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Abstract 

Malaria, which is prevalent in 85 countries worldwide, poses a significant threat to global mortality rates, particularly in regions like East 

Nusa Tenggara, Indonesia. Conventional anti-malarial drugs like chloroquine and artemisinin face diminishing effectiveness due to 

Plasmodium sp. resistance. Historically, among the Tetun people in East Nusa Tenggara, Alstonia spectabilis served as an anti-malarial 

remedy. The purpose of this research was to predict A. spectabilis's potential as an antimalaria treatment through network pharmacology.By 

analyzing SMILES metabolite codes from UPLC-QToF-MS/MS and GC-MS via BindingDB, TargetNet, Ensemble Similarity Approach, and 

SwissTargetPrediction, potential protein targets implicated in malaria pathogenesis were identified. Leveraging databases like GeneCards®, 

The Human Gene Database, DrugBank Online Database, and OMIM, numerous protein targets associated with malaria and Plasmodium 

sp.were revealed. Interactions between active compounds and protein targets were forecasted using GeneCard, Drugbank, OMIM, and 

DisGeNET. 2,707 genes from pharmacological activity databases and 6,802 therapy targets for malaria were identified. The Venn diagram 

analysis refined the selection to 657 target genes. Protein-protein interaction networks were constructed using the STRING database and 

Cytoscape software, with Cluster 6 spotlighted for its association with malaria pathogenesis. Top-ranking genes, including ITGB2, ITGB1, 

ITGAL, ITGA4, and ITGB3, were identified based on degree parameters. While ITGB2 remains in the preliminary stage, its potential 

correlation with malaria is hypothesized, given its association with immune responses like inflammation and adaptive immunity. Finally, A. 

spectabilis shows promise as a potential antimalaria drug because it changes the immune system by increasing ITGB2 expression. This 

research sheds light on novel avenues for combating malaria. 
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1. Introduction 

Malaria, an ancient disease, continues to affect around 85 countries, with 241 million new cases in 2022 causing 627,000 

deaths, two-thirds of which are children under five years old [1]. In Indonesia, malaria is a major health issue in the eastern 

regions such as Nusa Tenggara, Maluku, and Papua, where it remains hyperendemic [2]. The 2013 Indonesian Health Profile 

reported that East Nusa Tenggara has one of the highest malaria endemic rates, with an Annual Parasite Incidence (API) of 

16.37%, significantly higher than the national average of 1.38% [3].  

Current antimalarial drugs like chloroquine are no longer effective due to Plasmodium sp resistance. Artemisinin and its 

derivatives, such as artesunate, have replaced chloroquine [4]. However, there are indications of resistance to artemisinin-

based combination therapy (ACT) in Plasmodium falciparum, the most dangerous and prevalent plasmodial type in Indonesia 

[5]. Therefore, new antimalaria drugs that are effective and affordable are urgently needed. 

The traditional treatment of malaria by the Tetun people in East Nusa Tenggara has been used for hundreds of years to 

treat symptoms like fever, chills, swollen spleen, headaches, and muscle and joint pain [6]. These treatments include both 

herbal and non-herbal remedies[8]. One such herbal remedy is kroti metan, also known as black pulai (Alstonia spectabilis), 

which is a potential new antimalaria drug[9]. 

Analyzing the metabolite content of A. spectabilis requires a metabolomic approach to profile its secondary metabolites[9]. 

Methods such as ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-
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QToF-MS/MS) and gas chromatography-mass spectrometry (GC-MS) are used for metabolite profiling[10]. UPLC-QToF-

MS/MS provides comprehensive metabolite profiles, improving compound separation efficiency and analysis speed[11]. GC-

MS offers accurate compound identification based on molecular structure [12]. 

There are three approaches to determine the antimalarialactivity of A. spectabilis: in silico, invitro, and in vivo. In silico 

methods like network pharmacology provide insights into complex biological systems by identifying significant proteins 

involved in disease treatment and targeting compounds that interact with these proteins [13]. This study aims to use network 

pharmacology to predict the antimalaria activity of A. spectabilis[14]. 

 

2. Experimental 

Materials 

Computing studies were conducted using Dell computers with Windows 11, Intel® Xeon(R) W-2223 CPU @ 3.60 GHz 

octa-core, 16 GB RAM, and NVIDIA Quadro P2200 GPUs. Metabolite profiling results from UPLC-QToF-MS/MS and GC-

MS were obtained from preliminary research. 

 

Methods 
Collection and Screening of Target Proteins Based on Active Compounds: 

Predicting malaria-related genetic targets through active compounds of A. spectabilis metabolite profiling was done using 

SMILES data inputted into databases such as BindingDB, TargetNet, Similarity Ensemble Approach (SEA), and 

SwissTargetPrediction. The gene targets were standardized using the Uniprot database to avoid inconsistencies and duplicates 

were removed [16,17]. 

Malaria-Related Target Protein Collection and Filtration: 

Target proteins involved in malaria pathogenesis were identified using GeneCards®: The Human Gene Database, DrugBank 

Online Database, and Online Mendelian Inheritance in Man (OMIM) by searching for "Malaria" and "Plasmodium." 

Standardization and de-duplication of target proteins were done using the Uniprot database to ensure each protein appeared 

only once in the final dataset [16-18]. 

Protein-Protein Interaction Network Design and Enrichment Analysis: 

Interactions between target proteins of active compounds and malaria targets were predicted using GeneCard , 

DrugBank,OMIM,DisGeNET, and the Therapeutic Target Database. Protein-protein interactions were analyzed using the 

STRING database  with high confidence (0.900) and FDR stringency of 5%. Networks were processed with Cytoscape 3.9.1, 

and enrichment analysis was performed using MetaScape[19], WebGestalt[20], and Enrichr[21] to understand the biological 

functions within the network. 

 

3. Results and Discussion 

Identifying malaria-related target genes  

The study looked at a group of genes related to malaria using the words "Malaria" and "Plasmodium" in several 

databases, such as Gene Cards, Drug Bank, DisGeNet, Therapeutic Target Database, and Online Buying Inheritance in Man 

(OMIM). It also looked at genes related to drug activity in BindingDB, TargetNet, Similarity Ensemble Approach (SEA), and 

Swiss Target Prediction. Target genes were subsequently standardized based on the HUGO Gene Nomenclature Committee 

(HGNC) to prevent overlapping gene identities between databases. After removing the duplicate gene, the analysis proceeded 

to identify genetic similarities between the predicted target and the known malaria therapeutic target from the database 

(Figure 1). The procedure produced 2,707 genes from four pharmacological activity databases based on the profiling 

metabolite structure, as shown in Figure 2(A) (blue), and 6,802 therapeutic targets for malaria, as indicated in Figure 2(A). 

The chosen candidate gene was then placed in the Venn diagram. This showed that 657 target genes were similar to each other 

in a slice between genes related to malaria and genes based on the plant structure found by the profiling metabolite, as shown 

in Figure 2 (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The process involves collecting malaria-related target proteins and target receptors based on the structure of the metabolite 

compound, as well as eliminating duplicate targets. 
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Figure 2: Comparison the number of target receptors associated with malaria disease and target receptors based on the structure of the 

metabolite compound (A), the Venn Diagram shows the number of targets that overlap between the target malaria receptor and the targets 

based on metabolite structure. Network pharmacology analyses rely on the number of target receptors in this sequence (B). 

 

Protein-protein interaction construction and tissue topology analysis 

The STRING database and Cytoscape software are used to build a protein-protein interaction network (PPI) on 657 selected 

genes with the highest confidence level of 0.900 (Figure 3). On the other hand, the CytoNCA panel in the Cytoscape software 

calculates the PPI topology. A cluster analysis is then carried out to cluster genes with similar pharmacological activity. In this 

study, the entire cluster has a p<0.05 value which indicates that each protein in a cluster had a significant relationship of 

protein interaction in the same pharmacogic activity[20], But we chose cluster 6 based on the gene predisposition that has 

been linked to the pathogenesis of malaria. Table 2 lists the results and parameters of the cluster topology analysis. Based on 

the degree parameters shown in Table 2 and Figure 4, the top five genes are ITGB2 (Integrin beta-2), ITGB1 (Integrin beta-

1), ITGAL (Integrin alpha-L), ITGA4 (Integrin beta-4), and ITGB3 (Intengrin bet-3). The ITGB2-gen is in its early stages, so 

we hypothesized that it has a strong correlation with malaria disease. The leukocyte integrin family has a member called 

integrin beta 2 (ITGB2), which is also known as CD18/LFA-1 that helps integrin heterodimer binding. ITGB2 is involved in 

lymphocyte binding to tissue[23]. ITGB2 expression is often associated with immune responses, such as inflammation and 

adaptive immunity. Lack of ITGB2 expression can lead to problems with lymphocyte cell adhesion, which makes the immune 

system less able to fight off antigens[24,25]. ITGB2 affects malaria by causing a syndrome called malaria-associated acute 

respiratory disorder. This shows that it is a key molecule in the inflammatory effects of P. berghei-caused malaria in living 

organisms. Acute lung inflammation correlates with genetic suppression of the ITGB2 subunit[26]. Therefore, ITGB2 

modulation has the potential to make it an antimalarial target through improved immune systems. Our findings reveal that no 

significant changes were observed when ranking targets based on other parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Protein-protein interaction networks (PPI) of 646 selected target genes were built using a STRING database with the highest 

confidence (0.9). 
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Table 1: Clusterization analysis in Protein-Protein Interaction Networks  

Kluster Protein p-value Quality 

1 USP14, PSMD8, PSMD7, PSMD6, PSMD4, PSMD3, PSMD2, PSMD14, 

PSMD13, PSMD12, PSMD11, PSMD1, PSMC6, PSMC5, PSMC4, 

PSMC3, PSMC2, PSMC1, PSMB9, PSMB7, PSMB5, PSMB4, PSMB3, 

PSMB2, PSMB1, PSMA8, PSMA6, PSMA5, PSMA4, PSMA3, PSMA2 

0.000 0.983 

2 ALOX15, CYP1A2, CYP26B1, CYP2C19, CYP2C9, CYP2E1, CYP2J2, 

CYP3A4, EPHX1, GSR, GSTA2, GSTM1, GSTO1, GSTP1, HPGDS, 

PPIG, PTGS1, UGT2B7 

9.885 x 10-7 0.67 

3 UGT2B7, PTGS2, PTGS1, PPIG, HSD11B1, HPGDS, GSTP1, GSTO1, 

EPHX1, CYP3A4, CYP2J2, CYP2E1, CYP2D6, CYP2C9, CYP2C19, 

CYP1A2, ATP12A, ALOX5, ALOX15 

3.574 x 10-6 0.664 

4 AURKA, CCNA2, CCNB1, CCND3, CCNH, CDC25C, CDK1, CDK2, 

CDK4, CDK6, CDK7, NEK2, PCNA, PLK1, TOP2A, WEE1 

6.293 x 10-6 0.612 

5 AURKA, CCNA2, CCNB1, CDC25C, CDC45, CDC7, CDK1, CDK2, 

CDK7, CHEK1, CHEK2, NEK2, PLK1, TOP2A, WEE1 

4.372 x 10-5 0.632 

6 ICAM1, ILK, ITGA2, ITGA2B, ITGA4, ITGA5, ITGAL, ITGAV, 

ITGB1, ITGB2, ITGB3, PRKD1, PTK2B, SELE, SELP, VCAM1 

1.139 x 10-4 0.544 

7 ICAM1, ITGA2, ITGA2B, ITGA4, ITGA5, ITGAL, ITGAV, ITGB1, 

ITGB2, ITGB3, PRKD1, PTK2, PTK2B, PTPRC, SELL, SELP, VCAM1 

1.734 x 10-4 0.526 

8 EGFR, ERBB2, FGFR2, FLT1, GRB2, HGF, IGF1R, IL6ST, KDR, 

KISS1R, LYN, MET, PDGFRB, PIK3CD, PIK3R1, PLCG1, PTK2, 

PTPN11, SRC, STAT3, SYK 

0.007 0.452 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A protein-protein interaction network (PPI) of 16 target genes was selected based on cluster analysis associated with malaria 

disease. 
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Table 2: Network topology analysis resulting from clustering of 16 selected target genes 

 

Gene symbol Degree BetweennessCentrality Closeness Centrality 

ITGB2 14 0.94 0.18 

ITGB1 13 0.88 0.13 

ITGAL 11 0.79 0.05 

ITGA4 10 0.75 0.03 

ITGB3 10 0.75 0.06 

ITGA5 9 0.71 0.03 

ICAM1 8 0.68 0.03 

ITGAV 8 0.68 0.01 

ITGA2 7 0.65 0 

VCAM1 7 0.65 0.02 

ITGA2B 6 0.63 0.01 

SELP 6 0.63 0.02 

PTK2B 5 0.6 0 

SELE 4 0.56 0 

ILK 3 0.54 0 

PRKD1 3 0.56 0 

 
Protein-protein interaction network enrichment analysis  

Based on the cluster results, 16 genes were selected in cluster 6 that were associated with malaria and analyzed using 

MetaScape. As shown in Figure 5, the malaria-target compound network has some paths shown as gene ontology (GO). 

These include the "Integrin-mediated signaling pathway" "cell-cell adhesion," and "Biocarta monocyte pathway." An 

important biological process, the Integrin-mediated signaling pathway, links the compounds of medicinal plants and malaria. 

Enrichment analysis using the Enrichr database (Figure 6A) supports the results. At this stage, the observation progresses to 

the phase of analyzing the physiological roles of each gene selected in cluster 6 using the WebGestalt database. These 

components include biological processes (BP), cellular components (CC), and molecular functions (MF). In biological 

processes, genes in cluster 6 have a dominant role in “cell communication”, “cellular component organization”, and 

“responses to stimuli” (Figure 7A). Next, the cellular part tells us where each gene is located, with the main locations being 

on the "membran", the "protein-containing complex", and the "extracellular vesicle" (Figure 7B). Meanwhile, “protein 

binding”, “ion bonding”, and “molecular transducer activity” become important molecular functions in 16 selected genes (c). 

Referring to enrichment analysis using web databases Gestalt and WikiPathway, four of the 16 selected genes involved in the 

pathogenesis of malaria through the Integrin-mediated signaling pathway: ITGAL ITGB2, ICAM1, and VCAM1 are 

commonly found in liver cells (Figures 6B and 8). This supports our conclusion that the results from cluster 6 are closely 

linked to the development of malaria, with ITGB2 being a key protein based on the highest degree value. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Target path analysis of 16 selected genes using the Metascape database. The results of the analysis show the biological processes 

involved in malaria. 
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Figure 6: An analysis of the role enrichment of 16 selected genes against biological functions from the Enrichr database and the relationship 

of the selected 16 genes to disease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: GO analysis of target gene-disease interactions for selected plant compounds shows correlations of (a) biological processes (BP); 

(b) cellular components (CC); and (c) molecular functions (MF) analyzed with the WebGestalt database. The number of genes involved is 

shown next to the horizontal bar chart. 
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Figure 8: Analysis of the role of the “integrin-mediated signaling pathway” in the life cycle of malaria 

 

4. Conclusions 

The research identified 657 target genes, with cluster 6 potentially having strong interconnections with malaria activity. 16 

selected genes from cluster 6 were further analyzed to predict their pathways in malaria pathogenesis. The primary gene, 

ITGB2, is linked to immune responses, indicating that A. spectabilis potential antimalaria activity is based on immune system 

modulation. 
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