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Abstract  
Background: Diet significantly impacts immune function and inflammation, with different types of fats, fibers, and 

micronutrients playing distinct roles. Omega-3 and omega-6 fatty acids, saturated fats, sterols, and dietary fibers all influence 

immune responses and inflammation, potentially affecting disease risk and management. 

Aim: This review examines how dietary components such as omega-3 and omega-6 fatty acids, saturated fats, sterols, and fibers 

affect immune function and inflammation. It aims to elucidate the mechanisms through which these nutrients influence immune 

responses and their potential implications for disease prevention and management. 

Methods: We conducted a comprehensive review of the literature, focusing on recent studies that investigate the role of dietary 

fats, fibers, and micronutrients in immune modulation. Key areas of interest included the impact on inflammatory markers, 

immune cell function, and disease outcomes. 

Results: Omega-3 fatty acids exhibit anti-inflammatory properties and may benefit conditions like rheumatoid arthritis, while 

omega-6 fatty acids are involved in both pro-inflammatory and anti-inflammatory responses. Saturated fats increase 

inflammation and may exacerbate chronic diseases. Sterols like cholesterol contribute to systemic inflammation and affect 

immune cell function. Dietary fibers promote gut health and systemic immunity through SCFA production, impacting conditions 

such as Crohn's disease and metabolic syndrome. Probiotics also modulate immune responses and improve gut health. 

Conclusion: Dietary components play a crucial role in modulating immune function and inflammation. Omega-3 fatty acids 

and fibers show potential benefits for reducing inflammation and disease risk, while saturated fats and sterols may contribute to 

inflammatory responses. Future research should focus on optimizing dietary recommendations to enhance immune health and 

manage chronic diseases. 

Keywords: Omega-3 fatty acids, Omega-6 fatty acids, Saturated fats, Sterols, Dietary fibers, Immune function, Inflammation.. 
 

1. Introduction 

The relationship between immunology and 

nutrition is quite intricate. The immune system is 

influenced by an individual's general nutritional 

condition, level of sustenance, and eating habits, 

which include foods, nutrients, and non-nutritive 

bioactive chemicals. Physical barriers (such as skin 

and intestinal mucous membranes), the microbiome, 

the innate immune system (such as macrophage 

function and polarization), and the adaptive immune 

system (such as T- and B-cell function) can all have an 

impact on this. On the other hand, the immune system 

influences dietary requirements and metabolism, 

which impacts the body's reaction to food. The 

foundation of this analysis is the complex interplay 

among nutrition, food, and the immune system. Using 

case studies that explore the connection between 

immunity and nutrition, the review will go over the 

developing topic of nutritional immunology. 
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There are several ways to evaluate the mutual 

link between the immune system and food. 

Researchers have examined the effects of isolated 

nutrients [2–6], dietary patterns like the Mediterranean 

Diet [7,8], and bioenergetic status [1] on a variety of 

immune function indices in both controlled feeding 

and free-living intervention studies (e.g., circulating 

cytokines, high-sensitivity C-reactive Protein, 

antibodies, tissue-specific transcriptomes). In addition 

to these intervention studies, a growing corpus of 

research using observational study designs has 

examined the relationships between dietary intakes 

and similar immune function outcomes and disease 

endpoints (e.g., allergy incidence, chronic disease 

risk) by measuring dietary intakes using self-reported 

measures and circulating biomarkers. Numerous 

populations have been involved in these studies: 

individuals with metabolic syndrome, adults, 

individuals with chronic diseases, pregnant women 

and small infants, and people with autoimmune, 

inflammatory, and/or allergy problems. In order to 

gain mechanistic insights, research on laboratory 

animals and cultured cells is typically added to these 

clinical observations. However, the direct application 

of findings from animal studies to human contexts is 

limited due to notable variations in immune system 

development and function [9,10] and the lack of in 

vivo interactions. 

It is significant to emphasize that there are 

currently few large-scale randomized controlled trials 

showing how food affects the risk of immune-

mediated disease, including clinical outcomes such as 

disease remission or event reduction. For example, 

many clinical investigations have not supported the 

theories linking early exposure to dairy protein with 

beta-cell autoimmunity [11]. A further indication of 

the difficulties in nutritional immunology and the 

drawbacks of using surrogate endpoints is the 

extensive history of investigating the inflammation-

atherosclerosis hypothesis. It took decades for 

researchers to use a variety of anti-inflammatory drugs 

before they could show that interleukin (IL)-1 beta 

suppression decreased the incidence of cardiovascular 

events. Although there is a great deal of interest in 

comprehending the relationship between immune-

mediated disease risk and diet, it is crucial to carefully 

assess the type and caliber of the available data. 

Immune System During Aging: 

Many physiological systems, including the 

immune system, see major alterations as we age. There 

is a reciprocal effect between aging and the immune 

system as well as other systems like the endocrine, 

neurological, digestive, cardiovascular, and 

musculoskeletal systems. These aging-related changes 

affect both innate and adaptive immunity, changing 

leukocyte subsets and their main roles, which 

frequently contribute to an ongoing proinflammatory 

state [12-13]. Known as "inflammaging," this 

syndrome is defined by persistently high levels of 

proinflammatory mediators such TNF-α, interleukin-6 

(IL-6), and interleukin-1 beta (IL-1) [14]. 

Immunosenescence has a significant clinical impact 

on health outcomes. In the elderly, it increases 

susceptibility to infections, frequently reactivates 

latent viruses, and reduces vaccine efficiency; the 

annual influenza vaccine, for example, only exhibits 

40–60% efficacy in those 65 years of age or beyond 

[15]. Aging is also linked to higher risks of cancer and 

autoimmune disease. There has been much discussion 

on how immunosenescence and inflammation can 

facilitate a variety of illnesses [16]. 

As we age, the innate immune system 

experiences major modifications. Monocytes are 

classified into three subtypes: classical (CD14++ 

CD16−), nonclassical (CD14+ CD16++), and 

intermediate (CD14++ CD16+). Monocytes make up 

roughly 5–10% of blood leukocytes. Nonclassical 

CD14+ CD16+ monocytes become more prevalent as 

people age, indicating a change towards a 

proinflammatory, senescent phenotype with shorter 

telomeres. A shift in the phenotype of macrophages 

has also been seen; proinflammatory M1 macrophages 

have been shown to rise, while more 

immunoregulatory M2 macrophages have decreased 

[17]. Atherosclerotic plaque growth has been 

connected to this M1/M2 imbalance, which is assumed 

to be the cause of age-related illnesses [18-19]. 

Furthermore, in neutrophils and 

monocytes/macrophages, aging modifies receptor 

expression and intracellular signal transduction, which 

leads to aberrant chemotaxis, diminished 

phagocytosis, impaired activation, and decreased 

pathogen detection. Changes also occur in natural 

killer (NK) cells, which comprise approximately 15% 

of peripheral blood lymphocytes. Dysregulated 

cytokine production and decreased cytotoxicity in 

aged adults are caused by a decrease in CD56bright 

NK cells, which have regulatory functions, and an 

accumulation of highly differentiated CD56dim cells 

[20-21]. 

 
Figure 1: Immune Changes during Age. 
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While T-cell counts overall stay relatively 

constant throughout life, aging significantly alters the 

subpopulations of these cells. In particular, there is a 

drop in CD4+ T-cells and an increase in CD8+ T-cells, 

resulting in a lower CD4+/CD8+ ratio, which in some 

conditions is suggestive of immunosuppression [22]. 

A decrease in naïve T-cells (expressing CD45RA and 

CD28) and an increase in more differentiated T-cells 

are linked to aging. T-cell receptor (TCR) repertoire is 

reduced as a result of thymic involution and prolonged 

antigenic stimulation-induced reduction in naïve T-

cells. These alterations are accelerated by human 

cytomegalovirus (HCMV) infection, which affects 

both naïve CD4+ T-cells and increases CD8+CD28− 

T-cells specific to HCMV [23]. Senescence and a 

build-up of highly differentiated CD28− T-cells, 

especially in CD8+ T-cells, are observed at the age of 

65, which results in decreased antigen-induced 

proliferation [24]. Inflammaging is made worse by 

senescent T-cells' shorter telomeres, decreased ability 

to proliferate, and increased synthesis of 

proinflammatory cytokines [25]. 

An ongoing, low-grade condition of 

inflammation that is linked to aging and does not go 

away is called "inflammatory aging." Cellular 

immunosenescence is intimately related to this 

persistent inflammatory illness [26]. Age-related 

increases in disability and mortality are linked to 

elevated levels of IL-6 and TNF-α, which are linked to 

a number of diseases, including cancer, cardiovascular 

disease, neurological disorders, and type II diabetes 

[27-28]. One potential predictor of the course of 

inflammation is the differential regulation of TNF-α 

and IL-10. The processes underlying age-related 

inflammation and its links to certain diseases, 

however, are still complicated and poorly understood 

[28]. 

Diet and Immune System Diseases: 

It is believed that dietary consumption 

throughout life—from conception to old age—is 

essential to the onset, progression, and care of 

noncommunicable diseases like cancer, diabetes, 

cardiovascular disease, and allergy disorders. These 

disorders are distinguished by distinct 

immunopathological processes, indicating that dietary 

immunomodulatory variables may have a major 

impact on the risk and treatment of disease. Immune-

mediated disorders are far more common in 

Westernized nations, where diets tend to be high in 

total calories, high in fat and added sweets, low in 

fiber, and with an unbalanced fatty acid composition. 

An elevated risk of allergy and chronic inflammatory 

illnesses has been associated with such dietary patterns 

[29-30]. In an effort to clarify these relationships, a 

growing corpus of preclinical and clinical studies has 

examined the effects of certain food components and 

patterns on immune function markers. We emphasize 

specific findings on autoimmune and allergic 

disorders, as well as the possible impacts of diet on 

disease incidence and management, even if a thorough 

study of nutritional immunology is outside the 

purview of this publication. 

Dietary Types and Patterns: 
The microbiome's synthesis of inflammatory 

and anti-inflammatory metabolites is influenced by 

dietary habits [31]. In order to prevent food allergy 

sensitization, a "tolerant" gut microbiome may 

downregulate TSLP and IL-33 expression [32]. It has 

been demonstrated that a Western-style diet heavy in 

trans and saturated fats and low in fiber affects goblet 

cell function and thins the mucus layer in mouse 

models [33]. In both murine models and human 

research, this dietary pattern can result in decreased 

microbial diversity by boosting Firmicutes and 

Proteobacteria and decreasing populations of the 

phylum Bacteroidetes [34–37]. Although its direct 

impact in treating food allergies has not been fully 

explored [38-41], greater dietary diversity has been 

found to protect allergy disorders [38] and is 

connected with a more diverse gut flora. Reduced 

allergy outcomes are linked to diets high in fruits, 

vegetables, seafood, and fermented foods, such as 

butyrate and propionate, throughout infancy [42]. 

Ingredients and Nutrients: 
As shown in mouse models, some vitamins, 

including B9 and A, behave as ligands and affect T-

regulatory cell function [43-44]. While long-chain 

polyunsaturated fatty acids, especially omega-3 fatty 

acids, reduce allergic inflammation by acting on 

resolvin D1 and peroxisome proliferator-activated 

receptors (PPAR) [45], omega-6 fatty acids are known 

to improve tight junctions in these mice [46]. The 

FADS1 genotype (rs174550) may also be impacted by 

these fatty acids. Lower levels of TNF-alpha, IL-6, and 

high-sensitivity C-reactive protein (hsCRP) have been 

associated with high levels of docosahexaenoic acid 

(DHA) [47-48]. Dietary sodium raises the ratio of Th-

17 to T-regulatory cells [49-52], while soy 

isoflavones, such as genistein and daidzein, are linked 

to lower levels of C-reactive protein (CRP) [53]. In 

mouse models, amino acids are important for the 

formation of cell walls [54]. They can also have an 

impact on the generation of bacterial products that 

have a beneficial effect on immune-mediated illnesses 

[54]. 

Additional Nutritious Elements: 
As demonstrated in mouse models, advanced 

glycosylated end products (AGEs) may have an effect 

on inflammatory processes and epithelial cell function, 

specifically altering TSLP and IL-33 [55-57]. AGEs 

can adversely change the composition of the 

microbiome [58]. High sugar content, grilling or 

roasting meats, high fat content, highly processed 

foods, fruit juices, and high fructose corn syrup are 

among the factors that cause AGEs [59-62]. Acidic 

foods and cooking techniques including steaming, 

boiling, and slow cooking can lower AGE levels [57]. 

Prebiotics may provide defense against the effects of 

AGEs by promoting the growth of advantageous 

microorganisms [63]. In mouse models, fiber 
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improves intestinal barrier integrity and lowers 

allergic inflammation by encouraging the fermentation 

of polysaccharides, which produces short-chain fatty 

acids (SCFAs) [64-65]. While emulsifiers such as 

carboxymethylcellulose and polysorbate 80 can 

disturb the epithelial mucous layer, cause 

inflammation, and alter the microbial composition, 

polyphenols have been shown to boost gut microbial 

diversity [66-67]. 

Food Production and Preparation: 
Foods' inherent microbial load can be 

impacted by the ways in which they are prepared and 

processed. Fresh foods have their own microbiome, 

which includes non-pathogenic bacteria on fruits and 

vegetables like Lactobacillus plantarum [68-70]. 

Preliminary data on mice suggests that phthalates, a 

chemical substance present in food packaging and 

found in fast foods [71], may decrease gut microbial 

diversity [72]. 

Nutrients and Allergy: 

Allergy is an immunological response 

brought on by exposure to different allergens, 

including foods and environmental stimulants [73]. An 

array of symptoms, such as anaphylaxis, urticaria, 

angioedema, allergic rhinoconjunctivitis, allergic 

asthma, allergic vasculitis, and atopic dermatitis 

(eczema), can be present in almost every organ system 

affected by this disorder [74]. Asthma, rhinitis, 

eczema, and food allergies are the most common 

allergic disorders [75]. Eczema and food allergies 

typically manifest in early childhood, and those who 

are impacted frequently go on to acquire asthma and 

allergic rhinitis—a progression of symptoms referred 

to as the "allergic march" [76]. 

The two main stages of allergic disorders are 

effector and sensitization. When naïve T cells come 

into contact with an allergen during the sensitization 

phase, they develop into T helper (Th) 2 cells, which 

release IL-4, IL-5, and IL-13. These cytokines induce 

B lymphocytes to secrete immunoglobulin E (IgE) that 

is specific to allergens [77]. The sensitization phase is 

completed by the allergen-specific IgE binding to the 

high-affinity receptor (FcεRI) on mast cells and 

basophils. The effector phase begins when the allergen 

is encountered again. Here, the allergen attaches itself 

to IgE that is surface-bound, cross-linking FcεRI 

receptors on mast cells or basophils. This causes the 

release of mediators that have already been generated, 

like prostaglandins and histamine, which results in the 

symptoms that are typical of allergies. The importance 

of a damaged epithelium barrier in allergic reactions 

has been brought to light by recent studies. Due to this 

breach in the barrier, allergens, bacterial toxins, and 

other particles can enter the body, causing 

inflammation and the release of cytokines such TSLP, 

IL-25, IL-31, and IL-33 [78]. Through a complex 

interaction of innate and adaptive immune responses, 

these mediators facilitate allergy reactions by 

increasing the synthesis of allergen-specific IgE, 

attracting eosinophils and other inflammatory cells, 

increasing mucus production, and decreasing smooth 

muscle contraction [76]. 

Research looking at food variety throughout 

infancy provides the strongest evidence about the 

effect of total dietary intake on allergy avoidance. 

According to the European Academy of Allergy and 

Clinical Immunology (EAACI), there is little chance 

of negative consequences from a more varied diet in 

early life, which may be associated with poorer allergy 

outcomes in children [79]. Diet diversity is the range 

of various meals or food groups that are consumed 

over a certain time period, consider both the frequency 

of intake and the foods' nutritional worth. Diverse diets 

are thought to impact allergy outcomes by influencing 

the immune system and microbiota. As seen in 

previous allergen tolerance models, this impact may 

be due to a variety of immunological antigen tolerance 

mechanisms, such as T and B regulatory cells, immune 

regulatory cytokines, and decreased IgE antibody 

production [79]. The scope of current food variety 

studies has been restricted to early life [79]. According 

to recent research, there may be a correlation between 

a decreased chance of food allergies during the first ten 

years of life and a more varied diet and allergen 

exposure during the first year of life [21]. On the other 

hand, nothing is known about the effects of dietary 

diversity on allergy outcomes at other life phases, such 

as pregnancy and later life. Research on certain dietary 

patterns, especially the Mediterranean diet, indicates 

that following such diets while pregnant may lower the 

risk of wheezing or eczema in the unborn child. 

Studies on the impact of food patterns on allergy 

outcomes throughout infancy or other life stages have 

not, however, been conducted [79]. 

Dietary Effect on Immune System: 

There is increasing interest in how dietary 

strategies might enhance immune function in older 

adults. Nutritional approaches are particularly 

advantageous for this demographic as they often 

require less intensive care compared to medical 

treatments and can promote a more active lifestyle, 

thereby contributing to overall well-being and active 

aging. Given that the elderly are more prone to poor 

nutritional status, which further exacerbates their 

already compromised immune function, recent 

advances in this field are critical. This review will 

concentrate on essential amino acid tryptophan, n-3 

polyunsaturated fatty acids (PUFAs), and probiotics, 

with a specific focus on the kynurenine pathway due 

to its significant role in linking kynurenine metabolism 

to inflammatory responses. 

The Essential Amino Acid Tryptophan: 
Tryptophan, an essential amino acid found in 

protein-rich foods such as eggs, fish, dairy products, 

legumes, and meat, plays a crucial role in various 

physiological processes [80]. Its levels in plasma are 

regulated by dietary intake and its role in protein 

biosynthesis. Tryptophan is a precursor for serotonin, 
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making its availability critical for cognitive function 

and mood [81]. The ratio of tryptophan to other large 

neutral amino acids (LNAAs) in the blood can indicate 

tryptophan availability for serotonin synthesis. More 

importantly, tryptophan metabolism is essential for 

immune system regulation [82]. The kynurenine 

pathway is the primary route of tryptophan 

degradation, with over 95% of free tryptophan 

undergoing metabolism via this pathway [83]. This 

degradation is facilitated by the enzymes indoleamine-

2,3-dioxygenase (IDO) and tryptophan-2,3-

dioxygenase (TDO). TDO is predominantly hepatic 

and activated by corticosteroids, whereas IDO is 

widely distributed and inducible by inflammatory 

stimuli. Notably, the Th1-type cytokine interferon-

gamma (IFN-γ) can trigger various biochemical 

pathways, including tryptophan degradation [84]. 

Research indicates that the elderly and individuals 

with heightened proinflammatory immune activation 

exhibit increased tryptophan breakdown rates [85-86]. 

Elevated kynurenine/tryptophan ratios, 

reflecting IDO activity, are observed in these 

populations. Although kynurenine metabolites are 

often studied in relation to the brain, they can influence 

multiple body systems, inducing both local and 

systemic adaptations [83]. Chronic low-grade 

inflammation can increase circulating kynurenine 

levels, leading to the accumulation of neurotoxic 

compounds and disruption of neurotransmitter 

receptors, which can affect cognition and mood [84-

87]. Regular physical activity enhances anti-

inflammatory capacity by inducing anti-inflammatory 

cytokines and reducing proinflammatory cytokines. 

Exercise has been shown to lower IDO activity by 

promoting anti-inflammation. Furthermore, a 

preclinical study by Agudelo and colleagues revealed 

that exercise stimulates the expression of peroxisome 

proliferator-activated receptor gamma coactivator 1-

alpha-1 (PGC-1α1), which in turn enhances the 

expression of kynurenine aminotransferases (KATs) 

in skeletal muscle [88]. KATs degrade kynurenine into 

kynurenic acid, a compound that does not cross the 

blood–brain barrier, thus limiting central nervous 

system exposure to excess kynurenine and potentially 

benefiting mood and cognition. Kynurenine 

metabolites also significantly impact the immune 

system. The activation of IDO, a key defense 

mechanism in cell-mediated immunity, is primarily 

driven by IFN-γ. Beyond its role in innate immunity, 

the kynurenine pathway also contributes to 

immunosuppressive and anti-inflammatory activities, 

mainly through T-cells of the adaptive immune system 

[85]. Kynurenine promotes the development of 

regulatory T-cells (Tregs), and some tryptophan 

metabolites, such as 3-hydroxyanthranilic acid and 

quinolinic acid, selectively induce apoptosis in Th1 

cells while sparing Th2 cells [89]. This creates a 

negative feedback loop that helps prevent excessive 

immune responses and fosters an immunotolerant 

state. Emerging evidence suggests that gut microbiota 

influence kynurenine pathway metabolism, potentially 

affecting brain function and behavior as well as local 

gastrointestinal function. Thus, alterations in the 

microbiome could impact the gut–brain axis through 

changes in microbial composition, tryptophan 

metabolism, immune activation, vagus nerve 

signaling, and the production of microbial neuroactive 

metabolites [90-91]. 

It is increasingly recognized that dietary 

composition and lifestyle changes, such as physical 

exercise and weight loss, can influence tryptophan 

availability and kynurenine pathway metabolism [92–

96]. Despite this, the impact of dietary tryptophan 

intake on the immune system of older individuals 

remains poorly understood. Recent research explored 

the effects of a combined exercise and protein 

intervention on the kynurenine/tryptophan ratio and 

neopterin concentrations in older patients recovering 

from hip fractures [97]. This perioperative nutritional 

intervention aimed to improve immune system 

response during the early rehabilitation period, 

particularly since many patients in this group were 

malnourished, which negatively impacts outcomes 

[98]. 

The study revealed that older hip fracture 

patients exhibited greater immune activation 

compared to healthy elderly individuals. However, 

protein enrichment (targeting a consumption of 1.2 g 

protein/kg body weight per day) did not mitigate the 

Th1-type immune response during hospitalization. 

This suggests that the lower tryptophan levels 

observed in these patients were not due to insufficient 

dietary intake, which was well above the 

recommended 250–425 mg/day, but rather due to 

immune activation and inflammation. Tryptophan 

levels were found to correlate with IDO activity, 

neopterin concentrations, and serum C-reactive 

protein levels, aligning with earlier findings that 

inflammation upregulates IDO activity, increasing 

tryptophan catabolism via the kynurenine pathway 

[99]. Conversely, in inflammatory arthritis and similar 

disorders, kynurenine has been shown to protect 

against disease development, while IDO inhibition or 

deletion exacerbates severity [100]. 

In hemodialysis patients, low tryptophan 

levels could not be attributed to high IDO activity or 

an inflammatory state. Moreover, there was no 

correlation between dietary tryptophan intake and 

plasma tryptophan, nor with all-cause mortality, 

suggesting that plasma albumin may be a more 

significant determinant of survival during dialysis 

[101]. Given that most individuals, including older 

adults and patients, consume adequate amounts of 

tryptophan, the presumed benefits of a diet rich in 

tryptophan and antioxidants are likely not due to 

increased tryptophan availability, as previously 

suggested based on in vitro studies [81]. Further 

research is needed to clarify the biological roles of 

tryptophan and related kynurenine metabolites in the 

diet. There are limited studies examining tryptophan 
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in both diet and plasma. As tryptophan availability is 

influenced by free albumin-binding sites, exploring 

fatty acid profiles for potential correlations could be 

beneficial. Additionally, understanding how dietary 

tryptophan is absorbed in the gut and the role of 

intestinal microbiota in regulating tryptophan 

availability and kynurenine metabolism will enhance 

our knowledge of environmental factors and host-

microbiome interactions. 

Unsaturated Fatty Acids: 

Chronic immunological activation increases 

with age and is a factor in diseases such as sarcopenia, 

where proinflammatory cytokines impair muscle 

metabolism [102-103]. According to recent research, 

older people's handgrip strength is correlated with 

greater levels of inflammatory markers, which 

suggests inflammation may play a role in muscle 

weakness [104]. Nevertheless, neopterin levels, a 

measure of immunological activity, have been 

connected to decreases in muscle strength gains 

brought about by exercise and protein supplements 

[97]. Omega-3 polyunsaturated fatty acids (PUFAs) 

have been shown to have anti-inflammatory and 

immune-stimulating actions, making them attractive 

candidates as therapeutic agents for sarcopenia. 

Because of their effects on T-cell proliferation, 

eicosanoid synthesis, and leukocyte function, dietary 

intake of n-3 PUFAs has been linked to lower 

inflammation [105]. Combining n-3 PUFAs with 

exercise has produced encouraging results, even 

though n-3 PUFA supplementation alone usually has 

negligible impact on muscle development and 

function when compared to resistance training [106-

108]. For instance, a study that combined an n-3 

PUFA-rich diet with increasing resistance training 

showed decreased inflammatory markers and 

enhanced muscle growth. In particular, the 

proinflammatory cytokine IL-1β was downregulated 

and the regulator of cellular development, mechanistic 

Target of Rapamycin (mTOR), was increased in the 

skeletal muscle of older women following six months 

of training in conjunction with an n-3 PUFA diet 

[109]. 

There is little information on how n-3 PUFAs 

affect the metabolites of the kynurenine pathway. The 

Western Norway B-Vitamin Intervention Trial 

investigated the connection between plasma 

concentrations of kynurenines, neopterin, and the 

kynurenine/tryptophan ratio in patients with coronary 

artery disease and dietary intake of fish or n-3 PUFAs. 

Higher intakes of n-3 PUFAs were inversely 

correlated with neopterin levels and the 

kynurenine/tryptophan ratio, however the correlations 

were weak, indicating a possible reduction in 

immunological activation [110-111]. Significant 

improvements in hydroxyproline and muscle protein 

synthesis were observed in older persons in a recent 

study examining the effects of n-3 PUFA 

supplementation (3.9 g/day over four months) in 

young and older adults. Moreover, circulating 

kynurenine levels were decreased by n-3 PUFA 

supplementation in healthy older adults, who had 

higher levels than younger people [112-113]. These 

results support the potential function of n-3 PUFA 

supplementation in the management of age-related 

inflammatory diseases by suggesting that it may 

positively regulate both muscle protein metabolism 

and immunological activation. 

Omega-3 and Omega-6: 

Polyunsaturated fatty acids (PUFAs) from 

the omega-6 and omega-3 series are crucial for the 

initiation and resolution of immune responses. These 

fatty acids serve as substrates for the synthesis of 

signaling molecules such as eicosanoids and 

docosanoids, which play a key role in modulating 

immune function [114-115]. Key PUFAs include 

linoleic acid (18:2n-6) and alpha-linolenic acid 

(18:3n-3), along with their longer-chain derivatives 

such as arachidonic acid (20:4n-6), eicosapentaenoic 

acid (20:5n-3), and docosahexaenoic acid (22:6n-3). 

These longer-chain omega-3 PUFAs (LCn3PUFAs) 

have generated significant interest due to their 

potential to enrich immune cells, reduce membrane 

arachidonic acid levels, and antagonize arachidonic 

acid metabolism. 

Several eicosanoid derivatives of arachidonic 

acid, such as prostaglandin E2 and 4-series 

leukotrienes, are involved in promoting allergen 

sensitization and increasing disease severity. 

Therefore, adequate LCn3PUFA levels might 

influence disease risk by affecting early 

immunological development and established immune-

antigen interactions [115]. According to the EAACI 

position paper, supplementation with LCn3PUFAs 

might be beneficial for allergy prevention, particularly 

in individuals with low preexisting levels of these fatty 

acids [116]. This is especially relevant for pregnant 

and lactating women, where increased LCn3PUFA 

levels are associated with reduced risks of atopic 

dermatitis (AD) and food allergies. However, 

evidence is heterogeneous and depends on factors such 

as dosage, baseline LCn3PUFA status, 

supplementation timing, genetic variants, and 

microbiome composition [116]. LCn3PUFAs are also 

explored for their role in managing immune-mediated 

diseases. They act as substrates for the production of 

less potent eicosanoids and specialized pro-resolving 

mediators (SPMs) such as resolvins, protectins, and 

maresins, which help resolve inflammation and exert 

analgesic effects [117-118]. 

In inflammatory bowel diseases (IBD) like 

Ulcerative Colitis and Crohn's Disease, systematic 

reviews and meta-analyses show that LCn3PUFA 

supplementation does not significantly prolong 

remission and may even have adverse effects such as 

increased diarrhea and gastrointestinal issues. The 

complexity of IBD, involving impaired mucosal 

barriers, diverse immune cells, gut microbiota, and 
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luminal factors, complicates the influence of 

LCn3PUFAs [119-125]. Some animal studies suggest 

that high-dose LCn3PUFAs might worsen disease 

phenotypes, highlighting the need for further research 

to optimize dosing and timing [126-127]. In 

rheumatoid arthritis, LCn3PUFA supplementation 

shows more promising results. It has been associated 

with reduced levels of leukotriene B4, a key 

inflammatory mediator, leading to decreased use of 

non-steroidal anti-inflammatory drugs (NSAIDs), 

improved pain, joint tenderness, and better physical 

function [128-131]. Effective doses are typically in the 

pharmacological range (>2.5 g/d EPA + DHA), though 

self-reported intake from food sources also correlates 

with improved disease outcomes. Nevertheless, 

further large-scale trials are needed to refine 

recommendations for LCn3PUFA use, addressing 

optimal dosing, duration, and the role of these 

supplements in combination with modern medications 

[129,132]. 

Saturated Fats: 
Diets high in saturated fats are known to 

increase inflammation and elevate the risk of chronic 

inflammatory diseases. Saturated fatty acids, major 

components of high-fat diets (HFDs), have been 

extensively studied for their effects on the immune 

system [133-134]. Mice fed a diet rich in saturated 

fatty acids for two weeks exhibited heightened 

inflammatory responses to systemic 

lipopolysaccharide (LPS) injections, leading to 

increased endotoxemia and associated mortality [135]. 

Common saturated fatty acids include palmitic acid, 

stearic acid, myristic acid, and lauric acid. Studies 

have shown that: 

 Palmitic Acid: This fatty acid increases the 

expression of pro-inflammatory markers 

such as monocyte chemoattractant protein 1 

(Mcp1), IL-6, IL-8, and Cxcl10 in 

macrophages, and promotes the secretion of 

neutrophil-attracting nucleotides [136-139]. 

It also activates TLR4 on dendritic cells, 

stimulating IL-1b production [140-141]. 

Additionally, palmitic acid reduces 

macrophage phagocytic capacity and 

promotes T cell activation, increasing 

cytokine secretion including TNFα, IL-1b, 

IL-2, IL-6, IL-8, and IL-10 [142-146]. 

 Myristic Acid: While it increases Mcp1 

expression in macrophages, its effects are 

less pronounced compared to palmitic acid 

[137]. 

Saturated fatty acids, particularly palmitic 

acid, can activate inflammatory pathways through 

TLR4, NF-κB, and NLRP3, though recent evidence 

suggests that these fatty acids may not directly activate 

TLR4 but rather induce inflammation by altering 

macrophage lipidome and phenotype [141, 147-150]. 

Palmitic acid, for instance, can change macrophage 

lipid composition, decreasing phosphatidylcholines 

and increasing phosphatidylethanolamines and 

ceramides, which affects macrophage function and 

promotes M1 polarization [150]. Other saturated fatty 

acids like lauric acid and stearic acid also contribute to 

inflammation, both dependently and independently of 

TLR signaling [151-152]. Saturated fatty acids 

influence various immune cells across the innate, 

adaptive, and tissue-specific immune systems. They 

increase M1 macrophage activation, cytokine 

production, and nucleotide release, while reducing 

macrophage phagocytic capacity and natural killer cell 

activity [136–139,140,153]. In adaptive immunity, 

saturated fatty acids elevate T-cell cytokine 

production, although their effects on B-cells remain 

less understood. For individuals with chronic 

inflammatory diseases, limiting saturated fat intake 

may help mitigate pro-inflammatory immune 

responses. 

Sterols: 
Excess cholesterol, similar to saturated fat, 

can activate pro-inflammatory immune cells and 

impact both innate and adaptive immune systems. 

Cholesterol influences inflammatory signaling by 

integrating into lipid rafts, which support TLR4 

complex formation [154,155]. 

Effects on Immune Function 
Excess dietary cholesterol has been shown to: 

 Macrophages: Increase infiltration and 

accumulation in adipose tissue, contributing 

to systemic inflammation [156-157]. 

 Mast Cells: Promote systemic activation and 

foam cell formation [159,160]. A high-

cholesterol Western diet has been associated 

with increased mast cell activation and 

subsequent uptake of LDL-C by 

macrophages. 

 T Cells: Elevated membrane cholesterol 

content in T cells is linked to an enhanced 

inflammatory response [161]. 

While cholesterol metabolism's role in lymphocyte 

function has been reviewed [162-164], the specific 

impact of dietary cholesterol on lymphocyte functions 

and proliferation remains an area needing further 

research. Cholesterol, like saturated fats, affects 

immune cell function and systemic inflammation. It 

contributes to macrophage infiltration, mast cell 

activation, and T-cell inflammatory responses. The 

impact of dietary cholesterol on lymphocyte 

proliferation and function is less well-documented, 

suggesting a need for more research in this area. 

Fibers and Immune System: 

Dietary fibers are non-digestible 

carbohydrates that are present in fruits, vegetables, and 

grains and provide energy to gut flora. Short-chain 

fatty acids (SCFAs), which are essential for preserving 

gut health and general wellbeing, are produced when 

these bacteria digest fibers. Because they improve the 

function of the epithelial barrier, decrease pathogen-

induced cytotoxicity, and stop pathogenic bacteria 

from colonizing the colon, fibers are important for 

preserving intestinal homeostasis. Studies reveal that a 
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diet rich in fiber encourages the formation of SCFA 

and microbial diversity, both of which can reduce the 

incidence of Crohn's disease and colon cancer [165-

166]. Because diminished microbial diversity causes 

altered metabolic pathways in disorders such cystic 

fibrosis and asthma, SCFAs taken into the 

bloodstream may potentially prevent these conditions 

[167-168]. Consuming fiber over an extended period 

of time has been linked to better lung function and a 

decreased chance of developing chronic obstructive 

pulmonary disease (COPD) [169-170]. Dietary fibers 

can potentially have a favorable effect on the gut-brain 

axis. Research has demonstrated that supplements 

such as human milk oligosaccharides or glucose-

oligosaccharides can influence hunger through 

regulatory neuropeptides and lessen anxiety in 

individuals with irritable bowel syndrome [171-172]. 

Furthermore, the benefits of fiber on metabolic 

syndrome are highlighted by the association between 

a high fiber intake (30 g/day) and a lower risk of type 

2 diabetes and cardiovascular disease [173-175]. Fiber 

influences immunological-mediated illnesses by 

interacting with G-protein coupled receptors (GPRs), 

which are expressed on immune cells and include 

GPR41, GPR43, and GPR109A [176-178]. Histone 

deacetylase (HDAC) activity can be inhibited by 

SCFAs such as acetate and butyrate, which can affect 

chromatin structure and the epigenetic state of cells 

[176-179]. The information now available indicates 

that HDAC inhibition in epithelial cells is essential for 

preserving barrier function and regulating 

immunological responses, even if further study is 

required to completely comprehend these pathways 

[180]. A possible method of preventing disease is 

including enough amounts of fiber in diets. According 

to current recommendations, one should consume 25–

31 g of fiber per day. Personalized strategies are 

required, though, as high-fiber diets have the potential 

to have negative consequences, including diarrhea, 

constipation, stomachaches, and flatulence, 

particularly in people with certain medical disorders 

such inflammatory bowel disease [181]. Optimizing 

health outcomes will require educating adults and 

children on the value of fiber and tailoring dietary 

recommendations to each person's requirements. 

Diet, Probiotics, Gut Microbiota, and Immune 

System: 

Accumulating evidence suggests a 

significant link between gut microbiota and health 

during the aging process. As individuals age, 

disturbances in the gut microbiome often result in 

chronic inflammation, primarily due to impairments in 

the mucosal barrier. This inflammation can impact 

various metabolic organs, such as the liver and adipose 

tissue, contributing to metabolic inflammation. 

Additionally, aging affects barrier function and 

nutrient requirements, which can influence skeletal 

muscle composition and function [182]. 

Diet, Exercise, and Gut Microbiota: 

Diet and exercise have been shown to modify the 

composition and diversity of gut microbiota [183–

185], potentially enhancing both gut and systemic 

immune functions. Strategies to address metabolic 

inflammation linked to gut microbiome alterations 

may include: 

 Time-Restricted Feeding: Can influence 

metabolic processes and inflammation [186]. 

 High-Fiber Diets: Fiber intake promotes a 

healthy gut microbiome and reduces 

inflammation [187]. 

 Low-Carbohydrate Diets: Restricting 

carbohydrates can also mitigate 

inflammation [188,189]. 

 n-3 PUFA Supplementation: Omega-3 fatty 

acids have anti-inflammatory properties 

[190]. 

 Kynurenic Acid: A metabolite of the 

kynurenine pathway activated by exercise, 

promotes lipid metabolism and anti-

inflammatory responses in adipose tissue 

[191]. 

 

Probiotics and Immunomodulation: 
Probiotics are notable for their 

immunomodulatory effects, impacting both local and 

systemic immunity. They modify gut microbiota 

populations and enhance various aspects of immune 

function, including: 

 Cytokine Production: Probiotics can alter 

cytokine levels, contributing to immune 

modulation. 

 Natural Killer Cell Activity: Probiotics 

increase the cytotoxic activity of natural 

killer cells. 

 Secretory IgA Levels: Enhanced levels of 

secretory immunoglobulin A (IgA) are 

observed with probiotic use. 

 Resistance to Infections: Probiotics may 

enhance resistance to infections [192]. 

 

Probiotics also have important anti-inflammatory 

"tolerogenic" effects, potentially reducing infection 

severity to non-damaging levels [193]. Evidence 

suggests: 

 Gastrointestinal Disorders: Probiotics can 

improve recovery rates from gastrointestinal 

disorders and enhance resistance to upper 

respiratory tract infections (URTIs) in the 

general population [194,195]. 

 Athletes: Probiotic intake may reduce 

infection incidence in athletes by modulating 

gut microbiota and immune functions 

[196,197]. 

Recent studies indicate that probiotics might 

influence tryptophan metabolism. Probiotic 

supplementation has been associated with reduced 

exercise-induced tryptophan degradation rates, 
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possibly due to changes in gut microbiome 

composition affecting downstream immunoregulatory 

pathways [198]. While the effect was not statistically 

significant, daily probiotic intake did reduce URTI 

incidence. The kynurenine/tryptophan ratio was 

significantly higher in individuals who developed 

infections compared to those who did not. 

Mechanisms and Optimal Use 
Probiotics likely exert their effects through: 

 Direct Interaction with Gut Microbiota: 
Modulating gut microbiome composition. 

 Mucosal Immune System Stimulation: 
Affecting both gut and systemic immune 

responses. 

 Immune Signaling: Enhancing 

communication between immune cells [199]. 

A daily dose of approximately 10^10 colony-

forming units (CFUs) is generally recommended, 

though optimal dosage and duration of 

supplementation remain debated. Research in mice has 

shown that long-term consumption of fermented milk 

containing probiotic bacteria maintains intestinal 

homeostasis without adverse effects [200]. In elderly 

populations, fermented milk with Lactobacillus 

johnsonii La1 has shown promise in reducing infection 

rates and improving nutritional and immunological 

status [201–203]. 

Interestingly, varying probiotic doses may have 

different immune effects. For example: 

 High Dose (5 × 10^9 CFUs/day): Increases 

activated T-suppressor (CD8+CD25+) and 

natural killer (CD56+ CD16+) cells. 

 Low Dose (5 × 10^8 CFUs/day): Increases 

activated T-helper lymphocytes 

(CD4+CD25+), B-lymphocytes (CD19+), 

and antigen-presenting cells (HLA-DR+) 

[204]. These differing effects suggest that 

probiotics can have varying immune-

enhancing outcomes depending on the dose, 

potentially leading to better clinical results in 

elderly individuals. 

Novel Association between Diets and Immune 

system: 

Deciphering the complex interaction between 

diet and immune system aging is crucial to finding 

dietary components that support longevity and boost 

immunity, since nutrition plays a critical role in 

supporting healthy aging. Because systemic senescent 

T cells are less common in healthy older persons who 

follow the Mediterranean Diet (MedDiet), this study 

offers new evidence that a stronger adherence to the 

diet is associated with a lower immunological age. 

Following the MedDiet involves consuming higher 

amounts of dietary fiber, which are mostly found in 

fruits, vegetables, and grains. Our results are 

consistent with other studies that show higher fiber 

intake is associated with improved immune function, 

decreased production of pro-inflammatory cytokines, 

and increased dendritic cell release of IL-10 [205]. Gut 

microbes convert dietary fibers to produce immune-

modulatory short-chain fatty acids (SCFAs) with anti-

inflammatory properties, like propionate, butyrate, 

and acetate [206-207]. 

On the other hand, consuming too much 

saturated fat—found in most Western diets and 

primarily sourced from red and processed meats—can 

cause pro-inflammatory reactions. According to this 

study, dietary cholesterol intake and pro-inflammatory 

Th17 cells are positively correlated. This relationship 

makes sense because cholesterol production controls 

the transcription factor retinoic acid receptor-related 

orphan receptor γ (RORγ), which promotes CD4 T cell 

development into Th17 cells [208]. On the other hand, 

omega-3 polyunsaturated fatty acids (PUFAs), which 

are present in fish, almonds, avocados, and olive oil, 

have anti-inflammatory qualities [209]. In line with 

studies demonstrating that PUFAs attenuate 

senescence in endothelial cells, our research revealed 

a correlation between a diet high in PUFA-containing 

fish and a decrease in systemic senescent T cells in 

older persons [210]. Furthermore, it was discovered 

that giving older persons an omega-3 PUFA 

supplement for four months decreased their levels of 

circulating IL6 [211]. 

Micronutrients are essential for preserving 

the health of the host. Although our study did not find 

an age-related drop in nutritional consumption, 

moderate deficits in vitamins B6, B12, C, D, and E, as 

well as calcium, magnesium, folate, iron, and zinc, are 

common in older persons [212]. Inadequate intake of 

these nutrients has been associated with an increased 

risk of bacterial and viral infections, autoimmunity, 

and impaired immunological function in the elderly 

[213]. Important nutrients for thymus homeostasis and 

thymic hormone production, such as thymulin, which 

promotes T cell growth, include magnesium, 

selenium, and vitamin B6 [214]. Therefore, it should 

come as no surprise that vitamin B6 consumption was 

linked to slower immunological aging, fewer 

senescent CD8 T cells, and a higher frequency of 

circulating naïve CD8 T cells. It has been 

demonstrated that vitamin E, a fat-soluble antioxidant 

that is plentiful in the MedDiet, improves 

immunological functions, especially in elderly people. 

Our research revealed novel correlations between 

increased vitamin E intake and a rise in B cells that 

regulate immunity. 

Despite the fact that this study provides 

insightful mechanistic understanding of 

immunosenescence and diet-immune interactions, it is 

crucial to recognize its limitations, which include the 

use of self-reported dietary data from a limited group 

of participants who were Caucasian. To better 

investigate these nutritional and immunological 

connections, larger and more diverse groups should be 

included in future study. The statistical analyses and 

conclusions might have been impacted by the small 

sample size. Our study of the impact of dietary 

components on the immune system in older persons 

highlights the importance of nutrition as a modifiable 
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element in immunological aging, in addition to genetic 

and environmental factors influencing immune aging 

[215]. For the first time, lower immune scores in 

senior people have been associated with dietary fibers 

and polyunsaturated fats (PUFAs), which are abundant 

in the MedDiet. A workable, economical strategy for 

reducing immunosenescence and encouraging healthy 

aging is provided by the MedDiet. Even though the 

MedDiet appears to have the potential to reverse 

immunological aging, a single dietary strategy might 

not be enough on its own. It might work better to 

combine the MedDiet with dietary supplements like 

vitamin B6. Future intervention studies are advised to 

assess the influence and effectiveness of multinutrient 

supplementation on immunological homeostasis in the 

elderly population. As the recently formed 

Food4Years Ageing Network [216] demonstrates, 

such studies should drive policy guidelines and 

educational campaigns encouraging lifelong healthy 

eating [217]. 

Conclusion: 

In summary, dietary components such as 

omega-3 and omega-6 fatty acids, saturated fats, 

sterols, and dietary fibers significantly influence 

immune function and inflammation. Omega-3 fatty 

acids are renowned for their anti-inflammatory effects, 

offering potential therapeutic benefits for managing 

inflammatory diseases like rheumatoid arthritis. Their 

ability to reduce pro-inflammatory eicosanoids and 

promote the production of specialized pro-resolving 

mediators underscores their importance in immune 

regulation. Conversely, omega-6 fatty acids, while 

essential, can also contribute to inflammatory 

processes depending on their balance and metabolism. 

Saturated fats, particularly palmitic acid, are 

associated with increased inflammation and 

heightened disease risk. They activate inflammatory 

pathways through Toll-like receptor 4 (TLR4) and 

impact macrophage function, leading to enhanced 

cytokine production and reduced phagocytic capacity. 

Limiting saturated fat intake may therefore be a crucial 

strategy in managing chronic inflammatory 

conditions. Sterols, such as cholesterol, further 

complicate this balance by influencing inflammatory 

signaling pathways and immune cell function. Excess 

dietary cholesterol has been linked to systemic 

inflammation and altered immune responses, affecting 

macrophages, mast cells, and T cells. Dietary fibers, 

on the other hand, play a protective role by promoting 

gut health and systemic immunity. Their fermentation 

by gut microbiota produces short-chain fatty acids 

(SCFAs), which support the intestinal barrier, reduce 

pathogen-induced inflammation, and contribute to 

overall immune function. High fiber intake is 

associated with a lower incidence of inflammatory and 

metabolic disorders, highlighting the importance of 

dietary fibers in maintaining immune homeostasis. 

Probiotics also offer significant immunomodulatory 

benefits, enhancing gut microbiota diversity and 

improving immune responses. They can influence 

cytokine production, natural killer cell activity, and 

overall resistance to infections. Overall, optimizing 

dietary intake of these components can be a powerful 

approach to modulating immune function and 

managing inflammation. Future research should 

continue to explore the complex interactions between 

diet and immune health, with a focus on personalized 

nutrition strategies to enhance overall health and 

prevent disease. 

 
Figure 2: Diet, Nutrition, and Immune Responses. 
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