

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Solvation Cyclic voltammetry Parameters for Na₂WO₄ in NaClO₄ , HCl

Media and Interaction with Congo Red Dye

Ghada M. Z. El-Sayed^a*, Safa Q. Hussein^b, Esamv A. Gomaa^{a,b}, Mahmoud N. Abd El-Hady^b, Nermeen M. Hassan^b

> ^aChemistry Department, Faculty of Science, Mansoura University, Egypt. ^bHigher Future Institute of Engineering and Technology, Mansoura, Egypt.

Abstract

Nanotechnology has been a promising technology over the years. Carbon nanotubes (CNTs) are one of the principal technologies that are The study examined the effects of different concentrations of sodium tungstate (Na_2WO_4) using cyclic voltammetry with a glassy carbon electrode (EGC). In acidic HCl and neutral NaClO₄ media, the cathodic reaction of sodium tungstate was characterized by the transfer of tungstate ions to WO₂. Additionally, the oxidation of WO₂ ions to WO₃ was observed. Cyclic voltammetry parameters for sodium tungstate in the absence and presence of Congo red dye were analyzed in both NaClO₄ and HCl media. The stability constants and Gibbs free energies of complexation were estimated for both media, revealing higher values in NaClO₄ compared to HCl. This suggests that the complexation reaction between Na_2WO_4 and Congo red dye is more favorable in NaClO₄ than in HCl. Furthermore, the kinetic and solvation parameters for the interaction of Na_2WO_4 with Congo red in 0.1 M HCl, attributed to a faster electron transfer rate in the HCl medium.

Highlights

- 1. Study focused on sodium tungstate (Na₂WO₄) using cyclic voltammetry with a glassy carbon electrode.
- 2. Cathodic reaction involved transfer of tungstate ions to WO₂ in acidic HCl and neutral NaClO₄.
- 3. Observed oxidation of WO₂ ions to WO₃.
- 4. Cyclic voltammetry parameters analyzed with and without Congo red dye in both media.
- 5. Stability constants and Gibbs free energies of complexation were greater in NaClO₄ than in HCl.
- 6. Complexation between Na₂WO₄ and Congo red dye is more favorable in NaClO₄.
- 7. Kinetic and solvation parameters indicated faster electron transfer in HCl compared to NaClO₄.

1. Introduction

The electrochemical behavior of the sodium tungstate ion WO²⁻ in acidic media attracted attention due to its use in technological applications as tungstate films [1-3]. The application of WO₄-films as semiconducting materials for photochemical analysis and hydrogen production from water [4,5]. Also, tungstate is used as an electrochemical material for polishing [6-8], and its electrochemistry is used to explain the dielectric properties of tungstate WO3 films [8-20]. The electro redox reactions of sodium tungstate have several benefits. The electrochemical behavior of the sodium tungstate ion WO -2 in acidic media attracted attention due to its use in technological applications as tungstate films [1-3]. The application of WO⁴ films as semiconducting materials for photochemical analysis and hydrogen production from water [4,5]. Also, tungstate is used as an electrochemical material for polishing [6-8], and other applications.Different concentrations of sodium tungstate (Na₂WO₄) were investigated using cyclic voltammetry with a glassy carbon electrode (EGC). Previous studies have examined the electrochemical behavior of tungstate ions, suggesting that the cathodic reaction in acidic HCl and neutral NaClO4 media involves the transfer of tungstate ions to WO₂. The oxidation of WO₂ ions to WO₃ was also observed in these conditions. The goal of this work is to explore the solvatochromic cyclic voltammetry parameters for sodium tungstate in the absence and presence of Congo red dye in both NaClO4 and HCl media. Stability constants and Gibbs free energies of complexation were estimated for both media, revealing that complexation is more pronounced in NaClO4 compared to HCl. This supports the idea that the interaction between Na₂WO₄ and Congo red dye is stronger in NaClO₄ solutions. Additionally, the kinetic and solvation cyclic parameters for the interaction of Na₂WO⁴ with Congo red in 0.1 M NaClO₄ were found to be lower than those in 0.1 M HCl, attributed to a faster electron transfer rate in the HCl medium.

*Corresponding author e-mail: <u>memo.nabil.2017@gmail.com</u> (Mahmoud N. Abdel-Hady) **Receive Date:** 21 September 2024, **Revise Date:** 09 November 2024, **Accept Date:** 25 November 2024 DOI <u>https://doi.org/10.21608/ejchem.2024.322483.10483</u> ©2025 National Information and Documentation Center (NIDOC) electrochemistry is used to explain the dielectric properties of tungstate WO3 films [18–20]. The electro redox reactions of sodium tungstate have several benefits. Firstly, it is used for tungsten metal production with high purity from sodium tungstate, since tungsten is a critical strategic metal with applications in electronics and aerospace. Secondly, energy efficiency, since the redox processes are generally more energy-efficient compared to traditional pyro metallurgical methods for extracting tungsten from ores. This can lead to lower energy costs. Thirdly, selectivity, since electro reduction allows for the selective reduction of tungsten ions, separating them from other metalions that may be present in the feedstock. This can result in a purer final tungsten product. Fourthly, waste reduction, since electrolysis can minimize waste generation compared to some other tungsten extraction techniques. The electrolyte can often be reused, reducing the amount of waste produced. Fifthly, process flexibility, since electro reduction can be carried out at relatively low temperatures, making it more flexible than high-temperature pyrometallurgical processes. Sixthly, environmental benefits, since by being more energy- efficient and generating less waste, the electro reduction of sodium tungstate can have a lower environmental impact compared to other tungsten production methods. Therefore, giving a lot of data about sodium tungstate in different media and interaction with some reagents are necessary for understanding the different tungstate behaviors.

2. Materials & Method

The materials (sodium tungstate, sodium perchlorate, and HCl) were supplied by Sigma-Aldrich. Congo Red, High Purity, 3,3'-[(1,1'-Biphenyl)-4,4'-diylbis(azo)]bis(4-amino-1-naphthalenesulfonic Acid) 2Na from Dr. Theodor Schuchardt.in Munchen. The water was deionized. Using a three-electrode setup, cyclic voltammetry measurements were carried out with the DY2000 (USA). The reference electrode (Ag/AgCl/saturated KCl), the working electrode (glassy carbon electrode), and the auxiliary electrode (Pt electrode) are the various electrodes.

3. Results & discussion

3.1. Cyclic voltammogram for different concentrations of Na2WO4 in NaClO4 (0.1) M

The cyclic voltammetry was performed for 0.1M NaClO4 solutions and by adding different concentrations of sodium tungstate (0.1M) using the glassy carbon electrode as the electrode in use (EGC). The waves when the EGC is present are in the window range of 1.5V to -1.5V, and one main reduction peak at -0.1V and one main oxidation peak at +0.4V are formed. As shown in Figure (1) and Table (1), an increase in the cathodic and oxidation waves was seen by adding numerous Na2WO4 (0.1M) concentrations, suggesting a diffusion-controlled process. All the parameters shown in Table 1 are increased by increase of tungstate concentration and this confirm the diffusibility of the redox reaction under consideration [20-22].

Fig. 1. A Cyclic voltammograms for different concentrations of Na2WO4 in NaClO4 (0.1) M at scan rate 0.1V/s and 292.65K.

The cathodic reaction of sodium tungstate in acidic and neutral media was suggested as transfer of tungstate ion to WO3 as [13]:

WO
$$^{2-}$$
 + H+ \leftrightarrow WO + OH-

The formed WO3 was reduced to WO₂ and W₂O₅ consuming two electrons as explained in the following equations: WO3+2 H++2e- \leftrightarrow WO2 + 2H2O at ~-0.1 V 2WO2 +2H++2e- \leftrightarrow W2O5 + H2O The last W2O5 was also reduced to WO2 as: W2O5 +2H++2 e- \leftrightarrow 2 WO2 + H2O at ~ -0.2 V The oxidation of WO2 to WO3 was observed at +0.3V.Whereas the oxidation of WO2 to W2O5 was found to be at +0.5V.We select the primary oxidation peak at 0.1V and the primary reduction peak at -0.1V.

[M] x10 ³		Volt		Amp		Ip,a/Ip,c	Volt
mol.L ⁻¹	(-) Ep,a(V)	Ep,c(V)	$\Delta Ep(V)$	(-)Ip,ax10 ⁶	Ip,cx106	-	E°
6.62	0.395	0.108	0.503	37.97	32.81	1.157	0.144
13.2	0.416	0.108	0.524	26.88	17.84	1.506	0.154
19.6	0.414	0.078	0.491	34.14	22.50	1.517	0.168
26.0	0.449	0.071	0.519	25.01	25.44	0.983	0.189
32.3	0.549	0.076	0.624	25.47	27.89	0.913	0.236

Table 1 A :Effect of different concentrations of Na2WO4 by using EGC at scan rate 0.1V/s and 292.65K.

Table 1 B : Continue.

Dax10 ⁵ cm ² .s ⁻¹	Dc x10 ⁵ cm ² .s ⁻¹	Epc/2	Epa-Epc/2	ana	ksc x10 ² cm ² .s ⁻¹	Гс x10 ⁹ mol.cm ⁻²	(+)Qcx10 ⁵ Columb	Гах10 ⁹ mol.cm ⁻²	(-)Qax10 ⁵ Columb
5.667	4.23	0.060	0.1679	0.279	3.22	2.730	1.65	3.160	1.91
7.194	3.17	0.069	0.1776	0.264	1.31	1.485	9.00	2.237	1.36
5.226	2.27	0.071	0.1483	0.316	6.31	1.872	1.13	2.841	1.72
1.598	1.65	0.209	0.2793	0.168	6.86	2.117	1.28	2.081	1.26
1.075	1.288	0.226	0.3017	0.155	4.65	2.321	1.41	2.12	1.28
4.698	6.871	0.127	0.2428	0.193	4.25	2.021	1.22	1.67	1.01

3.2. Evaluation of different solvation parameters for sodium tungstate in the absence and presence of congo red in NaClO4 media:

Table 1A, 1B show various solvation, kinetic, and thermodynamic parameters were evaluated as explained in previous works, and the results are presented also in other Tables in Tables 2 A, 2 B, 3, with high Gibbs free energies indicating a good complexion reaction. The cyclic voltammograms are given in Fig. 1B for the effect of congo red dye on the redox reaction of sodium tungstate. Showing the same wave but with a decrease in their currents, informing a complexation reaction between the two in Figure (2) and Tables 2 A, 2B.

Fig. 2. Cyclic voltammogram for the interaction of (32.2x10- 3M) Na2WO4 and different concentrations of congo red dye at scan rate 0.1V/s and 292.65K

[L]x10 ³		Volt		Amp		Ip,a/Ip,c	volt
mol.L ⁻¹	(-) Ep,a(V)	Ep,c(V)	$\Delta Ep(V)$	(-)Ip,ax10 ⁶	Ip,cx106		E°
6.37	0.504	0.114	0.617	13.43	27.14	0.494	0.195
12.7	0.495	0.078	0.572	14.95	22.07	0.677	0.209
18.9	0.541	0.079	0.619	21.28	20.35	1.045	0.231
25.0	0.363	0.426	0.788	20.26	89.49	2.264	0.031
31.1	0.359	0.464	0.822	14.84	11.14	1.331	0.053

Table 2 A :Effect of different concentrations of Congo red by using EGC at scan rate (0.1 V/s and 292.65K

Table 2 B :Continue

Dcx10 ⁵ cm ⁻² .s ⁻¹	Epc/2	Epa-Epc/2	ana	ksc x10 ² cm ⁻² .s ⁻¹	Γc x10 ⁹ mol.cm ⁻²	(+)Qcx10 ⁵ columb	Га x10 ⁹ mol.cm ⁻²	(-)Qax10 ⁵ columb
4.23	0.060	0.16797	0.279	3.22	2.7309	1.65	3.160	1.91
3.17	0.069	0.1776	0.264	1.31	1.4851	9.00	2.2371	1.36
2.27	0.071	0.1483	0.316	6.31	1.8726	1.13	2.841	1.72
1.65	0.209	0.2793	0.168	6.86	2.1174	1.28	2.081	1.26
1.288	0.226	0.3017	0.155	4.65	2.3210	1.41	2.12	1.28

Table 3 Stability constants and Gibbs free energies of solvation for (Na2WO4+Congo red) interaction in NaClO4 medium

[L]x10 ³ mol.L ⁻¹	<u>Metal</u> (Ep,a)M	Complex (Ep,a)C	ΔE mv	log βj	$\Delta G \ (kJ/mol)$
6.58	0.200	0.195	0.0047	0.8760	-4.9505
13.0	0.200	0.209	0.0087	0.3794	-2.1444
19.2	0.200	0.231	0.0309	0.3972	-2.2452
25.3	0.200	0.031	0.2310	8.5327	-48.220
31.3	0.200	0.053	0.2524	9.2502	-52.275

The stability constants and Gibbs free energies of interaction between sodium Tungstate and Congo red dye in sodium perchlorate medium were calculated following equation given bellow explained in literature [23-39] and found to increase by increase in congo red dye concentration favoring more complexation [40-44].

$\Delta G = -2.303 \text{ RT} \log \beta j$

3.3. Cyclic voltammogram for different concentrations of Na2WO4 in HCl (0.1) M:

The cyclic voltammetry was performed for 0.1M HCl solutions and by adding different sodium tungstate (0.1M) using the glassy carbon electrode as the electrode that is in use (EGC). When the EGC is present, the waves have one primary reduction peak and are in the window range of 1.5V to -1.5V. at -0.1V. For further oxidation, two peaks are obtained here for the redox reaction for sodium tungstate in HCl medium. The main reduction peak at approximately - 0.3 V is very effective for the detection of tungstate ions in HCl medium. The Congo red dye effect on the redox reaction of tungstate ions was studied, and the data obtained are given in Figure (3) and Table (4).

Fig. 3. Cyclic voltammogram for different concentrations of Na2WO4 in HCl (0.1) M at 0.1V/s and 302.85K.

Egypt. J. Chem. 68, No. 7 (2025)

[M] x10 ³			Volt		Α	мр	Ip,	a/Ip,c	Volt
mol.L ⁻¹	(-)		Ep,c(V)	$\Delta Ep(V)$	(-)Ip,ax10 ⁶	Ip,cx	106		E°
	Ep,a(V)							
3.32	0.13	3	0.193	0.059	45.01	93.3	5 0.	482	0.163
6.62	0.12	8	0.200	0.072	57.94	12.9	2 0.	448	0.164
9.90	0.11	4	0.189	0.074	38.61	12.7	0 0.	.304	0.152
13.2	0.10	0	0.209	0.109	34.43	18.6	3 0	185	0.155
16.4	0.05	9	0.225	0.166	42.77	29.1	8 0.	1465	0.142
19.6	0.05	5	0.281	0.225	44.26	53.5	0 0.	0827	0.168
32.3	0.15	8	0.299	0.141	49.79	69.7	4 0.	0713	0.228
Table 4 E	3: Continue								
Dax10 ⁵	Dc x10 ⁵	Epc/2	Epa-Epc/2	ana	ksc x10 ²	Гс х10 ⁹	(+)Qcx10 ⁵	Гах10 ⁹	(-)Qax10 ⁵
cm ² .s ⁻¹	cm ² .s ⁻¹				cm ² .s ⁻¹	mol.cm ⁻²	Columb	mol.cm ⁻²	Columb
1.81	1.41	0.136	0.0570	0.850	4.63	8.040	4.87	3.877	2.35
1.17	6.79	0.160	0.0408	1.186	4.82	1.113	6.74	4.991	3.02
5.21	2.94	0.163	0.0259	1.866	4.18	1.094	6.63	3.325	2.02
3.50	3.58	0.161	0.0483	1.002	6.57	1.604	9.72	2.965	1.80
3.48	5.653	0.188	0.0379	1.278	2.78	2.513	1.52	3.68	2.23
3.01	1.328	0.217	0.0635	0.763	1.02	4.608	2.79	3.81	2.31
2.06	8.339	0.207	0.0917	0.528	1.35	6.006	3.64	4.29	2.60

Table 4 A:Effect of different concentrations of Na2WO4 by using EGC electrode at scan rate 0.1V/s and 302.85K.

3.4. Cyclic voltammogram of presence of conco red with Na2WO4 in HCl (0.1) M:

The reduction of congo red is represented by the observed reduction peak. This indicates that the congo red transforms into its leuco, or reduced, form by a reduction process. The leuco form of congo red dye, which is reduced, may not be stable under the experimental conditions because of the irreversibility of the reduction peak. This instability may cause additional reactions or changes in the leuco form. It appears that Na_2WO_4 does not significantly interact with conco red or its leuco form throughout the electrochemical process under study, based on the lack of effect it has on peak potential or peak current. This suggests that neither the reduction of congo red to its leuco form nor the next reactions are influenced by Na_2WO_4 Figure (4) and Table (5). The data given in Tables 4 A , 4B divided in three categories, diffusion, kinetic and adsorption parameters, are generally decreased by more adding congo red dye favouring mores solvation interaction between metal ions and dye ligand used. The **una** and ksc kinetic parameters are decreased by more adding dye indicating decrease of the velocity of ions due to complexation [40-50].

Fig. 4. Cyclic voltammogram for the interaction Na2WO4 with different concentrations of congo red using 0.1V/s and 302.85K.

The adsorption parameters, Γc , Γa , Qc, Qa in Table 5B are generally decreased by increase of Congo red dye supporting the complexation reaction between tungstate ion and the congo red dye.

[L]x10 ³		Volt		Amp		Ip,a/Ip,c	volt
mol.L ⁻¹	(-)Ep,a(V)	Ep,c(V)	$\Delta Ep(V)$	(-)Ip,ax10 ⁶	Ip,cx10 ⁶		E°
3.22	0.073	0.309	0.381	10.03	12.14	0.082	0.118
6.41	0.068	0.301	0.369	12.17	12.71	0.095	0.116
9.58	0.022	0.315	0.337	21.89	13.66	0.160	0.146
15.9	0.007	0.325	0.317	15.53	14.04	0.110	0.166
19.0	0.029	0.320	0.291	21.55	14.11	0.152	0.174
22.1	0.052	0.303	0.251	20.43	15.83	0.129	0.177
31.3	0.047	0.314	0.267	26.84	15.79	0.169	0.180

Table 5 A :Effect of different concentrations of Congo red dye by using EGC electrode at scan rates (0.	1 V/s and 302.85K)
---	--------------------

Table 5 B: Continue.

Dcx10 ⁵ cm ⁻² .s ⁻	Epc/2	Epa-Epc/2	ana	ksc x10 ² cm ⁻ 2.s ⁻¹	Гс x10 ⁹ mol.cm ⁻²	(+)Qcx10 ⁵ columb	Га x10 ⁹ mol.cm ⁻²	(-)Qax10 ⁵ columb
3.275	-0.205	0.1041	0.464	2.19	1.045	6.34	8.64	5.23
1.366	-0.193	0.1083	0.447	1.77	1.094	6.63	1.05	6.35
2.714	-0.201	0.113	0.425	1.01	1.100	7.13	1.00	1.14
1.222	-0.203	0.121	0.400	6.92	1.209	7.33	1.34	8.11
1.214	-0.199	0.120	0.401	4.19	1.215	7.36	1.86	1.12
9.089	-0.194	0.1094	0.443	2.30	1.363	8.26	1.76	1.07
4.250	-0.195	0.118	0.408	2.22	1.360	8.24	2.31	1.40

Table 6 Stability constant for (Na₂WO₄+ congo red dye) interaction in HCl medium

[L]x10 ³	Metal	Complex	$\Delta \mathbf{E} \mathbf{mv}$	log βj	$\Delta \mathbf{G} \ (\mathbf{kJ}/\mathbf{mol})$
mol.L ⁻¹	(Ep,a)M	(Ep,a)C			
3.22	0.228	0.118	0.11	3.68	-20.84
6.41	0.228	0.116	0.11	3.67	-20.78
9.58	0.228	0.146	0.082	2.60	-14.69
1.59	0.228	0.166	0.062	1.80	-10.21
1.90	0.228	0.174	0.054	1.45	-8.21

The different thermodynamic parameters are calculated here and found to be less in quantities than that using NaClO4 medium. The thermodynamic parameters, log βj and ΔG given in Table 6 are increased by more more increasing congo red dye concentration indicating complexation interaction(opposite Table 6 direction).

3.5. Optimal supportive electrolyte's impact on free energy:

From Figure (5), it is observed that the free energy for the NaClO4 signal is relatively large across the medium range tested. This could indicate a significant influence of NaClO4 on the electrochemical behavior or stability of the system under study. The use of HCl as another medium suggests a different set of conditions that could alter the electrochemical properties compared to NaClO₄. Stability of the system is crucial for accurate monitoring and interpretation of the voltammetric data. The system must remain stable for a predetermined amount of time to ensure reliable measurements of peak currents and potential variations. The variations observed in signal intensity and potential peaks when changing the media (NaClO4 and HCl) indicate that these media have differing effects on the electrochemical behavior of Na2WO4, especially in the presence or absence of Congo red dye.

Fig. 5. Effect of the ideal supporting electrolyte for free energies with 0.1M NaClO4 and 0.1M HCl

4. Conclusions

The interaction solvation parameters, particularly the adsorption parameters such as the anodic quantity of electricity (Γa), cathodic surface coverage (Γc), and anodic surface coverage, indicate that strong interactions significantly influenced the cathodic quantity of electricity (Qa) and Gibbs free energies of interaction. Specifically, the interaction of Na2WO4 with Congo red dye in 0.1M NaClO4 exhibited notable strength, suggesting that the electrochemical environment facilitated these interactions more effectively than other media, such as 0.1M HCl. Moreover, all stability constants and Gibbs free energy values associated with these interactions were indicative of strong electrostatic interactions. This suggests that the forces driving the interactions between Na₂WO₄ and Congo red dye are primarily electrostatic in nature, which enhances the overall stability and effectiveness of the adsorption process in the NaClO₄ medium. The findings highlight the importance of the solvation environment in modulating the interaction parameters, with NaClO₄ proving to be particularly effective in promoting strong electrostatic interactions.

References

- B. Reichman, A.J. Bard, the Electro chromic Process at WO 3 Electrodes Prepared by Vacuum Evaporation and Anodic Oxidation of W, J. Electrochem. Soc. 126 (1979) 583.
- [2] B. Reichman, A.J. Bard, A Digital Simulation Model for Electrochromic Processes at WO 3 Electrodes, J. Electrochem. Soc. 127 (1980) 647.
- [3] E.A. Meulenkamp, Mechanism of WO 3 Electrodeposition from PeroxyTungstate Solution, J. Electrochem. Soc. 144 (1997) 1664.
- [4] M.A. Butler, In situ photoemission from semiconducting WO3 electrodes Surf. Sci. 101 (1980) 155.
- [5] J. Desilvestro, M. Gratzel, Electron Transfer at the WO 3 Electrolyte Interface under Controlled Mass Transfer Conditions, J. Electrochem. Soc. 133 (1986) 331.
- [6] F.B.Kaufman,D.B.Thompson,R.E.Broadie,M.A.J aso,W.L.Guthrie,D.J. Pearson, M.B. Small, ChemicalMechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects, J. Electrochem. Soc. 138 (1991) 3460.
- [7] E.A. Kneer, C. Raghunath, S. Raghavan, J.S. Jeon, Electrochemistry of Chemical Vapor Deposited Tungsten Films with Relevance to Chemical Mechanical Polishing, J. Electrochem. Soc. 143 (1996) 4095.
- [8] D.J. Stein, D. Hetherington, J.L. Cecchi, Investigation of the Kinetics of Tungsten Chemical Mechanical Polishing in Potassium Iodate-Based Slurries: II. Roles of Colloid Species and Slurry Chemistry, J. Electrochem. Soc. 146 (1999) 376.
- [9] [S.R. Biaggio, R.C. Rocha-Filho, J.R. Vilche, F.E. Varela, L.M. Gassa, A study of thin anodic WO3 films by electrochemical impedance spectroscopy, J.Electrochim. Acta 42 (1997) 1751.
- [10] M. Bojinov, The ability of a surface charge approach to describe barrier film growth on tungsten in acidic solutions, J. Electrochim. Acta 42 (1997) 3489.
- [11] M. Metikos-Hukovic, Z. Grubac, The growth kinetics of thin anodic WO3 films investigated by electrochemical impedance spectroscopy, J. Electroanal. Chem. 556 (2003) 167.
- [12] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, second ed., Wiley, New York, 2001.
- [13] Mustafa Anik, pH-dependent anodic reaction behavior of tungstate in acidic phosphate solution, Electrochimica Acta, 54 (2009) 3943–3951.
- [14] E.M.Abou Elleef,M.N. Abd El-Hady ,E.A. Gomaa ,A.G.Al-Harazie , Conductometric association parameters for CdBr2 in the presence and absence of Ceftazidime in water and 30% ethanol--water mixtures, J. Chem. Eng. Data. 66 (2021) 878–889.
- [15] M.N.Abd El-Hady ,E.A. Gomaa ,A.G. Al- Harazie , Cyclic voltammetry of bulk and nano CdCl2 with ceftazidime drug and some DFT calculations, J. Mol. Liq. 276 (2019) 970–985.
- [16] E.A. Gomaa ,M.M. El-Defraway ,S.Q. Hussien ,Estimation of cyclic voltammetry data for SrCl2, CaCl2 and their interaction with ceftriaxone sodium salt in KNO3 using palladium working electrode, Eur. J. Adv. Chem. Res. 1 (2020)

- [17] O.J.Fakayode, T.T.I.Nkambule, Cyclic voltammetric determination of calcium in water in the presence of natural organic matter (humic acid) and Cu (II) at gold electrode's surface, Food Chem. Adv. 1 (2022) 100012.
- [18] M.V.Sale, L.B.Reid, L.Cocchi, A.M.Pagnozzi, S.E.Rose,J.B. Mattingley, Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI, Hum. Brain Mapp. 38 (2017) 4773–4787.
- [19] E.W.Moore, others, Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion-exchange electrodes, J. Clin. Invest. 49 (1970) 318–334.
- [20] E.A.Gomaa, M.A.Morsi, A.E.Negm, Y.A.Sherif, Cyclic voltammetry of bulk and nano manganese sulfate with Doxorubicin using glassy Carbon electrode, Int. J. Nano Dimens. 8 (2017) 89.
- [21] G.A.Mabbott, An introduction to cyclic voltammetry, J. Chem. Educ. 60 (1983) 697.
- [22] N.Tokman, The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry, J. Hazard. Mater. 143 (2007) 87–94.
- [23] K.Nadeau, Z.Mester, L.Yang, The direct and accurate determination of major elements Ca, K, Mg and Na in water by HR-ICPMS, Sci. Rep. 8 (2018) 1–6.
- [24] R.Kowalik, The voltammetric analysis of selenium electrodeposition from H2SeO3 solution on gold electrode, Arch. Metall. Mater. 60 (2015) 57–63.
- [25] M.M.El-Kerdawy, R.I.El-Bagary, E.F.Elkady, A.A.Othman, Development and validation of a stability-indicating RP-LC method for the simultaneous determination of otilonium bromide and its expected degradation product in bulk drug and pharmaceutical preparation, Eur. J. Chem. 7 (2016) 97–101.
- [26] E.A.Gomaa, A.Z.EL-Sonbati, M.A.Diab, M.S.EL-Ghareib, H.M.Salama, others, Cyclic Voltammetry, Kinetics, Thermodynamic and Molecular Docking Parameters for the Interaction of Nickel Chloride with Diphenylthiocarbazone, Open Acad. J. Adv. Sci. Technol. 4 (2020) 30–44.
- [27] M.A.F.Othman, A.A.Othman, H.M.Zuki, Dithizone modified silver electrode for the determination of metal ions in aqueous solution, Malaysian J. Anal. Sci. 20 (2016) 197–204.
- [28] S.Birghila, M.M.Bratu, C.Prajitura, F.N.Roncea, T.Negreanu-Pirjol, Spectrophotometric method for the determination of total proteins in egg white samples, Rev. Chim.(Bucharest). 66 (2015) 378–381.
- [29] B.H.Durmishi, M.Ismaili, A.Shabani, S.Jusufi, X.Fejzuli, M.Kostovska, S.Abduli, The physical, physical-chemical and chemical parameters determination of river water Shkumbini (Pena)(part A), Ohrid, Repub. Maced. 27 (2008) 1–11.
- [30] A.A.Olajire, F.E.Imeokparia, Water quality assessment of Osun River: studies on inorganic nutrients, Environ. Monit. Assess. 69 (2001) 17–28.
- [31] R.Gruden, A.Buchholz, O.Kanoun, Electrochemical analysis of water and suds by impedance spectroscopy and cyclic voltammetry, J. Sensors Sens. Syst. 3 (2014) 133–140.
- [32] A.F.El-Baz, H.M.Abbas, others, Isolation and identification of an endophytic fungus from ficus elastica decora and investigation of the antioxidant and antifungal bioactivities of its fermentation extract, Menoufia J. Agric. Biotechnol. 2 (2017) 81–85.
- [33] A.Mohamed, S.Yousef, W.S.Nasser, T.A.Osman, A.Knebel, E.P.V.Sánchez, T.Hashem, Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV, Environ. Sci. Eur. 32 (2020) 1–8.
- [34] D.A.El-Kot, E.A.Gomaa, A.M.H.El-Askalany, R.R.Zaky, M.N.Abd El-Hady, Design of a novel- NOON-tetradentate Schiff-base scaffold supported by \$α\$-tetralone and benzothiazole moieties with its Cu2+, Co2+, and Cd2+ chelates, J. Mol. Struct.(2023) 134901.
- [35] H.Ye, R.M.Crooks, Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles, J. Am. Chem. Soc. 127 (2005) 4930–4934.
- [36] J.M.S.Almeida, R.M.Dornellas, S.Yotsumoto- Neto, M.Ghisi, J.G.C.Furtado, E.P.Marques, R.Q.Aucélio, A.L.B.Marques, A simple electroanalytical procedure for the determination of calcium in biodiesel, Fuel. 115 (2014) 658– 665.
- [37] E.A.Gomaa, M.A.Tahoon, A.Negm, Aqueous micro-solvation of Li+ions: Thermodynamics and energetic studies of Li-(H2O) n (n= 1--6) structures, J. Mol. Liq. 241 (2017) 595–602.
- [38] E.A.Gomaa,R.R.Zaky, A.Shokr, Estimated the physical parameters of lanthanum chloride in water-N, N-dimethyl formamide mixtures using different techniques, J. Mol. Liq. 242 (2017) 913–918.
- [39] E.A.Gomaa, M.H.Mahmoud, M.G.Mousa, E.M.El-Dahshan, Cyclic voltammetry for the interaction between bismuth nitrate and methyl red in potassium nitrate solutions, Chem. Methodol. 3 (2018) 1–11.
- [40] M.Fathi, E.A.Gomaa, S.E.Salem, H.M.Killa, A.A.Gouda, and Farouk, Abdel Hamid, Parameters for the concductometric association for lump and nano CoSO4.7H2O in the presence and absence of fuchsin acid in water at different temperatures, Bull. Chem. Soc. Ethiop., 2023, 37(3), 789-804.
- [41] J.Nakanishi, I.Kuramoto, J.Baba, K.Ogawa, Y.Yoshikawa, H.Ishiguro, Continuous Hospitality with Social Robots at a hotel, SN Appl. Sci. 2 (2020) 1–13.
- [42] E.M.AbouElleef, M.N.Abd El-Hady, E.A.Gomaa, A.G.Al-Harazie, Conductometric association parameters for CdBr2 in the presence and absence of Ceftazidime in water and 30% ethanol--water mixtures, J. Chem. Eng. Data. 66 (2021) 878– 889.
- [43] D.Kayali, N.A.Shama, S.Aşır, K.Dimililer, Machine Learning Based-Models for the Qualitative Classification of Potassium
- [44] F.J.R.Rossotti, H.Rossotti, The determination of stability constants: and other equilibrium constants in solution, 1961.

Egypt. J. Chem. 68, No. 7 (2025)

- [45] M.D.Murray, B.Loos, W.Tu, G.J.Eckert, X.- H.Zhou, W.M.Tierney, Effects of computer-based prescribing on pharmacist work patterns, J. Am. Med. Informatics Assoc. 5 (1998) 546–553.
- [46] A.A.Sharfalddin, A.-H.Emwas, M.Jaremko, M.A.Hussien, Synthesis and theoretical calculations of metal-antibiotic chelation with thiamphenicol: in vitro DNA and HSA binding, molecular docking, and cytotoxicity studies, New J. Chem. 45 (2021) 9598–9613.
- [47] B.A.Babgi, N.A.Alzaidi, J.H.Alsayari, A.- H.M.Emwas, M.Jaremko, M.H.Abdellattif, M.Aljahdali, M.A.Hussien, Synthesis, HSA- Binding and Anticancer Properties of [Cu2 dppm) 2 (N^N N) 2] 2+, J. Inorg. Organomet. Polym. Mater. 32 (2022) 4005–4013.
- [48] N.Daud, N.A.Yusof, S.M.M.Nor, Electrochemical characteristic of biotinyl somatostatin-14/Nafion modified gold electrode in development of sensor for determination of Hg (II), Int.J. Electrochem. Sci. 8 (2013) 10086– 10099.
- [49] Y.Qiushi, X. Zihao, L.Tianquan, G.M.Djamaladdin, L.H.Craig and V.G.Yurii, Tafel Slope Analyses for Homogeneous Catalytic Reactions, Catalysts 2021, 11, 87.
- [50] S.Tatsuya, T.G.-E.Angel & T.Kazuhiro, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Scientific Reports, 2015, 1-21.