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In this work, the adsorbent method is performed using artificial neural network (ANN) modeling. 
The adsorbent is applied for removal of Thiocyanate in water samples using Titanium Dioxide 
(TiO2) nanoparticles as effective sorbent. Prediction amount of Thiocyanate removal was 
investigated with novel algorithms of neural network. For this purpose, six parameters were 
chosen as training input data of neural network functions including pH, time of stirring, the mass 
of adsorbent, volume of TiO2, volume of Fe (III), and volume of buffer. Performances of the 
suggested methods were examined using statistical parameters and found that it is an efficient, 
effective modeling satisfactory outputs. The radial basis function (RBF) and Levenberg-Marquardt 
(LM) algorithm could accurately predict the experimental data with correlation coefficient of 
0.997939 and 0.99931, respectively. The Pearson's Chi–square measure was found to be 29.00 for 
most variables, indicating that these variables are likely to be dependent in some way.
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Introduction

In biomedical fluids, determination of 
Thiocyanate is associated with biomedical 
and toxicology [1-3]. These compounds would 
cause some serious effects, especially on the 
Nervous system, including Alzheimer’s disease, 
nervousness, hallucination, psychosis, delusion, 
and seizure [4]. Negative effects of this substance 
decrease by increasing the molecular mass of 
Thiocyanate alkyl [5]. This substance is found 
in industrial waste-water, pesticide residues, and 
organic metabolism. Thiocyanate is released as 
the main product of detoxification and reforming 
of Hydrogen Cyanide. It is synthesized from a 
connection between existing sulfur molecules 
such as thiosulfate and cyanide and, eventually, is 
catalysed by Rodz enzymes [6,7]. These particles 
exist in all eatable plants, water solutions, urine, 

saliva, and human plasma [8]. So, there is 
always conjunction between cyanide in blood, 
Thiocyanate in plasma, and Thiocyanate in saliva. 
This anion distributes its negative charge between 
sulfur and nitrogen almost the same. As a result, 
it can be treated as a nucleophile such that two or 
three metal can join to it. The anion also connects 
to Thiocyanate from N side if the metal is a hard 
acid and connects from S side if it is a soft acid 
[9]. The first study concerning the determination 
of Thiocyanate particles in biological fluids was 
conducted based on spectrophotometric detection 
and intricacy of colors [10]. 

    Some methods frequently applied for the 
removal of metals are precipitate [11], ion 
exchange [12], severe filtrations [13], adsorptions 
[14,15], membrane separation [16], and 
constructed wetlands [17]. In comparison with 
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other methods, adsorption often can be considered 
as a superior particle removal method because of 
its cost-effective, easy setup, flexibility and high 
efficiency [18]. Researchers are more interested 
in nano-sorbents because of their sorbent particle 
size and surface treatment, which causes the high 
chemical reactivity and increases the interference 
between absorption and adsorption material 
[19,20]. The concentration range of nano-sorbents 
is 1-1000 ppm owing to the removal of pollutants 
[21]. During recent years, different studies have 
been done for removing Thiocyanate. TiO2, is 
also known as Titanium Oxide (IV) or Titania, 
White Titanium, and White Pigment when used 
as a pigment. All properties of TiO2 exist in nano-
TiO2 just, except that its particles are very smaller, 
which leads to its additional extraordinary 
properties. It has a larger surface and a higher 
efficiency owing to its smaller particle sizes. Two 
important properties of this substance that make it 
so efficient and useful are being auto-cleaner and 
photo-catalytic. 

     When the size of TiO2 particles, decreases 
to nano-scale, the photo-catalytic activity can 
increase due to the increase in the effective surface. 
TiO2 is used to remove organic pollutants such 
as Toluene, surfactants, insecticides, aromatic 
sulfides, hydrocarbons, and organic dies [22]. 
This oxide usually is used as a reliable substance 
for eliminating some detrimental particles, 
especially in environmental usages [23]. Some 
of the merits of TiO2 include being a suitable 
adsorbent, chemical and physical stability, 
nontoxic, resistance to rusting, and economical 
justification [24].

     Unlike most researches which use 
photocatalytic methods, in this study, the 
mechanism of removal of Thiocyanate with TiO2 
is based on a reversible physical adsorption. In 
this method, the adsorbed Thiocyanate can be 
easily extracted from adsorbent and there is no 
need to use a modifier to adjust the surface of the 
nanoparticles. Furthermore, nanoparticles can 
be used several times which in turn, shows the 
high performance of the method. Modeling the 
removal process allows evaluating the influence 
of every parameter and simulation of the removal 
efficiency with a lower number of experiments. In 
this regard, random forest (RF), adaptive Neuro-
fuzzy inference system (ANFIS), least squares 
support vector machines (LS-SVM), and artificial 
neural network (ANN) as some intelligent models 
are efficient for predicting the adsorption process 

[25,26]. ANN represents a promising modeling 
technique, especially for data sets having non-
linear relationships. It requires no knowledge of 
the data source and can combine and incorporate 
both literature-based and experimental data to 
solve problems. In this study, the capability of 
artificial neural network (ANN) was investigated 
for predicting metal ions removal. In this regard, 
ANN was compared with the experimental data to 
determine the relationship of six input parameters 
on Thiocyanate adsorption capacities: pH, time 
of stirring, the mass of sorbent, volume, and 
concentration of TiO2, and volume of Fe (III) [27]. 
The novelty of the present study is using neural 
network functions in anticipating the removal 
of Thiocyanate in the prepared water samples. 
The available neural network algorithms predict 
removal percentage values instead of doing all of 
the required experiments. Reducing the cost of 
raw materials and reducing the use of expensive 
laboratory equipment and instruments are among 
the advantages of this method. Also, it can lead to 
less time needed for the analysis and conclusions. 
In the present study, the ability of radial basis 
function and multi-layer perceptron algorithms 
are assessed to predict the amount of removed 
Thiocyanate and, eventually, the performance of 
the neural network method is tested by the valid 
statistical criteria. Two algorithms, including 
multilayer perceptron (MLP) and radial basis 
function (RBF) were used to evaluate the 
performance of method. The results showed that 
two models satisfactorily predicted the adsorbed 
amount of Thiocyanate from wastewater [28].  

Experimental

Material and methods

Solid Iron (III) Chloride (purity = 99), solid 
Potassium Thiocyanate (purity= 99-100), solid 
Sodium hydroxide (purity= 99-100) and other 
materials with a high purity were supplied from 
Merck Company (Germany). TiO2 adsorbent 
(purity = 99.5-100) was purchased from Neutrino 
local company. 

     For two beam spectrophotometer, model Lambda 

135 (manufactured by Perkin-Elmer) was used. 
In addition, a 1cm TB glass was applied for the 
adsorption of the Iron-Thiocyanate color complex 
in ƛ = 456.8 nm and drew a spectrum. pH meter 
model F-11 (manufactured by Horiba Company, 
Japan) was used for pH control in aqueous 
solutions. Weight measurements were done using 
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a balance (model BP210D, weight capacity = 
200 g, and precision = 0.0001) manufactured by 
Sartorius company in Switzerland. Pyrex glass 
containers such as a volumetric flask, bécher, 
pipette, Erlenmeyer flask, and glass stirrer were 
used. A centrifuge H-11n (manufactured by 
Kokusan Company, Japan) was used for the 
centrifuging the synthesized particles. For taking 
transmission electron microscopy (TEM) photos, 
a Leo 906 device manufactured by Germany was 
applied. A syringe filter manufactured by the 
Chinese Biofil Company (pore   size = 0.22 µm 
and maximum bear the pressure = 4.5 bar and as a 
disposable) was also used during the experiments. 

Preparation of samples for analysis

Iron (III) solution (0.1 molL-1)

First, using a digital balance, 2.70 g of Iron (III) 
chloride hexahydrate was carefully weighed and 
was transferred to a 100 ml volumetric flask. Next, 
it was solved in a small amount of water and was 
brought to volume by adding fresh distilled water.

Thiocyanate solution (1000 µg.ml-1)

Using a digital balance, 0.169 g of solid 
Potassium Thiocyanate was carefully weighed 
and transferred to a 100 ml volumetric flask. It 
was solved in a small amount of water and was 
brought to volume by adding fresh distilled water. 

Ammonia buffer solution (0.02 molL-1)

Using a micropipette, 0.75 ml of 13.38 M 
ammonia solution (0.91 g.ml-1, 25% W/W)  was 
transferred in a 500 ml volumetric flask and was 
brought to volume. The pH of the solution was 
adjusted by 0.1 M hydrochloric acid solution. 

Hydrochloric acid solution (0.1 molL-1)

About 8.33 ml of 12 M hydrochloric acid solution 
(1.19 g.ml-1, 37%W/W) was poured in a 1000 ml 
volumetric flask. Thus, it was brought to 1 L of 
volume by adding distilled water. 

Sodium hydroxide solution (0.1 molL-1)

According to calculations and to synthesize sodium 
hydroxide solution with a concentration of 0.1 
molL-1, 1.00 g solid sodium hydroxide with high 
purity was weighed. Then, after solving in a small 
amount of water, in a 250 ml volumetric flask, it 
was brought to volume by adding distilled water.  

General procedure

To adsorb and remove the Thiocyanate by TiO2 
nanoparticles, 1 ml of 100 µg.ml-1 Thiocyanate 
solution, 1 ml of 0.1 M Iron (III) solution, and 
0.5 ml buffer (pH = 9) were spilled in a 10 ml 
volumetric flask and was brought to volume by 
adding distilled water. The resulting solution was 
transferred to a 50 ml bécher containing 0.5 g of 
TiO2 nanoparticles. Thus, the mixture was placed 
on a magnetic stirrer for about 15 minutes and 
nanoparticles were removed by using a filter.

Artificial neural network

The effect of operating conditions on the removal 
process is often non-linear, which leads to 
additional problems for developing and solving 
the outcome using non-linear theoretical models. 
Therefore, using theoretical models and multiple 
linear regression (MLR) is necessary [29]. During 
the module design, the relationship between 
different modules is regarded. Artificial neural 
network (ANN) is one of the most powerful tools 
to reach this purpose. This method can introduce 
mathematical functions for linear and non-linear 
systems. Many studies have proposed ANNs for 
solving nonlinear problems. An accurate trained 
ANN can usually provide better performance 
in comparison with conventional modeling 
methods [30,31]. This method is widely used in 
various research areas for acquiring experimental 
information for designing water treatment model 
[32,33]. In this study, the input parameters were 
variables affecting the cyanide removal, including 
pH (over range of 4-10), time of stirring (over 
range of 1-20 min), the mass of sorbent (over 
range of 0.1-0.6 g), volume (over range of 1-50 
ml), and concentration of TiO2 (over range of 
10-200 mg.ml-1), and volume of Fe (III) (over 
range of 0.005-0.020) and the output parameter 
or the target parameter was cyanide removal 
efficiency and the network works based on the 
correspondence between the input and target. 
Fig.1 shows how the ANN deals with these data.

Radial basis function

The radial basis function (RBF) network is one of 
the most popular ANNs. These networks have the 
best performance when there are a large number of 
training data. There are three types of layers in its 
structure that play different roles. The input layer 
connects the network to the control variables. 
The newrb function adds neurons into the hidden 
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layer of the radial basis network up to the time 
that the amount of data mean square error is close 
to the target or the number of determined neurons 
is finished. The output layer is a linear layer that 
leads to a response from the network that creates 
an active pattern on the input layer. Neurons in 
different layers are connected to each other by 
the weight and bias. If C is the measured value 
in testing and C0 is the initial value of the desired 
parameter, the output vector of the j-th neurons of 
the hidden layer and the k-th neurons of the output 
layer are calculated by the Equation (1) [34].

     

Where Wkj is the output of the hidden layer weights 
and Wji is the input of the hidden neurons weights, 
Ci is 0.8326/ spread. Yj shows the j-th output 
vector of the hidden layer; Yk is the k-th output 
vector of the output layer; Xi is the i-th input 
vector; N is the number of output neurons; and n 
denotes the number of neurons of the hidden layer 
(Fig.2). The proposed RBF model was designed 
and taught by Matlab software with newrb 
function. The newrb function adds neurons into 
the hidden layer of the radial basis network up to 
the time that the amount of data mean square error 
is close to the target or the number of determined 
neurons finish. This function is made of two-layer 
networking. The first layer has radbas neurons 
and the second layer contains purelin neurons 
that adjust the weights are calculated to create an 
appropriate network.

Levenberg-Marquardt function

Levenberg-Marquardt (LM) algorithm in a 
multilayer perceptron (MLP) can be regarded as 
an effective and efficient nonparametric technique 
for estimating the unknown parameters. The 
first layer is called the input layer and includes 
a number of neurons often equal to the number 
of inputs. In general, each input is connected 
to all other inputs. Hidden layers are all layers 
between the input and output layers and include 
a vast number of neurons. Generally, a trained 
MLP has very satisfactory generalized capability 
to map input patterns into target estimation. 
The theoretical framework of MLP modeling is 
discussed in detail in [35,36]. The LM algorithm 
provides a solution for minimizing the nonlinear 
least squares. The function that should be 
minimized is expressed by Equation (2) to (4) and 
defined by train lm function in Matlab software 
[37].

     

Despite the structural similarities between the 
two MLP and RBF methods, RBF needs to have 
more neurons compared with back-propagation 
networks, nevertheless, they took advantage of 
their shorter design time compared to standard 
MLP networks. For this reason, the rate of 
learning and training for RBF networks is faster.

Methodology

RBF and MLP algorithms were used to develop the 
removal method. The data were divided into two 
categories including training and testing. These 
data consist of 40 rows and 6 columns related to 
parameters effective in the removal process. A 
total of 32 rows of data were selected randomly as 
training data and 8 rows for the training purpose. 
The efficiency of the neural network was evaluated 
using several statistical parameters such as root 
mean square error (RMSE), the mean absolute 
error (MAE), and the coefficient efficiency (CE). 
The more the uncertainty, mean absolute error, 
and standard error of the studied parameters are 
closer to 0, the higher the performance of the 
designed ANN for predicting the test data would 
be. For a suitable algorithm of the neural network, 
the coefficient of determination is close to 1 and 
has a range between 0 and 1. If this parameter 
is 1, there will be a perfect correlation between 
measured and predicted data. On the other hand, if 
the coefficient of determination is 0, the regression 
equation cannot predict the desired values by no 
means.

Results and discussion

Artificial neural network modelling 

The experimental data obtained from the 
experimental observations are divided into 
training and testing sets. The data set consists 
of 40 input values. From these 32 data sets are 
used for training and the remaining is used for 
testing the network. Then, the performance of 
the network was studied using different statistical 
performance parameters such as MAE, RMSE 
and CE values. The train data and test data are 
shown in Table 1 and Table 2, respectively.
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Experimental parameters of Thiocyanate 
adsorption

Effect of pH

Variation of pH value in the range of 4 to 10 was 
done with the 1 ml of 1000 mg L-1 Thiocyanate 
solution was added to 50 ml volumetric flasks. 
Different amounts of sodium hydroxide and 
hydrochloric acid were added to prepare solutions 
with pH in the range of 4 to 10. 5 ml of 0.1 M 
Fe (III) solution was added to each solution and 
was brought to volume by adding distilled water. 
After that, each solution was moved to a bécher 
and placed in contact with Titanium dioxide 
nanoparticles. Then, each bécher was stirred for 
20 min. Next, the adsorption of each solution was 
determined by spectrophotometry at ƛ = 456.8 nm 
after clearing by syringe filter and, the maximum 
adsorption obtained at pH = 9, thus this pH was 
chosen as optimum pH. The agreement between 
the ANN model predictions and the experimental 
data as a function of initial pH is shown in Fig.3.

Effect of the buffer

0.5 ml of ammonia buffer with 0.02 M 
concentration was determined as the optimal 
amount of buffer because the ammonia buffer can 
destroy the adsorption spectrum and decline λmax 
in volumes more than 0.5 ml and concentrations 
greater than 0.02 M. This amount of buffer was 
added to 1 ml of 0.1 M Fe (III) solution and 1 
ml of 100 µg.ml-1 Thiocyanate solution at pH = 9. 
Next, it was brought to 10 ml volume by adding 
distilled water in a 10 ml volumetric flask.

Effect of stirring time

To study the effect of stirring time, 1 ml of 100 
µg.ml-1 Thiocyanate solution was added to 1 ml of 
0.1 M Fe (III) solution and 0.5 ml of 0.02 M ammonia 
buffer and moved to a 10 ml volumetric flask and 
by adding distilled water brought to volume. Then, 
each solution was moved to 50 ml bécher containing 
0.1 gr of Titanium dioxide nanoparticles and each 
bécher was stirred for a specific time. Nanoparticles 
were removed using a filter and the adsorption of 
each solution was determined by spectrophotometry 
at ƛ = 456.8 nm. Since the removal percentage of 
Thiocyanate remained constant from the time 15 
min, this time was chosen as the optimum time. 
Fig.4 shows a comparison between the ANN model 
predictions and the experimental data as a function 
of contact time.

Effect of the amount of adsorbent

In this regard, 1 ml of 0.1 M Fe (III) solution, 1 
ml of 100 µg.ml-1 Thiocyanate solution, and 0.5 
ml of 0.02 M ammonia buffer were placed in a 
10 ml volumetric flask and by adding distilled 
water brought to volume. Different amounts of 
Titanium dioxide nanoparticles were placed in 50 
ml béchers containing. After 15 min, the solutions 
were cleared by the filter and the absorption of each 
solution was determined by spectrophotometry 
at ƛ= 456.8 nm and the optimum amount for 
Titanium dioxide nanoparticles was 0.5 g. Fig.5 
shows a comparison between the ANN model 
predictions and the experimental data as a function 
of the amount of adsorbent.

Effect of the volume of Fe(III) solution

To optimize the volume of Fe(III) solution, 1 ml 
of 100 µg.ml-1 Thiocyanate solution and 0.5 ml of 
ammonia buffer were moved to 10 ml volumetric 
flasks. Then, different amounts of 0.1 M Iron 
(III) solution were added to each solution. Next, 
each solution was brought to volume by adding 
distilled water, moved to a 50 ml volumetric flask, 
and placed in contact with 0.5 gr Titanium dioxide 
nanoparticles. Each solution was stirred for 15 
min and cleared by syringe filter. In the final step, 
the adsorption of each solution was determined by 
spectrophotometry at ƛ= 456.8 nm and 0.01 M Fe 
(III) was chosen as the optimum amount for the 
concentration of Fe (III) solution. The agreement 
between the ANN model predictions and the 
experimental data as a function of initial volume 
of Fe (III) is shown in Fig.6.

The effect of the initial concentration of 
Thiocyanate

To evaluate the effect of the initial concentration 
of Thiocyanate, different amounts of 1000 
gr.ml-1 Thiocyanate solution was added to 5 ml 
of 0.1 M Fe (III) solution, and 2.5 ml of 0.02 
M ammonia buffer at pH= 9. Each solution was 
brought to volume by adding distilled water. 
Next, each solution was moved to 100 ml béchers 
containing and placed in contact with 0.5 gr 
Titanium dioxide nanoparticles. Each solution 
was stirred for 15 min and cleared by the filter. 
Then, the adsorption of each solution was 
determined by spectrophotometry at ƛ= 456.8 nm 
and the optimum concentration of Thiocyanate 
was 40 µg.ml-1. Fig.7 shows the effect of initial 
concentration of Thiocyanate on the adsorption 
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Fig. 1. The schematic of network in the ANN model

Fig. 2. The schematic of the radial basis function’s structure
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TABLE 1. Experimental data for training artificial neural network model

R(%)Time (min) Adsorbent
(g)pH Volume

(ml)
 TiO2

 Concentration
(µg.ml-1 )

 Fe Volume
(ml)N.O

50.47200.5451051
50.95200.5551052
51.31200.5751053
51.55200.5851054
52.06200.59.55155
51.1200.5105156
15.310.1910.117
20.920.1910.118
29.4240.1910.119
32.3650.1910.1110
42.2770.1910.1111
47.315100.1910.1112
53.89150.1910.1113
53.89170.1910.1114
83.89200.1910.1115
53.98150.5910.01116
60.69150.5910.01117
89.59150.5910.01118
95.92150.5910.01119
96.2150.5910.01120
96.2150.5910.01121
94.96150.59110.00.7522
96.25150.59120.0123
95.11150.59130.01.524
91.89150.59140.0225
53.98150.191100.0126
60.69150.2910.1127
89.59150.4910.1128
95.92150.45910.1129
96.2150.6910.1130
39.02150.05910.1131
96.2150.65910.1132
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TABLE 2. List of data for test and validation simulated neural network algorithm

R(%)Time (min) Adsorbent
(g)pH Volume

(ml)
 TiO2

 Concentration
(µg.ml-1 )

 Fe Volume
(ml)N.O

51.22200.5651051
53.05200.5951052
24.0430.1910.113
50.83130.1910.114
74.6150.5910.0115
93.05150.5910.10.56
74.6150.3910.117
96.2150.5910.118

Fig. 3. Agreement between ANN outputs and experimental data as a function of pH
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Fig. 4. Agreement between ANN outputs and experimental data as a function of contact time

Fig. 5. Agreement between ANN outputs and experimental data as a function of the amount of 
adsorbent
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process and the agreement between the ANN 
model predictions and the experimental data.

Statistical diagram of neural network evaluation

     Fig. 8 presents the flowchart of the methodology 
followed in this study. As can be seen, in both 
methods, the radial basis function and MLP 
function, training data have lower distribution 
compared to the testing data. Also, the data 
deviation from the regression line for MLP, for 
training data and test data, are smaller than the 
amount of RBF function, suggesting the better 
performance of RBF algorithm. 

     Fig. 9 presents how the actual data obtained 
from experiments correlate with those predicted 
by the neural network for training and testing 
data. As is quite evident, the specifications of the 
aerodynamic probe can be predicted by the results 
of the neural network with appropriate accuracy. 
For both functions, actual and predicted data 
match together with a high accuracy although 
the performance of MLP is more appropriate. 
However, the higher performance of the proposed 

algorithm, for predicting the training data 
compared to test data, is obvious because of 
making the simulations based on the training data.

     The absolute error or the modulus of the 
difference between the actual and predicted data 
is presented as a histogram as a dotted line graph 
(Fig. 10a and 10b) and histogram diagram (Fig. 
10c) using the neural network for training and 
testing data, respectively. During training the 
neural network by RBF, the maximum absolute 
error is equal to 1.3954 and its minimum value is 
0.1748. Minimum and maximum absolute errors 
in the training data by MLP function are 0.5031 
and 7.48E-07, respectively. Finally, maximum 
and minimum absolute error for predicting the 
test data for RBF model and MLP are (4.05 and 
0.00882) and (3.405 and 0.2833), respectively.

      To determine and examine the detailed 
performance of functions, neural network 
efficiency should be evaluated. Statistical 
parameters were calculated as Equations (5) to 
(7). The results of the statistical parameters for 
measuring the performance of MLP and RBF 

Fig. 6. Agreement between ANN outputs and experimental data as a function of the volume of Fe (III)
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algorithms are presented in Table 3. As can be 
seen, for both training and test data, the uncertainty 
level and mean absolute error for MLP algorithm 
are closer to zero and the correlation coefficients 
are closer to one. Hence, the MLP model has a 
more effective performance in recovery and 
determination of the amount of the absorbed 
Thiocyanate [38-40].

Pearson’s Chi square

Among feature selection techniques such as 
Median, Runs, Binomial, Mann-Whitney, 
Wald-Wolfowiz, Kolmogorov-Smirnov, Sign, 
Friedman, Wilcoxon, Kruskal Wallis, McNemar, 
and Cochran Q, the Chi-square test is the most 
well-known statistics used to test the agreement 
between observed and theoretical distributions, 
independency and homogeneity. Furthermore, 
Pearson’s Chi-square is a non-parametric method 
which can be used for the independent variables. 
The Chi-square test of independence is used 
to test statistical independence or association 
between these two categorical variables. In this 
case, the statistical question to be answered is 
what are inter-correlations between variables 
and output. The null hypothesis for a Chi-square 
independence test is that two categorical variables 
are independent. For this purpose, the outputs of 
all variables were compared and chi square test 
used to see if there is an association between 
them. Table 4 shows the case processing summery 
which presents the number of valid cases used for 
analysis. Only cases with non-missing values for 
both the volume of Fe (III) solution (ml) and the 
volume of Fe (III) solution (ml) can be used in the 
test [41,42]. 

Tables 5 and 6 show Fe-Thiocyanate cross-
tabulation and chi-square test results, respectively.

The number of degrees of freedom obtained from 
Equation (8). 

df= (R – 1) × (C – 1)                                                                                                                                    
Eq. (8)

where R is the number of rows and C is the number 
of columns. Since the test statistic is based on a 
7×2 cross-tabulation table, the degrees of freedom 
(df) for the test statistic is:

df= (R−1) × (C−1) = (7−1) × (2−1) = 6

The null hypothesis (H0) and alternative hypothesis 
(H1) of the Chi-square test of independence can be 
expressed in two different but equivalent ways:

H0: “[Variable 1] is independent of [Variable 2]”

H1: “[Variable 1] is not independent of [Variable 
2]”

OR

H0: “[Variable 1] is not associated with [Variable 
2]”

H1: “[Variable 1] is associated with [Variable 2]”

The key result in the Chi-square tests table is the 
Pearson Chi-Square. As can be seen, the amount 
of Pearson Chi-Square is 29.000. Since there 
are only 12 cells have expected count less than 
5, it seems that these two variables are related 
significantly. The effect of most variables, 
including pH*buffer, Fe*buffer, pH*Thiocyanate, 
Time*Thiocyanate, and Fe*Thiocyanate showed 
almost the same results. The Pearson Chi-square 
test for other variables showed more cells have 
expected count less than 5 which means there are 
less association between them.

Evaluating real samples

In order to evaluate the performance of the method, 
some real water samples from the tap water, Karun 
water, Karkheh dam water, Karun and Fanavaran 
petrochemicals sewage were prepared. The 
adsorption capacity ranged from 96.20 to 96.40 
mg g–1 for tap water, from 95.33 to 96.00 mg g–1 
for Karun water, from 96.00 to 96.40 mg g–1 for o 
Karkheh dam water, from 95.27 to 96.40 mg g–1 
for Fanavaran petrochemicals sewage, and from 
95.33 to 96.50 mg g–1 for Karun petrochemicals 
sewage. In addition, the adsorption capacity of 
Thiocyanate was found to be more dependent 
on pH, time of stirring, and concentration of 
TiO2. The adsorption capacity increased sharply 
by enhancing the concentration of TiO2 but it 
remained constant at the concentration of 0.5 mg 
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Fig. 7. Agreement between ANN outputs and experimental data as a function of the initial 
concentration of Thiocyanate
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Fig. 8. Regression line for performance of neural network model: radial basis                                          
function (a) train data; (c) test data; Levenberg-Marquardt function (b) train 

data (d) test data
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Fig. 9. Point adaption graph of predict and real data: radial basis function (a) train 
data; (c) test data; Levenberg-Marquardt function (b) train data (d) test data
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Fig. 10. Absolute error investigation of neural network model: train data (a) radial 
basis function (b) Levenberg-Marquardt function; (c) test data for radial basis 

function and Levenberg-Marquardt function
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TABLE 3. Statistical parameters for evaluation of efficiency of neural network functions

Statistical parameter
AlgorithmFunction

Coefficient efficiencyMean Absolute ErrorUncertainty
0.9979390.025618751.153537RBF

Train Data
0.999312.33813E-080.667157MLP
0.9904870.3710622.321255RBF

Test Data
0.9946270.0872461.679934MLP

TABLE 4. Case Processing Summary

Cases
Valid Missing Total

N Percent N Percent N Percent
Fe * 
Thiocyanate 20 80.0% 10 20.0% 30 100.0%

TABLE 5. Fe * Thiocyanate Cross-tabulation

Fe * Thiocyanate Cross-tabulation
  Count

1.00

Thiocyanate

Total5.00
Fe .01 1 0 1

.01 1 0 1

.01 1 0 1

.15 1 0 1

.20 1 0 1
1.00 16 0 16
5.00 0 8 8

Total 21 8 29

TABLE 6. The Chi-square test

Chi-Square Tests

Value df

Asymp. Sig.

 (2-sided)
Pearson Chi-Square 29.000a 6 0.001

Likelihood Ratio 34.162 6 0.000
Linear-by-Linear Association 27.133 1 0.002

N of Valid Cases 29

 a. 12 cells (85.7%) have expected count less than 5. The minimum expected
count is. 28.
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g-1. As demonstrated, time of stirring and pH are 
important variables in determining Thiocyanate 
adsorption capacity. Therefore, these variables 
were chosen, along with the mass of sorbent, 
volume of solution and volume of Fe (III), to be 
the input parameters of the computational the 
artificial neural network models.

Conclusions

In this work, TiO2 nanoparticles were used as 
an adsorbent and the artificial neural network 
method was used for simulating the Thiocyanate 
removal. The vector data were taken at different 
experimental conditions and, after hard trying, a 
suitable algorithm was achieved by the effective 
and widely used neural network functions. The 
performance of two functions was evaluated 
by statistical parameters and the results showed 
that the MLP non-recursive function has a 
higher ability in the removal of Thiocyanate in 
comparison with the radial basis function. The 
advantage of using a neural network in the above 
method includes reducing the examination time, 
reducing the costs, and decreasing the use of 
required laboratory samples. 
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التنبؤ بكمية إزالة أنيونات الثيوسيانات المائية بواسطة جسيمات ثاني أكسيد التيتانيوم النانوية

 باستخدام طرق الشبكة العصبية الاصطناعية الحديثة
راشين اندايش*1، مهران زرگران1

1 قسم الكيمياء ، فرع العلوم والبحوث ، جامعة آزاد الإسلامية ، الأهواز ، إيران

2 قسم الكيمياء ، جامعة آزاد الإسلامية في الأحواز ، الأهواز ، إيران

      في هذا التحقيق ، يتم تنفيذ طريقة الامتصاص باستخدام نمذجة الشبكة العصبية (ANN) يتم تطبيق المادة الماصة لإزالة ثيوسيانات 
في عينات المياه باستخدام جزيئات ثاني أكسيد التيتانيوم (TiO2) كمادة ماصة فعالة. تم التحقيق في كمية التنبؤ لإزالة الثيوسيانات مع 
خوارزميات جديدة للشبكة العصبية. لهذا الغرض، تم اختيار ستة معلمات كبيانات إدخال التدريب لوظائف الشبكة العصبية بما في ذلك الرقم 
الهيدروجيني ، ووقت التحريك ، وكتلة المواد الماصة والحجم وتركيز TiO2 ، وحجم Fe (III). تم فحص أداء الطرق المقترحة باستخدام 
معلمات إحصائية ووجد أنها مخرجات فعالة وفعالة للنمذجة.
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