Table 12shows that CMS at 20 ml/L achieved the highest uptake of Cu (33.80 ppm), Zn (44.83 ppm), and Mn (24.76 ppm). With algae extract at 20 ml/L closely following (Cu: 33.05 ppm, Zn: 43.65 ppm, Mn: 23.95 ppm). Compared to the control, CMS improved Cu and Zn by ~17–19% and Mn by ~8%; algae extract also showed consistent increases but with slightly lower efficacy. The enhanced Cu and Zn uptake is linked to improved chelation, microbial stimulation, and cation exchange capacity induced by CMS. These mechanisms increase solubility and transport of trace elements and activate nutrient transporter pathways. Algae extract improved micronutrient uptake through hormone-driven root proliferation and acidification of the rhizosphere, enhancing metal bioavailability. Zn uptake benefited from auxin-mediated root expansion and biochemical interactions in the rhizosphere. Mn uptake, while generally lower in response magnitude, increased due to chelation and root zone acidification, with algae extract potentially favoring Mn solubility via phytohormone-containing exudates and pH modulation.[83]

5. Conclusion

CMS showing superior efficacy enhance chlorophyll content, seedling growth, and stem thickness by supplying growth regulators and nutrients, thereby improving early seedling vigor. The application of CMS (20 ml/L) significantly boost watermelon growth by enhancing leaf development, branching, and plant elongation, also enhances watermelon yield, fruit quality, and postharvest durability by improving nutrient uptake, photosynthetic efficiency, and sugar metabolism. These biostimulants offer a sustainable strategy to boost both productivity and marketability in watermelon cultivation. CMS as biostimulants improve nutrient availability through microbial activation, chelation, and hormonal regulation. Biostimulants, especially microalgae-based ones, are emerging as sustainable tools in modern agriculture to enhance plant growth, nutrient uptake, and stress resilience. Their diverse application methods influence key metabolic pathways, offering promising alternatives to synthetic inputs and supporting organic and ornamental plant cultivation.

6. Funding

No fund was received.

7. Institutional Review Board Statement

Not applicable.

8. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

9. Acknowledgments

Not applicable

10. Conflicts of Interest

No conflict of interest was reported by all authors.

11. References

- [1]. J. Mashilo, H. Shimelis, R.M. Ngwepe, Z. Thungo, Genetic analysis of fruit quality traits in sweet watermelon (citrullus lanatus var. Lanatus): A review, Frontiers in Plant Science Volume 13 2022 (2022).
- [2]. G. Yismaw, S. Fantaw, A. Ayalew, Data on effect of mulches on growth and fruit yield of watermelon (citrullus lanatus thunb.) varieties in west dembia district, central gondar zone, ethiopia, Data in Brief 53 (2024) 110071.
- [3]. D. Mihaylova, L. Georgieva, A. Pavlov, Antioxidant activity and bioactive compounds of rosa canina l. Herbal preparations, Scientific Bulletin. Series F. Biotechnologies 19 (2015) 160-165.
- [4]. B. Ashok Kumar, K. Sanket, Grafting of vegetable crops as a tool to improve yield and tolerance against diseases—a review, International Journal of Agriculture Sciences, ISSN (2017) 0975-3710.
- [5]. A.S. Mohamed, A. Glala, S.A. Saleh, Rootstock-scion combinations affect chemical contents of tomato and its productivity, Egyptian Journal of Chemistry 68(2) (2025) 349-360.
- [6]. A.S. Mohamed, H.S. Abdelaty, S.A. Saleh, Grafting as a good technique to improve the productivity and quality of fruit-bearing vegetables: A review, Egyptian Journal of Chemistry 67(13) (2024) 1901-1914.
- [7]. P. Devi, P. Perkins-Veazie, C. Miles, Impact of grafting on watermelon fruit maturity and quality, Horticulturae 6(4) (2020) 97.
- [8]. A. Abdel-Mawgoud, A. Tantaway, M.M. Hafez, H.A. Habib, Seaweed extract improves growth, yield and quality of different watermelon hybrids, Research Journal of Agriculture and Biological Sciences 6(2) (2010) 161-168.
- [9]. R.M. Khater, A. El-Azim, M. Waleed, Effect of fertilization and humic acid treatments on seeds production of plantago psyllium l, Egyptian Journal of Desert Research 66(1) (2016) 95-114.
- [10]. R.M. Khater, W.H. Abd-Allah, H.A. Hashem, A. Abd El-Gawad, Effect of humic acid and algae extract on productivity of ruta graveolens l. Plant under sinai conditions, Egyptian Journal of Desert Research 72(1) (2022) 139-155.
- [11]. B. Sathya, H. Indu, R. Seenivasan, S. Geetha, Influence of seaweed liquid fertilizer on the growth and biochemical composition of legume crop, cajanus cajan (l.) mill sp, Journal of Phytology 2(5) (2010).

- [12]. P. Kumawat, V. Kumawat, Seaweed marine algae: Nutritional values and plant growth regulators for sustainable agriculture, (2023).
- [13]. D. Marrez, M. Naguib, Y. Sultan, Z. Daw, A. Higazy, Evaluation of chemical composition for spirulina platensis in different culture media, (2014).
- [14]. R.M.R. Khater, Effect of sowing dates and foliar spray with algae extract on cluster bean (cyamopsis tetragonoloba l.), International Journal of PharmTech Research 9(9) (2016) 75-84.
- [15]. H. El Laban, M. Fetouh, R.M. Khater, S. El-Gioushy, Response of dutch fennel to algae extract partial replacement of mineral npk under sinai conditions, Journal of Plant Production 8(6) (2017) 693-698.
- [16]. R. Kumar, R. Kumar, O. Prakash, The impact of chemical fertilizers on our environment and ecosystem, Research trends in environmental sciences2019, pp. 1173-1189.
- [17]. A. Mukherjee, J. Patel, Seaweed extract: Biostimulator of plant defense and plant productivity, International Journal of Environmental Science and Technology 17(1) (2020) 553-558.
- [18]. K. Nour, N. Mansour, W. Abd El-Hakim, Influence of foliar spray with seaweed extracts on growth, setting and yield of tomato during summer season, Journal of Plant Production 1(7) (2010) 961-976.
- [19]. R. Afify, S. El-Nwehy, Nano fertilizers with algae extract as biostimulant affecting growth, bulb yield, and quality of onion, SABRAO J. Breed. Genet 55(6) (2023) 2128-2139.
- [20]. R.R.M. Afify, S.S. El-Nwehy, Improving peanut productivity by using algae extract foliar spray as bio-stimulant under reclamation sandy soils, (2022).
- [21]. I.J. Duarte, S. Hernández, A. Ibañez, A. Canto, Macroalgae as soil conditioners or growth promoters of pisum sativum (I), Annual Research & Review in Biology 26(6) (2018) 1-8.
- [22]. A. Pyakurel, B.R. Dahal, S. Rijal, Effect of molasses and organic fertilizer in soil fertility and yield of spinach in khotang, nepal, International Journal of Applied Sciences and Biotechnology 7(1) (2019) 49-53.
- [23]. S. Amer, Growth, green pods yield and seeds yield of common bean (phaseolus vulgaris 1.) as affected by active dry yeast, salicylic acid and their interaction, Journal of Plant Production 29(3) (2004) 1407-1422.
- [24]. S. El-Nwehy, A. El-Nasharty, A. Rezk, O. Nofal, Using by-product of yeast production (cms) and micronutrients for improving the yield and quality of some field crops under saline stress conditions, (2020).
- [25]. J.A. Barnett, R.W. Payne, D. Yarrow, Yeasts: Characteristics and identification, (1990).
- [26]. A. Wanas, Trials for improving growth and productivity of tomato (lycopersicon esculentum, mill.) plants grown in winter season, Journal of Plant Production 32(2) (2007) 991-1009.
- [27]. M.A. Ismail, M.A. Amin, Response of wheat (triticum aestivum 1.) plants to foliar spraying of some bio-stimulants (yeast extract, arginine, b12 and their interactions), Al-Azhar Bulletin of Science 24(2-C) (2013) 1-10.
- [28]. R. Singh, M. Yadav, V. Kumar, I. Sharma, M. Singh, S.K. Upadhyay, Effect of molasses on the growth of okra, abelmoschus esculentus (l.) moench (dicotyledonae: Malvaceae), (2021).
- [29]. S. Schenck, Molasses soil amendment for crop improvement and nematode management, Hawaii Agric. Res. Cent 3 (2001) 1-7.
- [30]. A. Wynne, J. Meyer, An economic assessment of using molasses and condensed molasses solids as a fertilizer in the south african sugar industry, Proceedings South African Sugar Technologists Association, Citeseer, 2002, pp. 71-78
- [31]. Z.-P. Jiang, Y.-R. Li, G.-P. Wei, Q. Liao, T.-M. Su, Y.-C. Meng, H.-Y. Zhang, C.-Y. Lu, Effect of long-term vinasse application on physico-chemical properties of sugarcane field soils, Sugar Tech 14(4) (2012) 412-417.
- [32]. A. Şanlı, T. Karadoğan, B. Tosun, The effects of sugar beet molasses applications on root yield and sugar content of sugar beet (beta vulgaris 1.), Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 24(2) (2015) 103-108.
- [33]. R.L. Hassell, F. Memmott, D.G. Liere, Grafting methods for watermelon production, HortScience 43(6) (2008) 1677-1679.
- [34]. H. Chapman, P. Pratt, F. Parker, Methods of analysis for soils, plants and waters. Univ. Of calif, Div. Agric. Sci. Priced Pub 4034 (1978) 50-169.
- [35]. G. Oztekin, Y. Tuzel, N. Uysal, Effects of different rootstocks on plant growth, yield and quality of watermelon grown in greenhouse, International Symposium on Advanced Technologies and Management Towards Sustainable Greenhouse Ecosystems: Greensys2011 952, 2011, pp. 855-862.
- [36]. S.A. Petropoulos, E. Khah, H. Passam, Evaluation of rootstocks for watermelon grafting with reference to plant development, yield and fruit quality, (2012).
- [37]. M.S. Islam, H. Bashar, M. Howlader, J. Sarker, M. Al-Mamun, Effect of grafting on watermelon growth and yield, Khon Kaen Agr. J 41(1) (2013) 284-289.
- [38]. AOAC international, 21st edition, official methods of analysis association of official analytical chemists, Association of Official Analytical Chemists, Washington DC., 2019.
- [39]. M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Analytical chemistry 28(3) (1956) 350-356.
- [40]. A. Cotteine, M. Verloo, M. Velghe, R. Camerlynck, Chemical analysis of plant and soil laboratory of analytical and agrochemistry state univ ghent-belgium, MINIMIZING NUTRIENTS LOSSES 141 (1982).
- [41]. M. Abd El-Wanis, A. El-Eslamboly, M. Salama, Impact of different grafting methods on yield and quality of watermelon, (2013).
- [42]. M. El-Kersh, S. El-Meniawy, S. Abd El-Hady, Grafting can modulate watermelon growth and productivity under egyptian conditions, Journal of Plant Production 7(9) (2016) 915-922.
- [43]. M.A.A. El-Kersh, Atrial for improving yield and fruit quality of watermelon by grafting, Agric. Faculity, Ain Shams University, Cairo, Egypt, 2017.

- [44]. Ö.F. Coşkun, The effect of grafting on morphological, physiological and molecular changes induced by drought stress in cucumber, Sustainability 15(1) (2023) 875.
- [45]. M. Kara, S. Dinç, O. Altunbaş, M. Karaşahin, R.S. Günhan, Biocompatible sugar beet molasses carbon dots as potential elicitor to improve bioactive compounds of wheatgrass juice, Journal of Soil Science and Plant Nutrition 24(3) (2024) 4935-4951.
- [46]. M.S. Gaafar, N.M. EL-Shimi, M. Helmy, Effect of foliar and soil application of some residuals of sugar cane products (molasses and vinasses) with mineral fertilizer levels on growth, yield and quality of sweet pepper, Menoufia Journal of Plant Production 4(5) (2019) 353-373.
- [47]. F.K. El-Tokhy, A. Tantawy, M. El-Shinawy, A. Abou-Hadid, Effect of sugar beet molasses and fe-edhha on tomato plants grown under saline water irrigation condition, Arab Universities Journal of Agricultural Sciences 26(Special issue (2D)) (2018) 2297-2310.
- [48]. T.Z. Sarhan, Effect of bread yeast application and seaweed extract on cucumber (cucumis sativus l.) plant growth, yield and fruit quality, Mesopotamia Journal of Agriculture 39(2) (2011) 26.0-32.0.
- [49]. A. Fathi, Role of nitrogen (n) in plant growth, photosynthesis pigments, and n use efficiency: A review. Agrisost, 28, 1–8, 2022.
- [50]. B. Basavaraja, N. Hullur, K. Shashidhara, Effect of algal extract on the seedling attributes of important vegetables and field crops, Journal of Pharmacognosy and Phytochemistry 9(3) (2020) 1027-1030.
- [51]. O. Muthurakku, B. Sadhana, Effect of selective blue green algal species on the seedling growth of paddy crop, International Journal of Advanced Research in Biological Sciences (IJARBS) 9(6) (2022) 149-154.
- [52]. S. Li, X. Zhao, X. Ye, L. Zhang, L. Shi, F. Xu, G. Ding, The effects of condensed molasses soluble on the growth and development of rapeseed through seed germination, hydroponics and field trials, Agriculture 10(7) (2020) 260.
- [53]. O. KARAAĞAÇ, A. Balkaya, M. GÖÇMEN, İ. ŞİMŞEK, D. Kandemir, Use of phenotypic selection and hypocotyl properties as predictive selection criteriain pumpkin (cucurbita moschata duch.) rootstock lines used for grafted cucumber (cucumis sativus I.) seedling cultivation, Turkish Journal of Agriculture and Forestry 42(2) (2018) 124-135
- [54]. Z.-C. Yang, C. Kubota, P.-L. Chia, M. Kacira, Effect of end-of-day far-red light from a movable led fixture on squash rootstock hypocotyl elongation, Scientia Horticulturae 136 (2012) 81-86.
- [55]. S. Senthilkumar, S. Kuppusamy, M. Baskar, K. Vijayalatha, R. Jayavalli, S. Nithila, K. Sujatha, S. Palai, Cultivating tomorrow: A review on biostimulants and their transformative role in agriculture, J Adv Biol Biotechnol 27(8) (2024) 906-919.
- [56]. M. Ciriello, G.M. Fusco, P. Woodrow, P. Carillo, Y. Rouphael, Unravelling the nexus of plant response to non-microbial biostimulants under stress conditions, Plant Stress (2024) 100421.
 - [57]. O. Goñi, Ł. Łangowski, E. Feeney, P. Quille, S. O'Connell, Reducing nitrogen input in barley crops while maintaining yields using an engineered biostimulant derived from ascophyllum nodosum to enhance nitrogen use efficiency, Frontiers in plant science 12 (2021) 664682.
- [58]. O. Ali, A. Ramsubhag, J. Jayaraman, Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production, Plants 10(3) (2021) 531.
- [59]. P.A. Nugroho, N. Prettl, Z. Kotroczó, K. Juhos, The effect of molasses application on soil biological indicators and maize growth of different tillage soil: A pot experiment, Journal of Environmental Geography 16(1-4) (2023) 119-124
- [60]. Y. Rouphael, P. Franken, C. Schneider, D. Schwarz, M. Giovannetti, M. Agnolucci, S. De Pascale, P. Bonini, G. Colla, Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops, Scientia horticulturae 196 (2015) 91-108.
- [61]. P. Calvo, L. Nelson, J.W. Kloepper, Agricultural uses of plant biostimulants, Plant and Soil 383(1) (2014) 3-41.
- [62]. M.F. Khalid, S. Huda, M. Yong, L. Li, L. Li, Z.-H. Chen, T. Ahmed, Alleviation of drought and salt stress in vegetables: Crop responses and mitigation strategies, Plant Growth Regulation 99(2) (2023) 177-194.
- [63]. D. Schwarz, Y. Rouphael, G. Colla, J.H. Venema, Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants, Scientia Horticulturae 127(2) (2010) 162-171.
- [64]. L. Milenković, J. Mastilović, Ž. Kevrešan, A. Bajić, A. Gledić, L. Stanojević, D. Cvetković, L. Šunić, Z.S. Ilić, Effect of shading and grafting on yield and quality of tomato, Journal of the Science of Food and Agriculture 100(2) (2020) 623-633.
- [65]. M. Mohamed, M. El-Tawashy, Utilizing of different cucurbit rootstocks as a sustainable alternative to enhance growth, productivity and fruit quality of cucumber, Zagazig Journal of Agricultural Research 51(2) (2024) 213-223.
- [66]. D.D. Hong, H.M. Hien, P.N. Son, Seaweeds from vietnam used for functional food, medicine and biofertilizer, Journal of Applied Phycology 19 (2007) 817-826.
- [67]. S. BAROUD, S. TAHROUCH, A. HATIMI, Effect of brown algae as biofertilizer materials on pepper (capsicum annuum) growth, yield, and fruit quality, Asian Journal of Agriculture 8(1) (2024).
- [68]. S. Samavat, S. Samavat, The effects of fulvic acid and sugar cane molasses on yield and qualities of tomato, International Research Journal of Applied and Basic Sciences 8(3) (2014) 266–268.
- [69]. L. Lucini, Y. Rouphael, M. Cardarelli, R. Canaguier, P. Kumar, G. Colla, The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions, Scientia Horticulturae 182 (2015) 124-133.
- [70]. Y. Rouphael, G. Colla, Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications, MDPI, 2020, p. 1461.
- [71]. S. Zodape, S. Mukhopadhyay, K. Eswaran, M. Reddy, J. Chikara, Enhanced yield and nutritional quality in green gram (phaseolus radiata l) treated with seaweed (kappaphycus alvarezii) extract, (2010).

- [72]. R. Kakbra, Effect of seaweed, moringa leaf extract and biofertilizer on growth, yield and fruit quality of cucumber (cucumis sativus l.) under greenhouse condition horticulture (organic farming), 2023.
- [73]. I.J. Crouch, J. Van Staden, Commercial seaweed products as biostimulants in horticulture, Journal of Home & Consumer Horticulture 1(1) (1993) 19-76.
- [74]. A. Alebidi, K. Almutairi, M. Merwad, E. Mostafa, M. Saleh, N. Ashour, R. Al-Obeed, A. Elsabagh, Effect of spraying algae extract and potassium nitrate on the yield and fruit quality of barhee date palms, Agronomy 11(5) (2021) 922.
- [75]. Z.V.S.R. Oliveira, A.C. Mesquita, W.L. Simões, A.M. Salviano, P.B. da Conceição, M.G. de Araújo, V.G.T. Junior, W.O. da Silva, Production and quality of watermelon subjected to biofertilizer fertilization, Comunicata Scientiae 15 (2024) e4102-e4102.
- [76]. L. Subramaniyan, R. Veerasamy, J. Prabhakaran, A. Selvaraj, S. Algarswamy, K.M. Karuppasami, K. Thangavel, S. Nalliappan, Biostimulation effects of seaweed extract (ascophyllum nodosum) on phytomorpho-physiological, yield, and quality traits of tomato (solanum lycopersicum l.), Horticulturae 9(3) (2023) 348.
- [77]. S.S. El-Nwehy, H.S. Abd-Rabbu, A.B. El-Nasharty, A.I. Rezk, Improvement of (eruca sativa mill) yield, oil, chemical constituents and antioxidant activity utilizing a by-product of yeast production (cms) with zinc and boron under salinity stress conditions, Oil Crop Science 8(4) (2023) 218-227.
- [78]. M. Zaki, A. Salem, S. Eid, A. Glala, S. Saleh, Improving production and quality of tomato yield under saline conditions by using grafting technology, Int. J. Chem. Tech. Res 8(12) (2015) 111-120.
- [79]. H.S. Sharma, C. Fleming, C. Selby, J. Rao, T. Martin, Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses, Journal of applied phycology 26 (2014) 465-490.
- [80]. D.A. Nawar, S.K.A. Ibraheim, Effect of algae extract and nitrogen fertilizer rates on growth and productivity of peas, Middle East Journal of Agriculture Research 3(4) (2014) 1232-1241.
- [81]. N. Parađiković, T. Teklić, S. Zeljković, M. Lisjak, M. Špoljarević, Biostimulants research in some horticultural plant species—a review, Food and Energy Security 8(2) (2019) e00162.
- [82]. S.M. Hassan, M. Ashour, N. Sakai, L. Zhang, H.A. Hassanien, A. Gaber, G. Ammar, Impact of seaweed liquid extract biostimulant on growth, yield, and chemical composition of cucumber (cucumis sativus), Agriculture 11(4) (2021) 320.
- [83]. O.I. Yakhin, A.A. Lubyanov, I.A. Yakhin, P.H. Brown, Biostimulants in plant science: A global perspective, Frontiers in plant science 7 (2017) 2049.