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Abstract 
The conventional dyeing technology of textiles using organic dyes is well-known to the majority of customers. However, the applications of 

organic colorants are increasingly important for high-tech applications. This has led to the emergence of functional dyes, which are used in 

specialized high-tech applications such as optoelectronics, dye-sensitized solar cells (DSSCs) with high efficiency which record ղ% >10, 
sensing and fluorescence probes for anions and heavy metal with high sensitivity which can detect ions with concentration < 20 nanomole, data 

storage, organic light-emitting diodes (OLEDs), photochromic materials, thermochromic printing, and laser applications, among others. 

Fluorescent dyes, which can absorb and emit electromagnetic radiation through radiative deactivation mechanisms in electronic systems, are 
particularly interesting. The fluorescence behavior of organic dyes adds value to them and increases their demand in various applications. This 

review article aims to discuss recent advances in functional fluorescent dyes and their applications in textiles as well as in non-textile areas such 

as electronics (including lasers, DSSCs, and OLEDs), analytical and sensing technologies, and medical applications. 

Keywords: Fluorescent dyes; Textile; Fluorescent probe; Dyeing; Functional Dyes; non-textile applications.  

1. Introduction 

       Organic colorants have been well-known for a long time and are used to introduce colors to various substrates such as 

textiles, leather, and polymers [1-10]. These colored materials play a crucial role in influencing our emotions and aesthetic 

preferences. The fluorescent dyes' ability to emit light has now created new opportunities for their use in a wide range of 

industries. Fluorescence is the process through which ultraviolet (UV) or visible light is absorbed and then released at longer 

wavelengths. Fluorescent dyes are substances that emit light highly while also absorbing light significantly in the visible 

spectrum. These substances have the potential to be used because of their extreme fluorescence qualities. Fluorescent dyes 

application in medical diagnostics and biochemical research have spread significantly [11-19]. Fluorescent functional dyes were 

applied in different hi-tech fields such as, lasers manufacture [20-23], DSSCs and solar batteries [24-27], fluorescence probe 

for naked eye detection of different analytes [8, 15, 28-35]. On the other hand, the basic use of textile for clothing purposes 

evolved alongside the growth and development of society. As a result, protective textile clothing emerged, and research studies 

seeking solutions for adding functionalities to textiles increased. The use of functional textiles for various application fields has 

increased dramatically due to its flexibility, breathable nature, and low cost, has gained popularity in almost every field, 

including aeronautics, defense, aesthetics, and interior design. Thus, fluorescent dyes was used as high brilliant and visible 

colors which improve the functionality of the dyed fabrics with a significant increase in color brightness, saturation and 

visibility, which makes the dyed materials more fashionable and easily perceptible [36-38]. This deep perceptibility of the 

substrates dyed with fluorescent dyes is advantageous in manufacturing of functional fluorescent textile for a variety of purpose 

such including warning, safety, aesthetics, advertisements, information descriptions, road and traffic signs, firefighter clothing 

and police officer [39-41]. The investigations about fluorescent disperse dyes used for dyeing polyester fabrics to high-visibility 

have been presented in recent years [42-45]. Different fluorescent chromophoric system was used for synthesis of different 

fluorescent dyes as instance coumarin [46-48], 1, 8-naphthalimide [49-54], phenothiazine [16, 55], pyrene [16], anthraquinone 

[56, 57], hemicyanine-azo [5, 58-60] , qunoxaline dyes [61] etc. In this review we present the recent advances for different kind 

of fluorescent dyes which showing high performance characters for textile and non-textile applications. 

 
1.1. Type of luminescence  

There are different type of luminescence depending on the energy influence source which responsible for excitation 

and electronic transition in the molecule as shown in Figure 1 and summarized in Table 1 [62]. The electroluminescence can 

obtained by the effect of electrical energy as in optical fiber, while the effect of absorption of photons led to appearance of 

emission is called photoluminescence. Chemiluminescence formed due to chemical energy and mechanoluminescence can be 

observed by applying a mechanical stress [63-66]. Bioluminescence is ascribed to the natural process in living organisms, 

which imparts visible light due to its in vivo biochemical reaction [67, 68]. We will concern with the photoluminescence type 
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which concerning with the absorption of light this because the functional fluorescent dyes are materials which showing this 

kind of luminescence. 

 

To understand the photoluminescence characteristics of fluorescent dyes, we need to introduce some definitions. The 

light spectrum refers to the range of wavelengths of light. The emission from the dyes occurs after an excitation process where 

they absorb light in the visible region (approximately 400-700 nm) and then emit the absorbed light. Light is a form of 

electromagnetic radiation (EMR) that consists of photons. There are two types of EMR: natural sources like sunlight and 

artificial sources like lamps. This light covers a broad range of EMR wavelengths, as shown in Figure 2. Most of colored 

materials absorb light in visible region while non- colored conjugated material can absorb light in UV region. 

 

 
       Fig.2.  EMR spectrum regain, vacuum wavelengths and frequencies [70]

Type of luminescence Energy influence source Application 

Fig. 1.  Types of luminescence depending on the type of energy influence [69].

Table 1: types of luminescence and their application

Photoluminescence Emission by UV or visible light Purity and defects in minerals and crystals, 

forensic science, sensors, imaging 

Bioluminescence 

 

Emission ascribed to in vivo biological 

reaction 

Biotechnology, environmental, bioimaging 

Thermoluminescence Emission based on the thermal effect by 

absorbing light 

Environmental and personal 

dosimeters, archeological pottery, dating, 

irradiated food identification 

Electroluminescence Excitation due to electric field LED, lighting, displays, medical 

applications 

Pyroluminescence Emission from excited atoms, ions, and 

molecules in flames 

Lamps, fireworks, flames 

Radioluminescence 

 

Irradiation by high energy photons such as X-

rays, γ-rays 

Scintillators, X-ray film radiography 

Cathodoluminescence 

 

Excitation from electron impact on solids or 

gases 

TV screen, impurity  mapping  , discharge 

lamps 

Ionoluminescence 

 

Excitation produced from alpha particles 

emitted by radioactive elements 

Early clock dials 
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1.2. Excited state deactivation process in photoluminescence 

  

The absorption of electromagnetic radiation by colored materials can lead to different electronic transitions in the 

electronic diagram of the substance. The state after absorbing light changes from ground to excited state, to reach the stability 

the absorbed energy have to lost. Thus, there's two different mechanism of deactivation process as shown in Jablanisky 

diagram Figure 3. 

 
Fig. 3. Jablonsky diagram, photluminescence process [70]

 

1.2.1. Non-radiative deactivation process  

Absorption of photons causing a vertical transition to a higher excited state results in the creation of a new vibrational 

level within the excited state S1 of the molecule. As a result, the molecule loses vibrational energy in order to achieve the excited 

state's equilibrium configuration (vibrational level 0). In liquid phase, this process of vibrational relaxation is very rapid (10–

13-10–12 s) due to frequent collisions with molecules of solvent or other species in the reaction mixture. Given that the lifetime 

of an excited state S1 or T1 is much longer than the period of vibrational relaxation, the lifetime of the equilibrium configuration 

of the excited state may be considered as the lifetime of this state (including vibrational relaxation). This vibrational relaxation 

is called internal conversion (IC) which is one of the non-radiative transition. The IC transition occur between an excited state 

and a state of lower energy of the same multiplicity. While if the transition observed between two energy level with different 

multiplicity S1 to T2 as instance this transition called inter system crossing (ISC).  

1.2.2. Radiative deactivation process (luminescence) 

After absorbing the visible light, the electron moves from the ground state S0 to higher energy levels S1 or Sn. This 

is known as absorption (A). If the absorbed energy is lost and emission is observed by the transition between two energy levels 

with the same multiplicity this process is called fluorescence (F). If the electron transfer from a singlet excited state to triplet 

excited state T2 by intersystem crossing (ISC) then loss the energy to the ground state, the emission observed by the transition 

between two energy level with different multiplicity this process called phosphorescence (P). The life time of fluorescence is 

very short comparing with the life time of phosphorescence and it always in nano-second while life time of phosphorescence 

usually in µs. 

 

The emitted radiation energy is smaller than the energy of excitation, and the emission spectra is a mirror image of 

absorption spectra which shifted to longer wavelength comparing with absorption spectra and the difference between both 

spectra called (Stocke’s shift). While, phosphorescence spectra can be even shifted more than the fluorescence spectra and this 

can ascribe to the energy of the triplet state is smaller than that of the corresponding excited singlet state as shown in Figure 4. 

 
Fig.4. Relation between absorption and emission spectra [70].
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The quantum yield of luminescence L (fluorescence or phosphorescence) can be defined as the ratio between number of 

photons emitted and number of photon absorbed and can be calculated by using equation 1.  

a

L
L

P

P
                              1 

2. Fluorescent dyes for textile applications 

Due to the desire for high-performance applications, textile solutions with just one characteristic have not met 

expectations. The necessary functional properties can be achieved through multifunctional fabrics. Consequently, in recent 

years, a high challenge in scientific research for production of functional and ecological textiles was significantly observed [71, 

72]. As a result of the numerous uses that are being found for these materials, smart textiles have undergone rapid growth [73]. 

The global market for smart textiles was worth $795 million in 2014, and by 2020, it was anticipated to increase to $4.72 billion, 

with a compound annual growth rate of 34%. (Smart textiles market by type, function, industry & geography – Global forecast 

to 2020). Smart textiles are items that can both receive and respond to external stimuli in order to adapt to changes in their 

environment. These substances may respond to various physical stimuli, such as light, pH, temperature, solvents with various 

polarity, chemicals, and electricity, and as a result, they can interact with their surroundings (sense, respond, communicate, 

and/or adapt) [74]. Three subgroups of smart textiles may be distinguished, Active smart textiles are reactive to stimuli from 

the environment and integrate an actuator function and a sensing device. Very smart textiles are able to sense, react, and adapt 

their behavior to the given circumstances. Passive smart textiles are only able to sense the environment/user based on sensors 

[75, 76]. The incorporation of intelligent textiles into apparel is nothing more than a reflection of modern human lifestyles that 

include access to things that are technologically advanced, adaptable, and multipurpose. Smart textiles may be used for a variety 

of purposes, including as power production and storage, personal safety, sports, fashion, communication, and internet of things 

applications [77, 78]. One of the main objectives of the textile industry is the development of novel smart textiles, which is 

motivated by consumer and market demands for high-tech materials. The literature has reported on a variety of smart textile 

kinds, including chromic textiles. 

Functional textiles have properties including fluorescence, photochromism, antimicrobial activity, hydrophilicity, 

super-hydrophobicity, self-cleaning, crease recovery. One such practical and intelligent textile is fluorescent fabric, which may 

be utilized for a variety of applications in the biomedical and medical industries as well as for warning, safety, aesthetic, and 

anti-counterfeiting purposes [40, 41]. The usage of luminous textiles has grown recently, along with the development of new 

application areas like smart textiles [79]. 

2.1. The chemistry of most common fluorescent dyes 

  This part will be described the classification of fluorescent dyes according to chemical type, including carbonyl 

(coumarin, naphthalimide, perylene, benzanthrone, benzoxanthone, rhodamine, methine and benzothioxanthone derivatives) in 

additional to illustrations of the most significant chemical structures it's very important to present some important rules which 

basically affect the fluorescent characteristics of dye molecules. 

There are several recognized general rules relating the dye structure to their fluorescence intensity as measured by 

quantum yields [80]. The majority of fluorescent dyes are extended conjugated aromatic systems with fused rings. Structural 

stiffness is a significant chemical characteristic that is frequently linked to high fluorescence quantum yields. Thermal motion 

inside a stiff molecule minimizes energy loss from excited states, favoring fluorescent emission over non-radiative energy loss. 

The "loose bolt effect" is the term used to describe the decrease in fluorescence intensity in molecules with reduced 

structural rigidity. Azo dyes are typically non-fluorescent because they have two aromatic systems connected by the azo (-N=N-

) group and the azo group is quenching the fluorescent which ascribed to the inherently decreasing rigidity than fused polycyclic 

systems, the chemical structure of azo dyes permits some rotation around the azo bond, similar to this, it is understood that the 

nitro (-NO2) group, which may rotate rather freely, frequently inhibits fluorescence [9, 81]. However, the reliability of 

conventional explanations based solely on molecular rigidity has been questioned, at least in part due to the prevalence of 

exceptions. More sophisticated arguments related to the nature of excited state structures and the associated charge transfer 

electronic transitions, such as the contribution of non-bonding electrons, have also been put forth. Even though they have planar 

aromatic ring systems, extremely fluorescent dye molecules frequently also have structural characteristics that give them a 

significant amount of non-planarity. Planar molecules have a propensity to group together, sometimes taking on pigmentary 

characteristics, and release excited state energy through relaxation processes involving intermolecular interactions. A famous 

example of a stiff yet non-planar molecular structure that results in high fluorescence intensity is fluorescein dyes as shown in 

Figure 5. The presence of atoms with a higher atomic number, such as bromine and iodine, is another chemical characteristic 

known to typically cause lower fluorescence; this phenomenon is known as the heavy atom effect. 

 

 
Fig. 5. Fluorescein structure and its tautomeric forms, quinoid (flsQ), zwitterionic (flsZ), and lactoid (flsL).
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The substantial impact of environmental variables, such as the composition of the solvent, dye concentration, and temperature, 

on fluorescence emission spectra, poses a considerable challenge to designing and proving such a strategy. In dyes, strong 

fluorescence is frequently linked to the presence of certain, recognizable structural units. 

 

2.1.1. Carbonyl based fluorescent dyes 

This class of fluorescent dyes is the most important type for textile applications which characterized by high efficient 

emission and high quantum yield of fluorescence. Many chromophoric systems based on carbonyl dyes such as coumarin, 

naphthalamide, benzanthrone, perylenes and benzoxanthones and benzothioxanthones [82]. 

 

a) Coumarin based commercial fluorescent dyes 

The primary source of fluorescent industrial dyes is coumarin derivatives. While most products on the market are 

yellow with a green fluorescence, fluorescent coumarins can absorb and emit light in various visible spectrum regions. 

Commercially, fluorescent whitening agents (FWAs) based on coumarins are also referred to as fluorescent finishing materials. 

In coumarin dyes, the electron-releasing substituent, typically the diethylamino group, is consistently found at the 7-

position, while electron-withdrawing substituents are consistently located at the 3-position in the coumarin ring. Thus, the 

coumarins are common donor-acceptor dyes [83]. The most common types of dyes include a benzimidazolyl, benzoxazolyl, or 

benzothiazolyl group as the acceptor at the third position as presented in Figure 6. 

 
Fig. 6. Structure of some commercial fluorescent disperse dyes based on coumarin derivatives.

This group presents a crucial dispersion dyes that enable polyester as a synthetic fibers to be colored in vivid

fluorescent greenish-yellow hues. There are known dyes having different heterocyclic substituents in the 3-position, such as 

C.I. Disperse Yellow 186 (2) Figure 6.

 
Fig.7. Chemical structure of C.I. Basic yellow 40.

The easy cationaization of the benzazolyl-substituted coumarins as presented in Figure 7 formed a new water soluble

derivatives known as C.I. Basic yellow 40 which used for dyeing acrylic fibers with greenish-yellow emission.

Highly conjugated coumarin derivatives were shown in Figure 8, which absorb, emitting light at longer wavelength

over 600 nm ascribing to the ring-formation, and enhanced electron-withdrawing behavior. This fluorescent greenish-blue 

considered as red fluorescent dye for dyeing polyester fabrics.

 
Fig. 8. Chemical structure of highly conjugated coumarin derivatives. 

b) Naphthaliamide based fluorescent dyes

It is widely known that fluorescent materials based on naphthaliamide derivatives [84-87]. When an electron-

donating group occupies the 4(5)-position, strong fluorescence is seen. In this situation, the absorption and emission 

characteristics are linked to charge transfer between the donor group and the electron-withdrawing carbonyl groups. The 

fluorescent yellow dye C.I. Disperse Yellow 11 (5) Figure 9, which has an imide nitrogen and an aryl substituent, is a well-

known fluorescent dye despite having only moderate light fastness for polyester dyeing.
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Fig. 9. Chemical structure of amino-naphthalamide fluorescence dyes. 

 

The anionic dyes C.I. Acid Yellow 7 (6) and C.I. Mordant Yellow 33 (7), among others, are water-soluble naphthalimide 

dyes that have been used for silk dyeing and may also be utilized in non-destructive flaw identification. Reactive fluorescent 

yellow dyes for cellulosic fibers, such as (8), have been described as shown in Figure 9. 

Some of disperse dyes based on naphthalaimide derivatives such as C.I. Disperse Yellow 199 (9) and Orange 32 (10) are 

examples of fused heterocyclic derivatives attached with naphthalaimide moiety as shown in Figure 10. 

 
Fig. 10.  Fluorescent dyes based on fused heterocyclic derivatives attached with naphthalaimide moiety.  

c) Perylene based fluorescent dyes

Perylene dyes are particularly interesting because they produce highly bright colors with a very high fluorescence 

efficiency, while also exhibiting exceptional stability against light and heat and chemical assault. For these reasons, they 

make beautiful thermoplastic coloring materials and are commonly the material of choice for practical applications where 

durability is crucial, including liquid crystal displays and solar energy gathering [88, 89]. Most of perylene based fluorescent 

materials have low solubility and are not suitable for textile dyeing and it can be used only in text ile printing.

The most significant fluorescent perylene dyes are many based on the imidation of perylene-3,4,9,10-

tetracarboxylic acid as shown in Figure 11 (11), which mainly used in dyeing of polymeric substrates giving a bright orange 

to red fluorescent colors.

 
Fig. 11. Alkylated derivatives of perylene fluorescent dyes. 

d) Benzanthrone based fluorescent dyes

The 3-methoxy derivative, also known as C.I. Disperse Yellow 13 (12) Figure 12, is the longest established 

fluorescence benzanthrone dye derivative. It shows a yellow-green emission. Although this dye is reasonably priced, it has 

the drawback of having a somewhat poor quantum yield. However, the intermolecular hydrogen bonding between dye and 

resin molecules is thought to be the cause of the fluorescence intensity increase in the resin systems employed in daylight 

fluorescence pigments.
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Fig. 12. Chemical structure of the basic benzanthrone disperse dye C.I. Disperse Yellow 13. 

e) Benzoxanthones and benzothioxanthones based fluorescent dyes

In the 1970s, Hoechst conducted considerable research on a variety of dyes based on the benzoxanthone and 

benzothioxanthone systems as brilliant fluorescent and lightfast disperse dyes for polyester dyeing application. As shown in 

Figure 13, C.I. Disperse Red 303, a fluorescent yellowish-red, has been revealed as a combination of the isomers (14) and 

(15) [90].

 
Fig. 13.  Isomeric structures of benzothioxathone (C.I. Disperse yellow 303).

2.1.2. Xanthene dyes

The appealing and adaptable molecule known as xanthene dyes is utilized in a variety of industries, including

chemotherapy, dyes, optical brighteners, lasers, solar cells, and most recently, optical chemosensors and antioxidants [29, 

31, 91-93]. The most known types of xanthene fluorescent dyes are fluorescein and rhodamine based fluorescent dyes.

Although it is no longer widely used as a textile dye, fluorescein is nevertheless useful for hydrogeological tracking 

as well as for analytical and biological purposes. Rhodamines, on the other hand, have significant commercial significance 

as highly fluorescing red to violet compounds. Rhodamine B (16) (C.I. Basic Violet 10) and Rhodamine 6G (17) (C.I. Basic 

Red 1) as presented in Figure 14 as an example of water soluble xanthene dye derivatives, both of which find a wide range 

of conventional for acrylic dyeing application and functional uses, are of special importance. One of the first red dyes to b e 

utilized in dye lasers was rhodamine 6G, a significant red dye for daytime fluorescent pigments. Due to their poor stability 

and propensity to experience quenching effects, rhodamines are no longer widely used on textiles.

 

 
Fig. 14.  Chemical structure of basic dyes (rhodamine B and rhodamine 6G). 

2.1.3. Methine based fluorescent dyes

Numerous polycyclic aromatic hydrocarbons exhibit high fluorescence characters in the visible spectrum, but their 

economic exploitation is constrained by difficultly in its synthetic procedure and the possibili ty that they may be 

carcinogenic. Certain triazole derivatives of stilbene are fluorescent such as C.I. Direct Yellow 96 (18) which used as direc t 

dye for cellulosic dyeing application as shown in Figure 15.
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Fig. 15. Structure of methine dye (C.I. direct yellow 96).

 
Fig. 16. Structure of cationic methine dyes for acrylic dyeing.

 
The most common methine dyes are cyanine and hemicyanine derivatives. These type are presented a cationic 

derivatives of methine dyes for acrylic dyeing applications. The well-known methine dyes for textile applications are C.I. 

Basic Red 13 (19) and C.I. Basic Violet 7 (20) as shown in Figure 16.  

 

 

2.1.4. Miscellaneous fluorescent dyes 

Some of the high conjugated fused heterocyclic compounds are highly fluorescent with superior fastness characters 

in textile applications such as washing, light and sublimations. This kind of fluorescent dyes showing a bright greenish-

yellow shades on polyesters, cellulose acetate and nylon fibers. The most common example of such fluorescent dyes is C.I.  

 Disperse Yellow 139 (21) as presented in Figure 17. 

 

 
Fig. 17. Chemical structure of C.I. Disperse yellow 139. 

3. Recent advances of the fluorescent dyes for textile applications

The most of commercially known fluorescent dyes are used for dyeing of synthetic fibers like polyester, 

polyamides, and polyacrylonitrile, as well as occasionally in combination with elastane fibers, fluorescent dyes are of far 

larger value. The most significant fluorescent textile dyes are from the disperse dye class since polyester is the material u sed 

in the majority of significant textile applications. On polyamides and cellulose acetates, fluorescent dispersion dyes are 

additionally utilized, but to a lower extent.

The majority of commercial dyes are yellow, producing the well-known greenish-yellow fluorescent colors that 

are frequently seen on clothing worn for safety reasons, In recent years, many researchers have been trying to prepare new 

fluorescent dyes for textile applications.

Chenchen Liu etal [94] was prepared five new fluorescent dyes for silk functionalization as aggregation-induced 

emission luminogens (AIEgens) by metal-free click bioconjugation reaction as presented in Figure 18. As 

tetraphenylethelene (TPE) is known as aggregation induced emission (AIE) unit which ascribed to the restriction of 

molecular motions. The synthesized dyes showing Blue, green, yellow, orange, and red emission and based on introducing 

propynone groups (AIE-pyo) Figure 18. According to the stated approach, TPE was functionalized with a propynone group 

to create a blue-emissive AIE-pyo luminogen as TPE is a typical AIEgen that emits blue fluorescence when exposed to UV 

light. Then, the electron-donating and electron-withdrawing groups, respectively, methoxy and benzothiadiazole groups, 

were chosen. They were used to create longer-wavelength emissions and D-A structures for MTPEP-pyo, TPEBP-pyo, and 

MTPEBP-pyo.

 

The chemically conjugated fluorescent silk fibers demonstrated excellent stability and achieved full -color 

emissions. Red, green, and blue emissive AIEgens were simultaneously bioconjugated to create a white light-emitting silk. 

Additionally, real-time and long-term cell tracking using hydrolyzed silk that has been functionalized with red emissive 

MTPABP has been achieved. The substantial two-photon absorption of MTPABP functionalized silk textiles proved their 

considerable potential for deep tissue imaging and bioscaffold monitoring. 
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Fig. 18.  Synthesized new fluorescent AIE-pyro a), the absorption spectra of dyes b), the emission spectra c),

relative fluorescence intensity d), and the emission in solid state e)  [94].

          

 
Fig. 19. Emission of AIEgen-silks a), Fluorescent images of AIEgen-silk textiles (lower) and threads (upper)

under UV light b), emission on silk fabrics c) [94].

 

Silk fibers were easily turned into AIEpyo functionalized silks (AIEgen-silks) by soaking them in AIE-pyo 

solutions overnight at room temperature. The result was AIEgen-silk threads and textiles with consistent fluorescence that 

covered the full visible light spectrum Figure 19. 
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Fig. 20. Emission of TPE-pyo a), MTPABP-pyo b) and fluorescein c) upper image under visible light bottom image under 

UV, washing time effect in emission d) [94].

For showing the advantage of the prepared AIE-pyo and its emission efficiency on the silk fabrics, the fluorescein 

is known as aggregation cased quenching (ACQ) which is highly emitting in solution and low emission in powder form, thus 

after dyeing of silk fabric the emission is significantly decreased due to ACQ while in case of AIE-pyo the emission is very 

high in solid state and no significant emission can be observed in solution, therefore the AIEgen-silk showing very strong 

emission as shown in Figure 20.

Supercritical carbon dioxide (ScCO2) is one of the interesting medium for water free dyeing and finishing of 

textiles as an economical and cleaner dyeing methods for textile industry which still very limited as industrial process [3, 

95-97]. Jun Hou etal, was published an interesting work which concerning with the synthesis of fluorescent dyes based on 

coumarin and naphthamide derivatives using ScCO2 and studying there application on polyester fabrics as a cleaner 

production of fluorescent dyes [49].

 
Fig.  21. Schematic diagram of the supercritical CO2 reductions of the nitro-derivatives [49].

 

This work was concerning with the cleaner reduction of three precursors 7-amino-6-nitro-4-

methylcoumarin(ANMC), 3-nitro-1,8-naphthalimide (NO–NH) and N-(2,4-dimethyl) phenyl-3-nitro-1,8-naphthalimide 

(NO-dimethyl) using cleaner method (ScCO2) using of Au/TiO2 instead of using SnCl2/hydrochloric acid. Figure 21 

illustrate schematic diagram of the supercritical CO2 reductions of the nitro-derivatives forming three fluorescent dyes 6,7-

diamino-4-methylcoumarin (DAMC), 3-amino-1,8-naphthalimide (NP–NH), and N-(2,4-dimethyl)phenyl-3-amino-1,8- 

naphthalimide (NP-dimethyl) as shown in Figure 22 which showing high emission on polyester fabrics. 
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Fig.  22. Chemical structure of the ScCO2 prepared dyes.

The simultaneous synthesis of the dyes as well as its dyeing application was successful showing excellent

photophysical properties on PET fabrics as shown in Figure 21.

Previously Xiaoqing Xiong etal [37] were studied the supercritical carbon dioxide dyeing of polyester fabrics using

a commercial disperse dye (C.I. Yellow 82). This study demonstrated that dyeing variables such dying duration, pressure, 

and temperature had significant effects on the color strength of materials. It was said that the ideal circumstances for 

supercritical CO2 dyeing were a dyeing period of 60 minutes, a pressure of 25 MPa, and a temperature of 120 °C. According 

to the fastness data, the acquired samples under the chosen conditions had satisfactory washing fastness (fading and staining) 

and rubbing fastness (wet and dry) values of 4-5. Through SEM, supercritical CO2 did not result in morphological harm to 

the luminous textiles. Figure 23 shows the high emissive greenish fluorescent polyester fabric and the using of supercritical 

CO2 dyeing method is not showing any significant effect on the emission intensity of the dyed fabric comparing with the 

conventional dyeing method.

 
Fig. 23. Control sample and the dyed fabric under visible light a,b) and under UV light c,d) (upper image), the 

fluorescence confocal image of the dyed fabrics bright filed a), dark filed b) and the merge image c) (bottom image   [37].

 

Raju Penthala and Young-A Son [98] were prepared three new rigid cationic fluorescent coumarin dyes as shown in Scheme 

1. The synthesis was carried out by the condensation reaction of 4-(diethylamino)-2-hydroxybenzaldehyde on the active 

methylene group in 2-cyano methyl benzimidazole under alkaline condition forming 2-iminocoumarin derivative. The high 

reactivity of 2-iminocoumarin increase the possibility of the reaction with electrophiles or nuclophiles, thus the 2 -

iminocoumarin was easily react with aldehyde derivatives followed by cyclization reaction. The quaterization of nitrogen 

located in pyrimidine ring led to the formation of three cationic fluorescent coumarin dyes presented in scheme 1. The 

synthetic dyes showing good photostability in when compared to that of a commercial dye (C.I. basic yellow 40). These 

dyes were used in a dyeing application on modacrylic fibres using a conventional cationic dyeing procedure as shown in 

Figure 24. 
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Scheme 1.  Synthetic procedure of the cationic fluorescent dyes. 

 
Fig. 24. dyeing application of the cationic fluorescent dye on modacrylic fibers  [98].

 

A novel anti-counterfeiting method that will enable tagging and recognizing authentic objects utilizing cotton fiber 

and fluorescein was created and described by Khouloud Baatout etal [79]. On a cotton yarn, different concentrations of the 

affordable and environmentally friendly fluorescein fluorophore was applied on cotton yarn both directly and in the presence 

of the two types of resins using pad dry cure as shown in Figure 25. SEM, reflectance, and fluorescence analyses were used 

to describe the FL-coated fibers, and they showed that fluorescein was present on the cotton surface. When compared to 

untreated cotton, samples that have been FL-impregnated show a little increase in maximum breaking strength and a slight 

loss in elongation capacity; adding resin had no impact on the mechanical parameters. The results of the washing experiments 

demonstrate that the use of resin is necessary for a successful fixation of fluorescein on cotton substrate. 

 
Fig. 25. Fluorescence coated cotton yarn using fluorescein fluorescence dyes fixed by resins  [79].
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The anti-counterfeit substance was applied to the textile support using the pad dry cure procedure. Samples were 

given the designations CF1, CF2, CF3, and CF4 for the 7.5 µM, 10 µM, 50 µM and 100 µM concentration respectively. By 

illuminating the samples at 460 nm, the fluorescence characteristics of FL-coated cotton fibres, CF1-4, were investigated at 

room temperature, and their optical data were shown in Figure 26 briefly, this work created and defined a novel anti-

counterfeiting method that will allow labelling and recognizing authentic objects utilizing fluorescein and cotton fiber. 

 
Fig. 26. Emission spectra of the treated cotton yarn a) the photograph of the fluorescent cotton under UV b) and

the CIE of the cotton yarn diagram c) [79].

Souhangir etal [99], synthesized and characterized new red dyes based on fused iminocoumarin as shown in Figure

27. 3(diethylamino)-7-imino-7H-benzo[4,5]imidazo [1,2-a]chromeno [3,2-c] reacted with cyanuric chloride followed by the 

reaction with nicotinic acid to form a new luminous reactive dye (E) -3-carboxy-1-(4-chloro-6-((6-cyano -3-(diethylamino) 

-7H-benzo[4,5] aminoimidazo [1,2-a] chromeno[3,2-c] pyridin-7-ylidene)amino)-1,3,5-triazin-2-yl) pyridin-1-ium chloride 

as shown in Scheme 2. The dyeing application of the water soluble analogue D2 was investigated in cotton fabrics which 

showing high exhaustion and fixation results. The quantum yield of fluorescence showing higher value in aqueous medium 

comparing with organic solvents.

 
Fig. 27. General structure of fused iminocoumarin dyes.

 
Scheme 2.  Synthetic procedure of the fluorescent reactive dye based on fused iminocoumarin. 
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The fluorescence intensity on dyed cotton fabric increased as dye concentration increased up to 2% o.w.f while a 

significant decrease observed at 4% o.w.f. This occurrence showed that dye accumulated at larger quantities on the fibre, 

reducing the fluorescence of the colored cloth as shown in Figure 28. 

 
Fig. 28.  Emission spectra of the dyed cotton fabric with D2 [99]. 

Maral Pishgar etal [100] report the synthesis and dyeing applications of new fluorescent reactive dyes based on 

xanthene dye derivatives (fluorescein). The synthesis was based on the preparation of two reactive intermediate bearing the 

reactive moiety (intermediate 1, 2) which obtained by the reaction of cyanuric chloride with amino-stilbene and with 4-

amino sulphatoethylsulphone then followed by nuclophilic substitution reaction with fluorescein forming fluorescent dye 1 

and 2 as shown in Scheme 3.  

 
Scheme 3. Synthetic procedure of the fluorescent reactive dyes based on xanthene moiety.  
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The spectral study of the prepared dyes as presented in Figure 29 showed, D1 have two distinct emission peaks 

at wavelengths between 300 and 400 nm for stilbene and 500 and 600 nm for fluorescein groups in aqueous medium.  

 
Fig. 29. Emission spectra of the prepared dyes [100].

The prepared fluorescent dyes 1, 2 was applied for dyeing cotton fabric which showing very good affinity to cotton

fabric and the dyed fabrics showed a bluish emission in case of D1 while the emission of dyed fabric with D2 showing 

greenish-yellow emission.

Phenothiazine was used as the starting material to create a number of new fluorescent heterocyclic disperse 

dyestuffs by conventional reactions which reported by Hosseinnezhad etal, [55]. The dyes was prepared by the nitration 

reaction of phenothiazine or phenothiazine carboxaldehyde derivatives as shown in Scheme 4, then oxidized, and finally 

reduced to obtain a series of fluorescent dyes based of pheothizine fluorophore.

The prepared dyes was showing positive solvatochromic properties by increasing the solvent polarity from toluene 

to DMF. In DMF, the prepared dyes showing good emission in DMF and the hue of fluorescence change from a yellow-

green color. The greatest quantum yields were seen in dyestuffs that contained both electron acceptor and electron donor 

groups. The dyeing capabilities of the synthesized disperse dyestuffs were examined after they were applied to polyester 

fabrics at high temperatures. On polyester fabrics, the synthetic dyestuffs produced orange color ranges with acceptable 

colorfastness and excellent build-ups.

 
Scheme 4. Synthesis of new fluorescent disperse dyes based on phenothiazine moiety.  

Recently Aysha etal presented a series of different fluorescent colorants based on pyrrolinone ester for textile 

applications [8-10]. Interesting reactive disperse dyes based on different analogue of pyrrolinone ester which coupled with 

a diazonium salt of p-aminobenzene sulphatoethylsulphone forming fluorescence reactive disperse dyes as shown in Scheme 

5. The advantage of the prepared dyes is the easy and simple synthetic procedure and its high color strength observed.  

The synthesized dyes exist in its pure hydrazone form as E, Z isomer as confirmed by NMR data and Z isomer the 

high abundant in the mixture with high fluorescent in polycrystalline phase (powder form).  
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The prepared dyes was applied for dyeing of polyamide and wool fabric which showing a significant high visible 

and bright colors and the emission in solutions as well as on the dyed fabrics as shown in Figure 30. These kind of dyes 

showing very good dyeing performance and color fastness in both polyamide and wool fabrics in additional to its high 

efficiency against gram + and gram - bacteria. 

 
Scheme 5. The synthetic procedure of the reactive disperse dyes. 

 

 

 
Fig. 30. Emission on the dyed polyamide (up graph) on wool (bottom graph) [10].

 

The synthesis of new solid state fluorescent dyes bearing amino-coumarin moiety was also investigated [9]. The 

synthesis of such fluorescent dyes was achieved by the coupling reaction of diazotized amino coumarin on the active 

methylene group in pyrrolinone ester as shown in Scheme 6.  
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Scheme 6. Synthetic procedure of the hydrazone dyes bearing coumarin moiety. 

 

The prepared dyes also confirmed as pure hydrazone as a mixture of E, Z isomer. The synthesized dyes were used 

for dyeing polyester fabrics which showing high affinity for dyeing of polyester fabrics. And this dyes were showing good 

stability even if the dyeing process proceed under neutral or slightly alkaline condition.  

One of the recent fluorescent dyes based on pyrrolinone ester was prepared by the same research group is a hybrid 

structure between azo pyrrazole and pyrrolinone ester hydrazone moiety as shown in Scheme 7 [8]. A series of 6 dyes was 

synthesized and its spectral properties was studied which showing high emission on solid state and on dyed polyester fabrics 

as shown in Figure 31. The interesting feature of this series is associated with its alkali stable fluorescent properties for 

polyester dyeing which showing very good stability and no color change was observed even if the dyeing process continued 

under alkaline condition.  

 
Scheme 7. Synthetic procedure of the solid state fluorescent azo-pyrrazole/hydrazone pyrrolinone ester dyes. 

 
Fig. 31.  Emission spectra of the prepared dyes on dyed polyester fabrics under UV light  [8].
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4. Non-textile applications of fluorescent dyes 

Functional fluorescent dyes characterized by its functional application in hi-Tech application rather than it just a 

color. This state of art provides a brief summary of various uses, not only because of general curiosity but also because it is 

completely possible that some of these fluorescent dye applications may be used in the future by the developing field of 

smart and intelligent textiles.  

Fluorescent dyes are widely used in a variety of functional applications for instance, laser, OLEDs, DSSCs, 

fluorescence probes and medical applications in additional to some other applications as crack detection, plastics, synthetic 

resins, printing inks, non-destructive testing (NDT). 

4.1. Electronic applications of Fluorescent dyes  

4.1.1.  Laser application of fluorescence dyes  

Traditional inorganic lasers function in the visible, infrared, and ultraviolet spectrums suffering from disadvantage 

of emitting only at a few number of wavelengths and in extremely narrow emitting bands. The benefit of tunability across a 

large wavelength range is provided by fluorescent organic dye lasers, which produce a broad band emission bands in contrast 

with inorganic lasers. Fluorescent dyes work in dye lasers by absorbing a quantum of light and moving to higher energy 

sublevels of the first excited state S1* from the ground state S0. When incoming radiation interacts with the dye molecule 

when it is excited, fluorescent emission is produced as the molecule transitions to its ground state. This process is known a s 

lasing. The dye molecules must predominately be in the excited state for this lasing effect to occur. By delivering a powerful 

inorganic laser pulse to the system, the necessary population inversion is accomplished. The stimulated emission from dye 

lasers is coherent (same phase and polarisation) and of high intensity in contrast to spontaneous emission. Dye lasers still 

find niche uses in communication technology, microsurgery, spectroscopy, and microanalysis despite significant 

advancements in solid-state and semi-conducting lasers progressively displacing them from their former dominant position. 

Dakui Zhang etal [101], have been successfully synthesized new long-wavelength BODIPY dyes and the 

comparison of extending π-conjugation and tuning Intramolecular Charge Transfer (ICT) effect for the prepared dyes was 

discussed. The synthetic procedure of BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) was presented in Scheme 8, 

different aryl derivatives of BODIPY was prepared by the reflux of BODIPY with different aromatic aldehyde in presence 

of  a mixture solvents (toluene and glacial acetic acid). 

 
Scheme 8. Synthetic procedure of the fluorescent BODIPY derivatives 

The novel chromophores have good optical characteristics in polar or non-polar solvents, including strong 

fluorescence quantum yields, extraordinarily large molar extinction coefficients, narrow red-emission bands, and moderately 

significant Stokes shifts. Additionally, the novel dyes display very effective and steady laser emission that is adjustable from 

the green to NIR spectral range with transverse pumping at 532 nm (570–725 nm) as shown in Figure 32. Compounds 

BODIPY 4 and BODIPY 5, which have longer wavelength emissions and significant Stokes shifts due to the presence of 

triphenylamino and tetrahydroquinoline groups, respectively, which decrease the fluorescence quantum yield and wide 

emission bands in polar liquids. These photophysical characteristics allow the novel BODIPY derivatives to be classified as 

excellent laser dyes in the red-edge spectral region since they improve the laser action of well-known dyes that lase at the 

same wavelengths when considering lasing efficiency and photostability. Additionally, one of these novel BODIPY 

compounds (6) exhibits intense intracellular red fluorescence and cell membrane permeability which used in imaging of 

cancer cell. These positive traits guarantee that these dyes have the potential for biophotonic applications. 

 
Fig. 32.  Laser emission spectra of the BODIPY dye derivatives [101].
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Diketopyrrolopyrrol(3,6-diaryl-2,5dihydro-1,4-diketopyrrolo[3,4-c]pyrrole) based colorants is one of the 

interesting compounds due to its high fluorescence characters in additional to its high photostability, thus these compounds 

used in many applications such as inks, paints , DSCCs [102-105]. Soumyaditya Mula etal, has modified new water soluble 

DPP derivative as shown in Scheme 9 [106]. The synthesis of the dye DPP 3 was basically depend on the Sonogashira 

coupling reaction with the bromo DPP1 with dimethylaminopropyene forming DPP2 which followed by the formation of 

zwitterions by quaterization reaction of the terminal amino group with 1,3-propanesultone forming the water soluble DPP3. 

 
Scheme 9.  Synthetic procedure for DPP3 as laser dye. 

 

The lasing measurements for the prepared dye DPP3 showing high lasing efficiency up to 14.6% with maximum narrow 

band lasing efficiency of 9.5% with a wide tunable range (554 nm to 616 nm) on excitation with a second harmonic of a Q-

switched Nd:YAG (532 nm) laser in MeOH/H2O as shown in Figure 33. 

 
Fig. 33. Lasying performance of the prepared dye DPP3 [106].

 

Ekaterina M. Dinastiya etal [107] have been constructed and studied two new V-shaped push-pull systems (D-π-A-π-D) 

based on a pyrimidine acceptor bearing carbazole and triphenylamine and thiophens as the π-linker for OLEDs (organic light 

emitting diodes) and laser applications as presented in Scheme 10. The synthetic procedure of pyrimidine based dyes was 

basically based on the Suzuki cross-coupling reaction on the halogenated pyrimidine followed by the extinction of the 

conjugation by further cross-coupling forming two fluorescence dyes E1, E2.  
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Scheme 10. Synthetic procedure of a push-pull based pyrimidine dyes E1, E2. 

 

 The emission bands of the dyes E1, E2 have a charge-transfer nature, as shown by low-temperature observations 

of the fluorescence and delayed luminescence spectra .OLED devices based on compounds in thermal vacuum deposition 

(TVD) films have great efficiency, which may be connected to the emission process through delayed fluorescence despite 

the compounds poor fluorescence quantum yield. It has been discovered that photoproducts produced after fluorophores in 

chloroform solution are exposed to UV light show laser activity in the red spectrum as shown in Figure 34. Push-pull 

systems have a high quantum yield of fluorescence in solutions but a poor quantum yield in TVD films. However, OLEDs 

made with these chemicals have very good current efficiency and brightness, which is presumably because delayed 

fluorescence exists. In addition, UV light swiftly converts chloroform solutions of these compounds into a photoproduct that 

pumps out laser light at a wavelength of 532 nm. 

 
Fig. 34. laser and OLEDs performance of the synthesized dyes E1, E2  [107].

 

4.1.2. Organic light emitting diodes (OLEDs)  

One of the most important applications of fluorescence and highly emissive dyes is OLEDs applications, Because 

of its tiny structure, low power consumption, high resolution, and self-emissive features, OLED offers numerous unmatched 

benefits over traditional display technology and is progressively emerging as a new trend in future displays [108-111]. OLED 

has received a lot of interest from both business and academics since it was developed in 1987 [112] because of the potential 

commercial uses for its low operating voltage and high brightness. The first flexible OLED device was created by Gustafsson 

et al. in 1992, and its ground breaking significance has sparked a new round of research [113]. 

OLEDs have successfully shown their wide variety of applications in displays, lighting, and medical devices owing 

to their mobility, low power consumption, and mechanical flexibility. The OLEDs have created new opportunities for 

wearable electronic gadgets due to the biological necessity and ongoing progress of electronic technology. Numerous papers 

have shown how flexible electrodes, processing technologies, and enhanced manufacturing are enabling OLED devices with 

good mechanical strain performance [114]. 
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Traditional fluorescent OLEDs had a maximum internal quantum efficiency of 25% and could only utilise singlet 

excitons. As a result of their ability to exploit all singlet and triplet excitons via heavy atom effects or reverse intersystem 

crossover (RISC), the new generation of phosphorescence OLEDs type (PhOLEDs) and thermally activated delayed 

fluorescence (TADF) OLEDs are more well-liked . However, PhOLEDs and TADF OLEDs' light-emitting layers also have 

difficulties with triplet-triplet annihilation and concentration quenching (TTA). Figure 35 showing the working mechanism 

diagram of OLEDs and its historical progress, fluorescent or phosphorescence dyes represent the most important part in the 

OLEDs components which is responsible for the emitting light and improve the OLEDs efficiency. 

 

 
Fig. 35. OLEDS processing mechanism (uopper image),) present the history of self-emissive materials. Image for 

‘Fluorescent OLED’ [112]. Copyright 1987, American Institute of Physics. Image for ‘‘Fluorescent flex-OLED’’(bottom 

image) [113].

Recently many published articles describe different fluorescent materials for OLEDs application based on varied 

luminescence system such as Carbazole/triazine, polyfluorene derivatives, Imidazolo pyridine, pyran -containing qunoline 

fluorophores, triphenylamine/phenanthroimidazole and tetraphenylethene-substituted anthracene and triphenyl amine 

derivatives [115-120].

4.1.3. Dye-sensitizer solar Cells (DSSCs)

The most effective and adaptable way to turn the cleanest and most numerous energy sources is to use dye-

sensitized solar cells (DSSCs). In comparison to conventional solar cells, DSSC are somewhat transparent and more 

affordable. As a result, it may be a source of power in the future. However, more has to be done before it is deemed to be a 

marketable product.

Functional fluorescent dyes as sensitizer are essential for DSSCs fabrications because it starts the electrical current in the 

solar cells and absorbs visible light [121, 122]. The power conversion efficiency (PCE) of metal complex based-ruthenium 

dyes and porphyrin dyes, which are single sensitizer-based DSSCs, has achieved their maximum as of this writing, while 

metal-free organic dyes have also demonstrated a PCE of > 14% [123, 124] under normal illumination. For practical use in 

DSSCs, metal-based sensitizers have a limited number of drawbacks, including scarcity, difficulties in purification, 

environmental risks, and low molar extinction coefficients [125, 126] . The schematic diagram of the working mechanism 

of the DSSCs is presented in Figure 36, the functional dye is present an important part for the conversion of the solar energy 

to electricity.

 
Figure 36: schematic diagram of the working mechanism of the DSSCs [127]
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As a result, metal-free organic sensitizers have gained popularity over metal-based organic sensitizers because of 

their easy synthesis, great structural flexibility, low toxicity, and environmental friendliness  [121, 122]. An electron donor 

(D), a π bridge, and an electron acceptor (A) in the shape of a D-π-A typically make up a metal-free organic sensitizer [128]. 

As electron donors, many chromophores with different electronic and electrostatic interactions properties are 

employed, including carbazole (CZ) [129-133], phenothiazine (PTZ) [127, 134], triphenylamine (TPA) [135-137], etc. -

bridges are added to increase their capacity for light absorption and to facilitate intramolecular charge transfer. Numerous 

anchoring units, such as hydroxamate, pyridyl, hydroxyl, catechol, carboxylate, acetylacetonate, phosphonate, salicylate, 

sulfonate, and 8-hydroxyquinoline, have been successfully identified to attach the chromophore to the semiconductor [138]. 

There are crucial design requirements that must be met in order to manufacture more powerful sensi tizers for 

DSSCs. To effectively inject electrons into the semiconductors, the sensitizer must first form a strong bond with the 

semiconductor surface (photoanode). Second, for successful charge injection, the dye's lowest unoccupied molecular orbital 

(LUMO) should be much higher than the semiconductor CB, and its highest occupied molecular orbital (HOMO) should be 

lower than the redox electrolyte medium [139-141]. A lot of research has been done over the years to enhance sensitizers in 

every way possible [142]. Table 2 shows the chemical structures of the few of those that are provided here. 

Table 2. Some example of dye-sensitizer solar cells and its efficiency  

 

Dye structure ղ% Ref. 

 

6 [143] 

 

6.21 [144] 

 

7.67 [145, 146] 

 

10.3 [147] 

 

4.46 [148] 

 

7.5 [149] 
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4.2. Analytical and sensing applications 

Sensor materials are recently of great interest as their inclusion in a structure provides it with the "minimum" level 

of "smartness" by giving a sign about the presence of a stimulant and allows its recognition by easy, fast and low cost 

method, thus the application of the organic dyes based on its ratiometric fluorescence change (fluorescence probe) by binding 

with external stimulants such as mechanical, chemical, thermal, optical, magnetic, electric... etc. have been intensively 

studied in recent years [35, 152]. 

Fluorescent probes have drawn a lot of interest because of their high sensitivity, simplicity, and quick reaction 

times for applications in both optical imaging and analytical sensing. Fluorescent probes are often used for sensitive and 

highly specific quantitative analysis of analytes such as anion, cation and pH changes [29, 153-162].  

Fluorescent probes worked in a reversible manner in the early stages of their development since they were 

predominantly created using molecular recognition and host-guest chemistry [163]. 

Contrarily, organic reactions have been used in recent years to create fluorescent probes that self-immolate or are 

reaction-based. However, using fluorescent probes with single emission features to quantify a target analyte can be 

challenging because various analyte independent factors, such as instrumental parameters, local concentrations of the probe 

molecules, photobleaching, and microenvironments can impede accurate analysis. The use of ratiometric techn iques such as 

fluorescence probe is the most efficient method for resolving these problems and assuring reliability [164].  

There are two main types of fluorescence probe (turn on/ turn off fluorescence probe) based on the optical 

behaviour change when its bind with external analyates as presented in Figure 37.  

 
Fig. 37. Suggested mechanism of turn on and turn off fluorescence probe.

Several photophysical features, including as internal charge transfer (ICT), fluorescence resonance energy transfer

(FRET), and excited-state intramolecular proton transfer (ESIPT), are often used in the creation of ratiometric fluorescent 

probes Figure 38. Large Stokes shifts are often seen in monomer-excimer production, ICT fluorophores made of conjugated 

electron-donating/electron withdrawing (donor/acceptor, D/A) moieties Figure 38 a. The interaction of one of the donor or 

acceptor moieties with an analyte causes the excitation/emission wavelengths to change blue or red shift can observed upon 

the presence of the analyte. In order for FRET to work, energy must be transferred from the excited state of the donor 

fluorophore (DF) to its ground state of the acceptor fluorophore (AF) Figure 38 b. When the DF's emission spectrum and 

the AF's absorption spectra overlap well, effective FRET occurs.

The ability to generate excimers is often seen in flat polycyclic aromatic hydrocarbons like anthracene and pyrene 

Figure 38 c. An excimer is an excited state complex that is created when the excited state of one fluorophore of this kind 

interacts with the ground state of another fluorophore molecule. In this instance, the excimer emits redshifted and widened 

radiation. Fluorophores from ESIPT exhibit strong emission, light stability, and significant Stokes changes Figure 38 d. For 

instance, ESIPT can convert a favoured enol-form into an excited keto tautomer upon excitation. By reverse proton transfer, 

the stimulated keto-relaxation form's regenerates the enol form. Importantly, solvent polarity, hydrogen bonding ability, and 

pH frequently have an impact on the ESIPT process [165].

Cations and anions play an essential roles in various important human life processes [166-168], including osmotic 

regulation, metabolism, biomineralization, and signalling. The overdose concentration of metal ions are presenting one of 

the major threats that represent a danger to human life. The biologically important metal ion such as Cu 2+, Ca2+, Fe3+and 

Zn2+ should be exist in  a suitable range of concentration to control the normal biochemical functions of the human body 

while the high concentration of Hg2+ and Pb2+ can be highly toxic. The change of these metal ion concentrations can affect 

the normal body and physiological functions directly [169]. Thus, the monitoring and quantitative determination of these

 

6.15 [150] 

 

5.6 [151] 
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metal ions using an easy, fast, low cost even with ultra-low concentration became an important research challenge [170-

173]. 

 

 
Fig. 38. Photophysical process in ratiometric fluorescence probe, internal charge transfer (ICT) a, fluorescence 

resonance energy transfer (FRET) b,  monomer–excimer formation c and  excited state intramolecular proton transfer

(ESIPT) d [165].

Furthermore, both exogenous and endogenous anions in living systems alter typical biological processes, the

detection of anions has received a lot of interest in recent years [12, 174, 175].

Due to the huge number of publications related to the fluorescence probe for detection of ions and imaging

application we will present a few examples for some fluorescence probe for cations and anions in additional to the rec orded 

detection limit was summarized in Table 3.

Table 3. Different examples of fluorescence probe for ions detection.

Probe structure Target analyates 
Detection Limit

(LOD) 
Ref. 

 

Cu2+ 105 nM [176] 

 

Cu2+ 40.82 µM [177] 

 

Cu2+ 0.17 µM [178] 
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Zn2+, Mg2+ 17, 18 µM [179] 

 

Al3+, Zn2+ 7.06, 2.98 µM [180] 

 

Hg2+ 0.34 µM [181] 

 

F-, Al3+ 0.148, 0.025 µM [182] 

 

CN- 0.0278 µM [12] 

 

F- 1.29 µM [183] 

 

HSO3
- 28 nM [184] 

4.3. Medical applications of fluorescent dyes 

The application of fluorescence dyes in health related field is considered as one of the most important functional 

application and the researchers pay more attention for this topics. Since many applications in vitro or in vivo cannot be seen 

directly and must be viewed with the use of imaging equipment, thus the fluorescence change of some organic dyes could 

be very important techniques for this kind of application.  

Longer absorption and emission wavelengths, such as those in the near-infrared I and II area, or NIR-I and NIR-

II, can effectively reduce background interference from live organisms and enhance signal-to-noise ratio in fluorescence 

imaging [185]. Other energy conversion pathways of organic dyes, particularly photodynamic and photothermal conversion 

processes, have received  

a lot of attention recently in addition to the utilization of their luminous features. In photodynamic therapy (PDT) for skin 

cancer, breast cancer, and other malignancies, organic photosensitizers with high reactive oxygen species (ROS) or 1O2 

generation efficiency are frequently utilized [186].  

For photoacoustic imaging guided treatment of tumor and cardiovascular disease, photothermal conversion would 

predominate if the energy received by the dye is primarily lost by nonradiative transitions [187]. 

These optical treatments offer the benefits of being noninvasive, deeply penetrating, having little side effects on 

healthy tissues, and being better at eliminating tumors. The inadequacies of conventional illness diagnostic and treatment 
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procedures can be solved, and new approaches can be offered, through the creation of imaging and therapeutic agents based 

on organic dyes. 

Chemical modification procedures, which have made significant progress, are the most effective ways to achieve 

the functionalization of organic dyes. Two patterns may be seen in the evolution of dye chemistry. On the one hand, it is 

sought after to manipulate the optical properties of dyes (fluorescence, photothermal, and photodynamic ability) for 

appropriate application [188, 189]. 

On the other hand, organic dyes should have properties like water solubility, photostability, targeting ability, and 

so on for applications that are relevant to health. Additionally, as nanotechnology advances and becomes more sophisticated, 

nanomaterials based on functional organic dyes also developed [190]. 

 

4.3.1. The dyes design for medical application  

Functional organic dyes are chemically modified utilizing an application-focused technique that concentrates on 

the end material's optical characteristics, stability, water solubility, biological safety, and application features.  

 
Fig. 39. Some organic dyes structure (A). Fluorescent, photothermal (B), and photodynamic performance control 

of dye. Abs, absorbance, Non-radiative decay rate, intersystem crossing rate. Scheme of functionalized dye-cored

macromolecule (C). Functional organic dye-based materials (D) [190].

 

A list of several organic dyes chemical compositions may be seen in Figure 39 A. The direction in which organic 

dyes are applied is determined by chemical alteration of the chromophore scaffold. The chromophore undergo es excitation 

after light absorption, and the energy is released in a variety of ways, including fluorescence, heat, or chemical energy Figure 

39 B. These dyes' energy conversion pathways can be altered chemically to produce a variety of fluorescent compounds, 

photothermal molecules, or photosensitizers [190, 191]. The fluorescent bioimaging, for instance, dyes like perylene diimide 

(PDI), cyanine dye, boron dipyrromethene (BODIPY) dye, and their derivatives need to be created with high fluorescence 

quantum yields. 

The dye's absorption wavelength can be redshifted by adding a donor-acceptor (D-A) structure or lengthening the 

conjugate, which would considerably improve the performance of 1O2 or heat generation and have applications in PDT or 

PTT of malignancies [192]. A photosensitizer with a high 1O2 quantum yield may be produced for an effective PDT if heavy 

atoms or metals are added [193]. 

Additionally, organic dyes with considerably red-shifted emission and absorption spectra were developed and 

exploited in biomedical applications, particularly in in vivo scenarios, through the development of D-A structures and 

conjugation elongation [194]. 

Large conjugated structures give organic dyes their high hydrophobicity and ability to agglomerate. In order to 

create hydrophilic marcomolecules for biological applications, water soluble modification techniques are necessary Figure 

39C. For modification, conventional techniques employ hydrophilic functional groups (like carboxyl, amino, or zwitterionic 

groups) or hydrophilic polymers (like dendron, hyperbrached arm, PEG chains, and polyamino acid). For fluorescence 

imaging, drug delivery, and anticancer research, topological "core-shell" macromolecular structures with organic dyes as the 

core and hydrophilic molecules as the shell have been designed recently which produced satisfying results [195]. 

In the field of in vitro detection, organic dyes are very often utilized. Fluorescent molecules can be made into 

particular fluorescent probes for the detection of gases, ions, disease biomarkers, or antibodies by adding the appropriate 

stimuli-responsive group. Simple polymer-based fluorescent films or test papers as well as more intricate fluorescent array 

chips for fluorescence microscope observation are examples of common fluorescent probes Figure 39D [196]. The 

characteristics of the dye molecules in combination with the substrate and the coupling technique are crucial factors to take 

into account in these applications. 
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4.3.2. In vivo diagnosis, tumor diagnosis 

Organic dye-based imaging techniques, such as fluorescence imaging and PA imaging, are commonly used for in 

vivo imaging of damaged organs or tissues. These techniques offer advantages over standard imaging methods for in vivo 

diagnosis as they are real-time, noninvasive, and cost-effective. Urano et al. developed the fluorescent probe HMRef-Gal 

using an enhanced spirocyclization method for in vivo visualization of peritoneal metastatic cancers [197]. The probe can 

sensitively detect galactosidase, which is substantially overexpressed in early ovarian tumours, and is membrane -permeable 

Figure 40A. 

Fluorescence imaging of tiny peritoneal metastases was effectively accomplished in mice models of ovarian cancer 

by the authors Figure 40B, demonstrating the significant potential for early detection of metastases. With better penetration, 

signal-to-background ratio, and spatial resolution compared to conventional dyes, NIR-II organic dyes with emission 

wavelengths of 900–1700 nm can be utilized to diagnose deep malignancies such lung and brain tumors [198]. A NIR-II 

fluorescent probe called CH1055-PEG was successfully created and utilized for brain tumor imaging by Hong and colleagues 

[199]. The probe has high water solubility and a peak fluorescence emission at around 1055 nm. Additionally, the probe's 

comparatively modest molecular weight of 8.9 kDa makes it easier for the kidneys to eliminate it (Figure 4C). The probe 

was employed for noninvasive imaging of a brain tumor at a depth of 4 mm due to its NIR-II fluorescence and acceptable 

biological safety.  

 
Fig. 40. Chemical structure of HMRef-βGal and activation of HMRef-βGal on enzymatic reaction with β-galactosidase A). 

Fluorescence imaging of peritoneal SHIN3 metastasis with HMRef-βGal (B). NIR-II imaging of a mouse in the supine

position 870 s after intravenous injection of CH1055-PEG (C). Non-invasive imaging of brain tumour at 4 mm depth with 

CH1055-PEG 6h postintravenous injection (D). Whole-body NIR-II fluorescence imaging with CH1055-PEG 24 h 

postintravenous injection (E)  [199].

Applying phosphorescent probes with extended fluorescence lifetimes, which may substantially reduce 

background fluorescence, is another strategy for enhancing the signal-to-background ratio of cancer imaging. Jiang et al., 

for example, described an iridium-based NIR-I fluorescence sensor that may be initiated by the hypoxic microenvironment 

associated with cancer. With excellent sensitivity and specificity, the probe may identify lung metastasis of cancer cells 

through the bloodstream or lymphatics upon intravenous administration.

To summarize, NIR-II fluorescence and phosphorescent imaging are two efficient ways to improve signal-to-

background ratio, showing significant promise for cancer diagnosis [200].

Many other application of fluorescence dyes such as bacteria monitoring and imaging [201], drug delivery [202], 

Cardiovascular diseases diagnosis [203], Imaging-guided phototherapy [204] and chemotherapy have recently played a great 

research attention for health-related applications.

5. Conclusion

Fluorescent dyes play a unique role in textiles, especially when high visibility is crucial. With the leisurewear and

sportswear industries expected to grow, along with increasing safety concerns globally, the demand for protective workwear 

using fluorescent dyes and pigments is likely to increase. The functional applications of fluorescent dyes, such as in solar -

energy conversion, analytical and biomedical fields, and illumination devices, will continue to attract interest from 

researchers in academia and industry. Recent research reports suggest that functional fluorescent dyes could potentially be 

used in smart textiles in the future. The light fastness properties of commercial fluorescent dyes used in textiles are often 

criticized for not meeting the requirements of demanding applications. However, the addition of light stabilizing additives, 

like UV absorbers, can improve this property. Manufacturers are increasingly incorporating renewable raw materials, such 

as natural fibers, in response to the growing interest in environmentally friendly solutions. Fluorescent dyes are essential in 

the textiles industry, providing visibility and standing out in various applications. The use of fluorescent dyes and pigment s
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in textiles is expected to grow, especially in leisurewear, sportswear, and protective workwear. There is potential for 

functional fluorescent dyes to be integrated into smart fabrics in the future. Researchers are interested in the applications  of 

fluorescent dyes in solar energy conversion, analytical and biomedical fields, illumination, and display devices. Enhancing 

fluorescent dyes for high-performance applications, like DSCCs, lasers, and display devices, is a significant research 

challenge. Improvements are needed for the use of fluorescent dyes in complex detection scenarios for imaging and analytical 

applications, including probe compatibility with organisms and precision in sensing. Fluorescent probes are expected to 

advance biology and become a valuable tool in the biomedical field.  
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