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Abstract 
Human c-Jun N-terminal kinase 1 (JNK1) is a cytosolic kinase within the mitogen-activated protein kinasefamily, pivotal in intracellular signal 
transduction cascades. Overexpression of JNK1 implicated in various cancers. Despite some JNK1 inhibitors progressing to clinical trials, none 
have gained market approval, underscoring the urgent need for new candidates.  Computer-aided drug design lowers the expenses and time 
required for drug development. Rough estimates indicate that computational processes take less than one-third of the usual time and cost. This 
research employs diverse in silico screening methods to rapidly identify inhibitors for JNK1 associated with cancer. Specifically, we employed 
pharmacophore modeling on the bound ligand of JNK1 protein to identify essential pharmacophoric features crucial for discovering potential 
inhibitors. These features were screened against 449,008 natural compounds sourced from the SN3 database. The identified compounds underwent 
docking and MM-GBSA calculations. Two compounds (SN0239242 and SN0263268) exhibited superior MM-GBSA binding affinity compared to 
the bound ligand, with values of -69.22, -62.2, and -57.68 kcal/mol, respectively. These compounds were subjected to 100 ns molecular dynamics 
experiments and exhibited stable interactions. Natural compounds from these in silico studies showed promising anticancer potential as JNK1 
inhibitors and could be prioritized for future experimental validation. 
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1. Introduction 

Mitogen-activated protein kinases (MAPKs) constitute a crucial family within protein kinases, playing a pervasive role in various 
cellular regulatory mechanisms and activities. Three key signaling cascade enzymes drive the activity, regulatory functions of 
MAPKs, andorchestrate signaling events through the phosphorylation of targeted proteins from the cell surface to the nucleus. 
These enzymes include extracellular signal-regulated kinases (ERKs), c-Jun amino terminal kinases (JNKs), and p38 MAPKs 
[1,2]. 
JNKs activate a principal component of the AP-1 heterodimer transcription factor, the C-Jun proto-oncogene, through 
phosphorylation of its serine 63 and 73 residues. Other transcription factors affected by JNKs include ELK1, activating 
transcription factor 2 (ATF-2), signal transducers and activators of transcription (STAT3), nuclear factor of activated T-cells 4 
(NFAT4), tumor protein p53 (p53), and Smad4. JNKs are also referred to as stress-activated protein kinases (SAPKs) [3–5]. 
The molecular cloning of human JNK protein kinases in 1996 revealed ten different isoforms derived from three gene types: 
JNK1 (Mapk8), JNK2 (Mapk9), and JNK3 (Mapk10) [6–8]. These JNK protein kinases play a pivotal role in various cellular 
responses, including cellular proliferation, apoptosis, gene expression, oncogenic transduction, migration, and inflammation, 
primarily mediated through their impact on the AP-1 transcriptional factor. The activation of JNK protein kinase pathways 
involves diverse molecules, such as extracellular stimuli activators, GTP-binding small proteins, MAPKKs and MAPKKKs, 
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ST20 homologous and related proteins, phosphoinositide-3-kinase, and other activators as outlined in studies by Minden and 
Karin [9–12]. 
 
JNK-1 proteins can be activated by stress stimuli, including UV irradiation and the introduction of proteins from oncogenes. This 
activation can enhance cancer cell production through mechanisms like uncontrolled cell division, proliferation, and the inhibition 
of apoptosis. Despite these oncogenic effects, JNK-1 proteins have demonstrated the ability to suppress tumors, as observed in 
skin cancer and oral cancer contexts [13–15]. The overexpression of JNK-1 has been detected in various cancers, including breast 
cancer, prostate cancer, liver cancer, among others [16–18]. 
 
Throughout history, natural products, better known as secondary metabolites, have played a critical role in the process of drug 
discovery. These compounds contain pharmacologically active ingredients, leading to the derivation of many drugs and their 
derivatives from natural sources. Recently, natural products hold significant importance in cancer treatment due to their 
advantageous properties, including low side effects, cost-effectiveness, potency, and specificity [19–22]. 
Since the early seventieth, computational modeling withstood as a revolutionary strategy in multiple disciplines  of the medical 
sciences [23–25]. For instance, In silico modeling can used in medical imaging besides its use in the drug discovery [26].The 
emergence of high throughput screening (HTS) and advanced machinery towards the end of the last century shifted research 
focus towards the exploration of natural products [27,28]. The strategic utilization of isolated natural products as scaffolds for 
screening libraries has emerged as a distinct approach in modern drug discovery, facilitating the exploration of new leads [29].  
Computer-aided drug design (CADD) represents a significant advancement in the field of drug discovery, aiming to minimize 
errors inherent in traditional methods while reducing costs and time. Two primary approaches within CADD programs are 
Structural-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD) [30–34]. The application of computational 
methods accelerates the pace of drug discovery and development. Numerous studies have explored computational applications to 
identify inhibitors for the JNK1 protein, targeting various diseases. For instance, targeting the JNK1 protein in type 2 diabetes has 
emerged as a crucial objective [35,36]. In the study between your hands, we aimed to investigate the renowned supernatural 3.0 
database through extensive multi-stage computational process (E-pharmacophore modeling, molecular docking, MM-GBSA 
binding free energy calculations, and molecular dynamics simulation) for the intentto discover new anticancer compounds with 
sufficient proves of their potential JNK1 inhibitory activity. 
 

2. Methods 

All computational studies were performed using Maestro v 12.8 by Schrödinger and academic Desmond v6.5 by D.E. Shaw 
Research for MD. 
 

2.1. Protein preparation  
The 3D crystal structure of the JNK1 protein was acquired from the Protein Data Bank (PDB) utilizing the accession 

code4AWI which specifically encodes for Human JNK1 alpha kinases bound with 4-phenyl-7-azaindoles[37]. To ensure 
structural integrity and optimal energetics, we employed the Protein Preparation Wizard developed by Schrödinger. This tool 
facilitated the optimization and refinement of the protein by assigning bond orders, converting selenomethionines into 
methionines, removing water molecules beyond a 5 Å radius, filling in missing loops using Prime, and optimizing hydrogen bond 
assignments using PROPKA at a pH of 7.4. Further refinement involved the deletion of water molecules and subsequent 
minimization using the OPLS4 force field. These steps were crucial for confirming the optimal structural conformation of the 
protein, thereby ensuring its suitability for subsequent accurate analyses [38–40]. 
 

2.2. Ligand preparation and grid generation of receptor protein 

For ligand gathering and preparation, we obtained the molecular library from the opened-accessSuper -Natural 3.0 (SN3) 
databases. Subsequently, energy minimization and ligands optimization were performed using the Macromodel tool of Maestro 
applying the energy parameters of the OPLS4 force field. 
 
On the other context, the receptor gride generator tab in Glide module was recruited to create orthogonal cubic gride for ligand 
binding site Inspired by the coordinates of JNK-1, 4AWI, co-crystalized inhibitor. This step is crucial and it inevitably affects 
the reliability of molecular docking and  the accurate representation of protein-ligand interactions [41]. 
 

2.3. E-pharmacophore generation and screening 

Pharmacophore modeling involves the creation of a model by screening the target structure or ligands, identifying the essential 
key features for binding and activity. These features include hydrogen bond donors, acceptors, hydrophilic and hydrophobic 
residues. The generated model afterward can be  utilized to screen a library of molecules in search for potential leads that with the 
desirable pharmacophoric features against the targeted proteins [42,43]. In this study, the PHASE module from Schrödinger was 
employed for pharmacophore modeling [44]. 
 
The E-pharmacophore method was utilized to generate a model using protein-ligand complexes as input. This step yielded a 
pharmacophore hypothesis that highlights the essential structural features for effective JNK-1 binding (hydrogen bond donors, 
acceptors, hydrophobic groups, aromatic rings, hydrophilic groups, and ionizable groups). Furthermore, the total energy within 
the complex is calculated based on the contributions of all pharmacophoric sites and surrounding atoms [45,46]. 
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Subsequently, screening of the Super -Natural 3.0 (SN3) databases on the light of the generated hypothesis was conducted using 
Phase pharmacophore-based screening to identify the potential inhibitors of JNK1[47]. 
 

2.4. Molecular docking and MM-GBSA calculations 

For molecular docking analysis, we utilized the Glide software developed by Schrödinger [41]. This tool employs Monte Carlo 
simulates annealing searching algorithms to sample the possible protein-ligand conformations, and utilizes docking score, a 
modified ChemScore, to evaluate these conformations. Additionally, Glide applies different levels of penalties it presents to 
highly accurate estimations. Glide renders the docking process in three integrated modes, High Throughput Virtual Screening 
(HTVS), which is characterized by its speed and enables the initial identification of ligands for further screening with minimum 
applied penalties. Conversely, Standard precision (SP) and Extra Precision (XP), exploit more sophisticated scoring functions and 
higher degree of penalties[48,49]. 
 
In this study, the molecules that fit the anticipated pharmacophore hypotheses were subjected to comprehensive docking analysis 
to validate the pharmacophore hypothesis and capture more accurate affinity predictions.Prior its execution, the docking 
procedure has been validated through the calculation of RMSD values for the reference ligand before and after docking.  HTVS 
was applied to gather clues about the most potential hits and therefore narrow the examined molecular set. For further refinement, 
the best 10% in terms of docking score were subsequently subjected to SP analysis. Eventually,XP docking was executed for the 
compounds that projected the best docking. 
 
Molecular MechanicsGeneralized Born Surface Area (MM/GBSA) calculations provide more coherent binding free energy 
predictions. Prime module of Schrödinger inputs of three energy values; the energy of the apo protein, the energy of the unbound 
ligand, and the energy of the protein-ligand complex, to calculate the free binding energy of the system barrowing the energetics 
of OPLS forcefield. Uniquely, Prime MM-GBSA tool adopts VSGB2.0 as solvent model and applies strict solvation penalties 
which is known to be significant for both the accuracy and precision of the results. 
In this work, we established MM-GBSA calculations for the compounds that disclosed promising docking result in XP docking 
step to comprehend their JNK-1 binding potential quantitatively as well as qualitatively and to incorporate a high degree of 
certainty in the conclusions of our docking process [50,51]. 
 

2.5. Molecular dynamics simulations 

MD investigates the stability of protein-ligand interactions and studiesthe conformational changes and intermolecular forces 
involved in the protein and ligand contacts through the concepts of molecular mechanics and Newtonian equations of motion. 
Surprisingly, MD surpasses the other computational analysis in accuracy since it counts the dimension of time and the effects of 
the physiological environment.MD analysis trajectories hold massive information about the inclinations of the protein and ligand 
throughout the interaction time. RMSD portrays the dislocations of the protein alpha carbon during the complexation process. 
Meanwhile, RMSF postulates the fluctuations of each residue in the protein backbone. In this article, MD simulations were 
carried out using the academic version of Desmond software [52].  
 
The system was firstly enclosed in a box with uniform dimensions of 10 Ǻ to ensure consistency. To reproduce the physiological 
medium, TIP3P water model and neutralizing charges with sodium and chloride ions were employed [53]. Moreover, Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm was exploited to address the steric clashes in the protein-ligand 
complex.  
 
The NPT ensemble has been utilized to achieve a temperature of 300 K and a pressure of 1 bar throughout the simulation 
duration. Eventually, the system underwent an energy minimization process until reaching stability. To manage long-range 
electrostatic interactions, the Smooth Particle Mesh Ewald (SPME) technique was employed with a tolerance set to 1e-09. Short-
range electrostatic interactions were managed using a cutoff radius of 9 Å [54][55]. 
 

2.6. ADMETprediction 

In silicopharmacokinetics and toxicity prediction has gained accountable credibility in the last decades due to its minimal 
computational cost together with its highly accurate predictions[56]. 
In this study, the drug like propriety for the selected molecules was calculated using QikProp module In Maestro software 
package. This tool searches for the presence of particular chemical groups which their presence has pharmacokinetic and/or 
toxicological repercussions[56]. 
 
Accordingly, the compounds have been examined for the alignment with Lipinski's rule of five through the analysis of their 
corresponding molecular wight, octanol/water partition coefficient, and number of hydrogen bond donors and acceptors.  
ProTox-II webserver utilizes molecular similarity, pharmacophores, fragment propensities and machine-learning models to 
provide a meticulous estimation of various toxicity endpoints, such as acute toxicity, hepatotoxicity, cytotoxicity, 
carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways and toxicity targets. In this study, we have 
subjected the molecules that shown the greatest potential in the computational analysis to the  ProTox-II webserver to portray 
their predictable toxicity profile[57][58]. 
 

3. Results 

In this research, we adopt a comprehensive computational approach to identify potential natural compounds as inhibitors of JNK1 
(Figure 1). 
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Figure 1: The study workflow. 

3.1 E-pharmacophore modeling and screening 
We employed receptor-based pharmacophore modeling to derive a pharmacophoric hypothesis from the co-crystallized ligand 
bound to JNK1 (PDB ID: 4AWI). The generated pharmacophore hypothesis comprised four features, including two aromatic 
rings (R) and two hydrogen donors (D), as illustrated in Figure 2. 
A total of 449,008 natural compounds sourced from the SN3 database were subjected to screening against the four features of the 
pharmacophore hypothesis. This screening process yielded 15,229 compounds that matched all chemical features of the 
hypothesis. 
Subsequently, to explore the interaction of the screened SN3 natural compounds based on the pharmacophore hypothesis, 
molecular docking was conducted using Glide docking tiers against JNK1, as elaborated in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2: The pharmacophore hypothesis developed using the co-crystalized ligand with JNK1 (PDB D: 4AWI). The hypothesis was generated 
using “Generate hypothesis from multiple ligands” option of Phase software. Yellow open circle, aromatic ring (R); blue sphere with arrow, 
hydrogen-bond donor (D). A. The pharmacophore hypothesis B. The hypothesis aligned with bound ligand. 
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3.2. Molecular docking and MM-GBSA calculations 
Molecular docking was used to dock the natural compounds obtained from the pharmacophore screening against JNK1 binding 
site. The root mean square deviation (RMSD) between the co-crystallized reference and the re-docked reference is 0.43 Å. 
The Phase screen results underwent two rounds of molecular docking against JNK1 using Schrodinger's Glide tool. The 
compounds underwent filtration via two Glide docking modes, namely High Throughput Virtual Screening (HTVS) and Extra 
Precision (XP). Initially, molecular docking was conducted to virtually screen a library of 15,229 natural products from the SN3 
database using the HTVS docking mode of Glide. Subsequently, the top 100 compounds from HTVS docking were subjected to 
XP docking mode. This led to the identification of 15 compounds with docking scores ranging from -13.469 to -12.888 kcal/mol, 
surpassing the binding affinity of the bound ligand (-12.851 kcal/mol) (Table 1). 
 

Table 1: Docking scores and MM-GBSA binding energy of the top 15 natural compounds and the reference ligand bound to the 
JNK1 binding cavity (PDB D: 4AWI). 
 
Compound ID Docking Score (kcal/mol) MMGBSA dG Bind 

(kcal/mol) 
SN0239242 -13.469 -69.22 

SN0430786 -13.426 -26.46 

SN0334117 -13.413 -41.81 

SN0127025 -13.343 -48.6 

SN0001583 -13.177 -42.29 

SN0422316 -13.14 -50.71 

SN0263268 -13.082 -62.58 

SN0200910 -13.068 -46.56 

SN0068835 -13.041 -44.82 

SN0390869 -12.983 -48.4 

SN0010594 -12.963 -33.82 

SN0295920 -12.9 -38.32 

SN0160811 -12.898 -45.13 

SN0046515 -12.897 -35.18 

SN0276865 -12.888 -41.38 

Bound reference  -12.851 -57.68 

 

Furthermore, the top 15 phytochemicals underwent Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) 
calculations using Maestro's Prime tool to forecast the free energies of MM-GBSA binding among the three ligand-protein 
complexes. Compounds SN0239242 and SN0263268 exhibited favorable free binding energies of -69.22 and -62.2 kcal/mol, 
respectively, when bound with JNK1, while the reference compound displayed a value of -57.68 kcal/mol(Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Top two compounds and the reference aligned the pharmacophore hypothesis. A. SN0239242 B. SN0263268. 
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Additionally, leveraging the graphical representation of the Schrodinger ligand interaction module, a comprehensive analysis of 
the molecular interactions between JNK1 and the top two compounds was conducted, as depicted in Figure 4. 
Additionally, leveraging the graphical representation of the Schrodinger ligand interaction module, a comprehensive analysis of 
the molecular interactions between JNK1 and the top two compounds was conducted, as depicted in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4:2D and 3D interactions of the top two compounds and the reference with JNK1 (PDB D: 4AWI) using the Glide software. A. 
SN0239242 B. SN0263268 C. Reference. 
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SN0239242 formed hydrogen bonds primarily with PRO184 and VAL186. Additionally, SN0239242 engaged in water bridge 
interactions with LYS55, MET111, and ASP169, further enhancing its binding affinity. SN0263268 demonstrated hydrogen 
bonding interactions with ILE32, SER34, GLN117, SER155, and TYR185. Moreover, SN0263268 formed water bridge 
interactions with ILE32, SER34, LEU168, and ASP169, highlighting additional stabilizing interactions within the binding cavity. 
The reference ligand primarily interacted through hydrogen bonds with LYS55, MET111, and SER155, indicating a 
comparatively limited interaction profile. 
Notably, pi-pi interactions were observed only with TYR185 in the case of SN0239242, suggesting a potential role of aromatic 
stacking in stabilizing the ligand-protein complex. No pi-pi interactions were observed for SN0263268 or the reference ligand. 
 

3.3. Molecular dynamics  

The molecular dynamics (MD) was used forthe top two natural compounds, SN0239242 and SN0263268along with the reference 
compound for 100 ns. 
SN0239242-JNK1 displayed superior stabilization compared to SN0263268-JNK1 and the reference-JNK1, with Root mean 
square deviation (RMSD) values of 4.41 ± 0.80 Å, 6.13 ± 0.79 Å, and 5.20 ± 0.78 Å, respectively, throughout the simulation 
period. Despite higher structural fluctuations observed in SN0239242-JNK1 between 30ns and 70ns, the carbon alpha RMSD for 
the protein remained relatively stable at 2.89 ± 0.35 Å, indicating overall protein stability (Figure 5). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: The protein-ligand RMSD plot of the top two compounds and the reference complexed with JNK1 (PDB D: 4AWI) during 100 ns 
molecular dynamics simulation using Desmond software. A. SN0239242 B. SN0263268 C. Reference. 

 

LEU363 and GLU364 exhibited the highest fluctuations, with Root-mean-square fluctuations (RMSF) values of 4.044 Å and 
5.950 Å, respectively, while the remaining protein residues showed lower fluctuations, with an average RMSF of 1.15 ± 0.79 Å 
(Figure 6). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Protein RMSF plot displaying JNK1 (PDB D: 4AWI) bound to the top two compounds and the reference during 100 ns molecular 
dynamics simulation using Desmond software. A. SN0239242 B. SN0263268 C. Reference. 
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Ligand Root Mean Square Fluctuation (L-RMSF) analysis highlighted significant changes in ligand atom positions during the 
simulation period. On average, the RMSF values with respect to the protein-ligand complex for SN0239242-JNK1, SN0263268-
JNK1, and reference-JNK1 were 1.93 ± 0.68 Å, 1.64 ± 0.65 Å, and 1.80 ± 0.68843 Å, respectively (Figure 7). 
 

 
Figure 7: Ligand RMSF plot displaying the top two compounds and the reference with JNK1 (PDB D: 4AWI) during 100 ns molecular dynamics 
simulation using Desmond software. A. SN0239242 B. SN0263268 C. Reference. 

 

Furthermore, the non-bonded intermolecular interactions between the JNK1 binding residues and the top two natural compounds, 
as well as the bound reference, observed during the 100 ns MD simulation, are depicted in Figure 8.  

 

 

Figure 8: Protein-ligand contact histogram of the top two compounds and the reference complexed with JNK1 (PDB D: 4AWI) during 100 ns 
molecular dynamics simulation using Desmond software. A. SN0239242 B. SN0263268 C. Reference. 
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For hydrogen bonds, SN0239242 displayed significant interactions with ASN114 (52%) and LYS153 (36%). Similarly, 
SN0263268 formed hydrogen bonds with ALA36 (50%), GLN37 (51%), and GLY38 (47%). In contrast, the reference compound 
exhibited weaker hydrogen bonding interactions with SER58 (16%), HIS66 (14%), and TYR185  )15.(%  
Furthermore, analysis of water bridges revealed distinct patterns of interaction. SN0239242 formed water bridges predominantly 
with LYS55 (61%), SER155 (55%), and ASP169 (75%). SN0263268 engaged in water bridge interactions with SER34 (92%), 
ALA36 (40%), and GLN37 (101%). The reference compound showed fewer water bridge interactions, with notable participation 
from ILE32 (24%), GLN37 (41%), and TYR185  )25.(%  
Regarding hydrophobic interactions, SN0239242 demonstrated notable interactions with LEU168 (45%) and TYR185 (45%). 
However, SN0263268 did not exhibit significant hydrophobic interactions in this context. The reference compound showed 
limited hydrophobic interactions, primarily with VAL40 (15%) and TYR185 (12%). 
 
3.4. ADMET prediction 

The best scoring molecules were subjected to a comprehensive ADMET analysis using QikProb tool and Pro Tox II 
webserver. Beyond this, we harnessed QikProb to examine the compliance of the molecules with Lipinski's rule of five 
through the prediction of molecular weight in KDa,hydrogen bond donors (HBD) and acceptors (HBA), and octanol/H2O 
partition coefficient (QPlogPo/w). Furthermore, two cell membrane penetration factors were estimated including bloodbrain 
barrier permeability (QPlogBB) and cell membrane permeability (QPPCaco-2) in nm/sec considering Caco-2 cells as model 
for the gut-blood barrieras summarized in Table 2. 

 

Table 2: The predicted ADMET descriptors for SN0263268 and SN0239242 viaQikProb tool of Maestro 

 
The Pro Tox II webserver displayed the toxicological profile of the two compounds in three aspects; oral toxicity, organ 
toxicities, and toxicities end points. Oral toxicity was symbolized in median lethal dose (LD50) calculated in milligram per 
kilogram of body weight. Meanwhile, organ toxicities anticipated the toxicity risk against the vital organs,cardiotoxicity, 
hepatotoxicity, neurotoxicity, and nephrotoxicity. Eventually, the major toxicity endpoints were predicted which encompassed 
carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity (Table 3). 
 
Table 3: The predicted oral toxicity, organ toxicities, and toxicities end points via Pro Tox II webserver. 

 
SN0239242  SN0263268      
5  5  Toxicity Class  Oral Toxicity  
5000  5000  LD50 (mg/kg)    
Inactive  Inactive  Hepatotoxicity  Organ toxicity  
Inactive  Inactive  Neurotoxicity    
Active  Active  Nephrotoxicity    
Inactive  Inactive  Cardiotoxicity    
Inactive Active Carcinogenicity   
Inactive Inactive Immunotoxicity   
Inactive Inactive Mutagenicity   
Inactive  Inactive  Cytotoxicity    

 

4. Discussion  

The study explores the role of human JNK1 genes, which are often overexpressed in various cancers including skin, liver, breast, 
brain tumors, leukemia, multiple myeloma, and lymphoma. Computational methods have become indispensable in drug 
discovery, spanning from target identification to lead optimization[25,59]. A primary objective in this field is the identification of 
novel chemical entities capable of binding to target proteins to induce the desired biological response. A receptor-based 
pharmacophore modeling was used to build a pharmacophoric hypothesis from the co-crystallized ligand bound to JNK1. The 
obtained pharmacophore hypothesis consisted of four features (aromatic rings (R) and two hydrogen donors (D)). A library of 
natural compounds from the SN3 database was screened against the four features of the pharmacophore hypothesis resulting in 
15,229 compounds that matched all chemical features of the hypothesis. Then, molecular docking, MM-GBSA calculations and 
molecular dynamics were usedto validate this pharmacophoric studies, as elaborated in the following section. 
Molecular docking, a pivotal technique in structure-based drug design, was utilized to probe the binding interactions and affinities 
of ligands within the JNK1 binding site [39–41][60]. The root mean square deviation (RMSD) between the co-crystallized 
reference and the re-docked reference, measuring at 0.43 Å, underscores the precision of the docking methodology employed in 
this investigation. The compounds obtained from the pharmacophore screening were docked against JNK1 binding cavity using 
two Glide docking modes (High Throughput Virtual Screening (HTVS) and Extra Precision (XP)). HTVS mode facilitates rapid 
screening by minimizing intermediate conformations and employing final torsion refinement and sampling. Subsequently, the top 
compounds from HTVS docking were subjected to XP docking mode, renowned for its extensive sampling and intricate scoring 

Title mol MW HBD HBA QPlogPo/w QPPCaco-2 QPlogBB RuleOfFive 
SN0263268 478.365 6 13.05 -0.952 0.133 -4.748 2 
SN0239242 632.487 10 17.05 -2.249 0.032 -7.444 3 

Reference value 130-725 ≤6 2-20 -2 - 6.5 
<25 poor; 

>500 great -3 – 1.2 0 - 4 
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function that eliminates false positives. Additionally, XP penalizes compounds with reduced complementarity with the target 
active site. This led to the discovery of 15 natural compounds with docking scores surpassing the binding affinity of the bound 
ligand.  These compounds were subjected to Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) calculations 
using Maestro's Prime tool to predict the free energies of MM-GBSA binding among the three ligand-protein complexes. MM-
GBSA calculation accounts for the solvent effect on ligand binding to the target. Compounds SN0239242 and SN0263268 
exhibited favorable free binding energies compared to the reference compound. Notably, the top two ligands conform to the four 
pharmacophore features. The analysis of the interactions between the top two compounds and the reference ligand with the JNK1 
binding cavity revealed distinct binding patterns. Overall, the favorable docking scores and MM-GBSA binding energies of 
SN0239242 and SN0263268, along with their specific interactions within the JNK1 binding cavity, indicate their repressive 
potential. 
The molecular dynamics (MD) simulation analysis provided valuable insights into the molecular interactions within the protein-
ligand complex, assessing their stability under simulated physiological conditions using the Maestro Desmond module. The MD 
simulation focused on the top two natural compounds, SN0239242 and SN0263268, which exhibited stronger ligand-protein 
interactions, along with the reference compound identified through XP Glide docking. Root mean square deviation (RMSD), 
measured with respect to the initial structure, indicated notable differences in stability among the complexes. Root-mean-square 
fluctuations (RMSF) analysis provided insights into the fluctuations of individual protein residues over time. Higher peaks in 
RMSF graphs correspond to residues experiencing greater fluctuations. The protein showed low RMSF values confirming the 
protein stability. Furthermore, the non-bonded intermolecular interactions between the JNK1 binding residues and the top two 
natural compounds, as well as the bound reference. Many of the ligand-protein interactions observed during the docking study 
were consistently observed throughout the MD simulation. Interestingly, the tested compounds explicit numerous JNK-inhibitors 
explosive interactions. A series of 4-quinolone JNK inhibitors discovered by Roche interact with the hinge region`sMet111 and 
Ile32[61].  Moreover, it has been reported that interactions with Glu109, Leu110, met111, Gln37, Lys55 endorse the selectivity of 
JNK inhibitors over CDK and P38 inhibition as in Aminopyridines[62]. Furthermore, a novel class of 2- 
aminopyridopyrimidinone-based JNK inhibitors reported by Zheng et al occupies the ATP binding site and interact with 
Lys55[63]. Abbott reported that 4-anilinopyrimidines JNK1 inhibitors stick to JNK1 binding site through crucial hydrogen bond 
with Met111[64]. Recalling the interaction patterns for SN0239242 and SN0263268, these studies confirm the JNK1 inhibitory, 
hence the antitumor potential of these compounds. 
The pharmacokinetic and toxicity profile comprises essential parameters that abort significant number of the discovered 
medication before they reach the clinical utility. Depending on this concept, the early anticipation of ADMET profile saves 
tremendous effort in the journey of drug discovery and development[58].It can be seen from table 2 that these compounds 
hold interesting drug likability traits nevertheless, they violate Lipinski's rule of five in multiple terms[65]. SN0263268 has 
shown two violations since it outnumbered the stated HB donor and acceptors, otherwise, its predicted partition coefficient was 
acceptable. Conversely, the predicted QPlogPo/w forSN0239242 was slightly lower than the acceptable limit. SN0239242 also 
breached Lipinski's indicated numbers of HB donors and acceptors. QPPCaco-2 and QPlogBBindicated poor gut and BBB 
penetration for both molecules. Regarding the summarized Pro-Tox toxicity reports in Table 3, both compounds carried no 
risk of oral toxicity as it can be observed in their corresponding toxicity classes and LD50 data. organ toxicity parameters 
suggested possible nephrotoxicity risk with the tested molecules, however, there was no reported cardiac, hepatic, or 
neurotoxicities. Pro-Tox predicted no toxicity endpoints for SN0239242. SN0263268 on the other hand postulated carcinogenic 
possibility, nonetheless, no detected risk of immunotoxicity, mutagenicity, or cytotoxicity. 
 

5. Conclusion 
The human JNK1 protein kinase plays a crucial role in various signal transduction pathways, particularly in the MAPK-signaling 
pathway. Overexpression of JNK1 is a common feature observed across numerous cancer types. In this study, computational 
methodologies were employed to identify potential JNK1 inhibitors from natural compounds. Specifically, two phytochemicals, 
SN0239242 and SN0263268, were pinpointed as promising candidates. These compounds were selected based on their 
demonstrated ability to interact with JNK1, as revealed through pharmacophore modeling and screening, molecular docking 
analyses, and their favorable MM-GBSA binding energies. Furthermore, their stability under simulated physiological conditions 
was confirmed through molecular dynamics simulations. Further experimental validation is warranted to explore their efficacy in 
combating cancer and potentially contributing to the development of new therapeutic interventions. 
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CADD: Computer-aided Drug Design 
JNK1: Human c-Jun N-terminal kinase 1 

MAPKs: Mitogen-activated protein kinases 

MM-GBSA: Molecular mechanics with generalized Born and surface area 
MD: Molecular Dynamics. 
RMSD: Root Mean Square Deviation 
RMSF: Root Mean Square Fluctuation 
HTVS: High throughput virtual screening 
SP: Standard Precision 
XP: Extra precision 
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