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Abstract 

The growing population along with the socio-economic development has led to increased global electricity demand. 

Accordingly, there is a growing interest in PV systems as a viable solution to address this electricity shortage. Batteries play 

an important role not only in PV systems but also in the electrical and hybrid electric vehicle industries. Efficient power 

control and management of batteries are essential for ensuring the safety and optimal performance of PV systems and 

automotive industries. This paper has provided valuable insight into the charging process of lead-acid batteries across a wide 

range of states of charge (SOC%) to achieve significant improvements in battery technology and develop more efficient 

charging methods via the validation of the modified Thévenin model. The electric characteristics for the models were assessed 

as a function of SOC% to accurately represent battery performance while maintaining model simplicity, and enhancing model 

topology by establishing an accurate relationship between battery capacity or SOC% and voltage. Additionally, efforts were 

made to enhance the model topology by establishing an accurate relationship between battery capacity or SOC and voltage. 

The modified Thévenin model was experimentally validated on a 200 Ah lead acid battery at full charge (at approximately 

100% SOC), resulting in a Root Mean Square Error (RMSE) of around 1%. This validates that the model effectively captures 

battery behavior across its entire operating range. 

 Keywords: lead acid battery; Equivalent circuit model; Thévenin model; charging. 

 

1. Introduction 
In remote areas, the demand for standalone energy 

systems is increasing. The growing interest in 

renewable energy is driven by its availability and 

environmental benefits, not only in remote areas but 

also in modern societies [1–3]. Utilizing photovoltaic 

systems to address Egypt's electricity shortage issues 

is a major focus. Egypt receives a substantial amount 

of solar radiation of around 6.5 kWh/m²/day, similar 

to high levels received at the Sunbelt region [4]. 

Adopting and implementing PV systems can be seen 

as a feasible transition from fossil fuels to renewable 

energy for an electric power system [ 5–7]. 

Batteries, as energy storage units in photovoltaic 

(PV) systems, mitigate the intermittent and 

unpredictable nature of solar energy. As a result, 

battery performance greatly affects the system's 

overall efficiency and represents the largest portion 

of the system's total cost [3,8]. With the critical shift 

towards off-grid photovoltaic battery systems, 

understanding battery performance has become more 

crucial, increasing the demand for rigorous testing. 

These tests aim to subject the battery to conditions 

similar to or more demanding than actual use, to 

investigate its long-term behavior [9]. Lead-acid 

batteries (LAB) have achieved a level of maturity and 

are widely used in a range of engineering 

applications [10–15]. They continue to be the most 

prevalent choice for energy storage and delivery in 

PV systems due to their low cost. Their dominance 

over other storage technologies, such as Li-ion, is 

also due to their high recyclability, exceeding 95%, 

enabling the materials to be reused for new batteries 

[12, 13]. This recyclability paves the way for the 

advancement of technologies to make lead-acid 

batteries more cost-effective and environmentally 

Egyptian Journal of Chemistry 
http://ejchem.journals.ekb.eg/ 

583 

 



 Rayhan Abdo et. al. 

_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 67, No. 12 (2024)  

 

 

400

sustainable. Additionally, they boost a high power-to-

weight ratio, particularly in terms of specific energy 

[16–18]. However, similar to other batteries, lead-

acid batteries face various technical obstacles related 

to safety concerns, in addition to the difficulties in 

small-size battery manufacturing, and short-circuiting 

[18].  

Unproficient operation and poor monitoring 

systems for lead-acid batteries may not only cause 

power loss and operational disruptions but also lead 

to potentially dangerous accidents. For instance, 

overcharging increases the internal temperature of the 

battery and may induce side reactions that result in 

fires and explosions [17]. Several parameters can 

affect the battery performance such as charging and 

discharging rates, depth of discharges, and 

temperature fluctuations [19–21]. Predicting the 

battery performance accurately is very difficult. This 

can be attributed to that the battery’s operational 

conditions are not constant but vary in a wide range. 

Consequently, battery modeling and monitoring the 

rate of charge and discharge in addition to the state of 

charge of the battery is essential for the battery’s safe 

operation and enhancement of the overall PV system 

performance [22].  

Battery modeling can be considered a profitable 

method for comprehending the activity of a battery 

system. Such models involve developing 

mathematical equations and algorithms that capture 

the behavior and performance characteristics of 

batteries [19–21]. The objective of battery modeling 

is to simulate their voltage response, state of charge 

(SOC), and other important parameters under various 

operating conditions. 

The most common battery models are Equivalent 

circuit models (ECM) which gained significant 

popularity owing to the fact that it balanced between 

both the accuracy and simplicity [23–25]. It allows a 

simplified representation of the battery characteristics 

where a detailed understanding of chemical 

mechanisms is not required. In addition, it represents 

the battery behavior with a set of easily measured 

electrical parameters thus avoiding the computational 

complexity [26–28]. The general construction of the 

EC models is a circuit composed of a voltage source 

in addition to resistors and capacitors [23, 29]. The 

earliest form of the ECMs was introduced by Kim 

and Ha et. al.  [30]. However, significant progress 

has been made in the development of ECMs over the 

years [20,31–33]. Numerous proposals followed to 

help in the accurate description of the dynamic 

behavior. Considering the dependence of the 

electrical parameter of the EC (open circuit voltage, 

resistance and capacitors) on the SOC instead of 

being constant was one solution to help in describing 

the dynamic behavior [20,34]. Further developments 

were achieved by considering the nonlinear behavior 

of the EC parameters to increase the accuracy of the 

model without affecting its simplicity [35–38]. 

Though the addition of more R//C components to the 

EC can provide a better understanding of the battery 

kinetics like charge transfer, polarization, and ions 

diffusion, this will in turn increase the computational 

complexity and costs [26, 39–45]. In order to fulfill 

high-precision SOC estimation, ECMs were 

hybridized with different algorithms such as Neural 

network, Kalman, Gaussian, and supportive vector 

regression. etc. [25, 46–49]. Other authors used a 

different method to adjust the parameters for the sake 

of achieving a better precision of modeling. A set of 

discharge and charge pulses are employed for 

obtaining the initial values for battery parameters 

which are fitted with the remaining SOC [26,28,50]. 

This method along with the estimation algorithm 

meets the real simulation and engineering 

requirements owing to their rapid convergence and 

high prediction precision. The real-time dynamic 

battery simulation is easily predicted as well. 

In the current study, we aim to better understand the 

charging process through modeling using an 

improved Thévenin model. By monitoring the 

charging process, we can gain valuable advancements 

in battery technology and get more efficient charging 

strategies 

2. Methods 

This section will outline the methodology, 

experimental protocols, and model validations using 

real battery data. 

  

2.1. Experimental Set-up 

2.1.1. Charging system Description 

The main components of charging systems are the 

tested battery, charging units, and loads. In the 

present study, a gel-type Sonnenschein 412 lead-acid 

battery (12 V/200 Ah) was used as the tested battery. 

Two charging systems were designed; an off-grid PV 

system and an electricity grid-charging one, shown in 

Figures 1 and 2, respectively. In off-grid PV charging 

system, the battery was charged in a system 

consisting of two parallel connected Sunset-1406 

solar modules (140 W, Isc ≈8.3A, Voc =21.8V) as 

the charging unit and Tarom 4545 (12/24 V– 45 A) 

charge controller. SPM-1116SD solar power meter 

was used to measure the solar radiation during the 

tested period. Multimeter is used to measure the 

battery voltage and a clamp meter (KEW2002PA 

KYORITSU) is used to measure the current passes 

during the charging process. In addition to the tested 

battery, the electricity-grid charging system was 

composed of a 0.6 kW SUVPR (12 V) inverter to 

convert the AC current from the grid into DC current, 

computable to the battery and equipment to measure 

the voltage and current. 
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Figure 1: Installed off-grid PV charging system 

 

 

 

 

Figure 2: installed Electricity-grid charging system 

 
2.1.2. Methodology: 

Throughout the charging tests, various parameters 

were measured. The charging unit parameters include 

solar irradiation, PV charging current, DC charging 

current converted by the inverter. The battery 

parameters are the terminal voltage, the current 

accepted by the battery, and the open circuit voltage. 

In the off-grid PV charging procedure, an off-grid 

system is constructed to study the effect of 

environmental parameters like solar radiation on the 

charging process of lead-acid batteries. The charging 

procedures took place in March 2021 for 6 hours/day 

during the daytime from 8:30 am to 2:30 pm. During 

this duration, the maximum solar energy intensity is 

guaranteed, allowing for an electrical current within 

the range of 6 to 9 Amperes. The charging current for 

this system ranged from 7-8 A (≈C/25). To calculate 

the improved Thévenin model parameters, it was 

necessary to perform the charging process utilizing a 

constant current supply. For this purpose, an 

electricity-grid charging system was constructed. In 

the electricity-grid charging, the battery was charged 

through a pulse-charge process involving repeated 

charging steps for 30 minutes with 8 A within the 20-

100 % SOC range. Each charging step was followed 

by a 45-minute rest period. In order to test the model 

validity in our system, the voltage of the battery was 

simulated from pulse-charge tests through the 

determination of the EC’s electric parameters. The 

relation between these parameters and SOC was 

fitted resulting in equations incorporated into the 

simulation model. 

Surface morphologies were analysed under a 

scanning electron microscope (SEM) model Quanta 

FEG 250 (USA) equipped with EDX. 

 

3. Results and Discussion 
3.1.  Off-grid battery charging 

3.1.1.  Off-grid charging profile 

Figure 3 shows the test results for battery charging in 

the off-grid battery charging system. In agreement 

with previous studies [51–53], figure 3 displays that 

the charging process of lead acid batteries is 

complicated and passes through many stages. The 

charging process traverses three stages with two 

turning points. The initial stage is called constant-

current charge during which the battery accepts all 

the applied charging current allowing the voltage to 

increase. The following stage is called the topping 

charge. This stage begins when the battery reaches 

saturation and starts to accept a small portion of the 

applied charging current. During this stage, the 

charge accepted by the battery starts to decline and 

the potential is kept at around 14.2 with slight 

fluctuation due to measurement noise. In the last 

stage, the current stabilized at a very low level. 

 

 
 

Figure 3: Battery charging behavior in an off-grid (PV) system at 

C/25. 
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3.1.2. Off-grid charging efficiency 

A better representation of the charging stages is 

displayed in Figure 4 which reveals the progress of 

SOC and charging efficiency within each stage. 

During charging, SOC is represented by equation 1 

[65]: 

��� �  ���� � � 	�
  � ���
�

�
. ��� � 	��               �	� 

Here, SOCo denotes the SOC before charging in 

percentage for a battery with nominal capacity Cn in 

amp-hours. Ibc represents the battery current during 

charging in amperes and t is the charging time. 

Charge efficiency represents the capacity losses 

throughout the charging process. It can be measured 

as the percent of the actual capacity accepted by the 

battery to the capacity transferred to it from the 

charging unit. The first stage of the charging process 

ends when the battery reaches about 85% SOC with a 

charge efficiency of 100%. This stage requires 

approximately 14 hours in our case (56% of the ideal 

charging time of C/25). Beyond 85% SOC, a fast 

decline in the charging efficiency is observed. This 

stage requires approximately 4 hours for the charge 

efficiency to decrease to 20%. Indeed, in the final 

stage of the charging process, when the battery 

SOC% exceeds 90%, the battery is stabilized and 

slowly approaches a fully charged state, characterized 

by low charging efficiency values (20-10%). As the 

battery nears its full capacity (˃98% SOC), the 

charging efficiency naturally decreases. At this stage, 

the charging process becomes inefficient and 

impractical for real use. This decline in charging 

efficiency can be attributed to factors such as 

increased internal resistance, increased acid 

concentration, and the occurrence of reactions like 

oxygen evolution. These factors affect the battery's 

ability to accept and store additional charge. 

Consequently, charging the battery beyond 90% is 

not effective. These results bear a close resemblance 

to previous studies [51–53), further validating their 

reliability and consistency. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: The variation of SOC% with time for 200 Ah 

Sonnenschein battery during charging from PV modules. 

The growth and solvation of lead sulfate significantly 

impact the voltage, state of charge (SOC) percentage, 

and charging efficiency during the cycling process of 

lead-acid batteries. During the charging process, lead 

sulfates are transformed to pure lead at the cathode 

and lead peroxide at the anode liberating sulfuric acid 

into the electrolyte as mentioned in equation 2. 

 

����� � ���� � ��� → ���� � ��� � �����     ��� 

 

The battery voltage (V) is given by the equation 3.  

 

 �   ! �  � "                                  �#� 

 

Where V is the battery voltage throughout charge or 

discharge, Vo is the battery voltage at steady state or 

the open circuit voltage; and R is the internal 

resistance. I is the current delivered from and to the 

battery. 

 

According to the electrochemical series, the 

theoretical cell voltage for a lead acid battery is 

approximately 2 V and exceeds 2.2 V due to 

overvoltage [54–58]. The deviation of the terminal 

voltage of a battery from its electromotive force 

(EMF) arises from the overvoltage and ohmic voltage 

drop causing the polarization effect. The ohmic 

voltage drop results from the resistances between 

battery components like the active materials, the 

porous separators, and the supportive grids. 

Overvoltage effects express the excess energy 

required for driving the electrochemical reaction at a 

certain rate [29, 59] 

Figure 5 illustrates the growth of lead sulfate 

crystals for an old lead acid battery. The battery used 

in our study is a commercial one. The crystals were 

identified by EDX data, showing an atomic percent 

for Pb:S:O of approximately 1:1:4. This confirms the 

presence of lead sulfate, consistent with the expected 

stoichiometry for PbSO4.The sulfate crystals seem to 

be not efficiently dissolved upon charging during 

cycling of the batters which participate in lowering 

the battery performance with time.Incomplete 

charges and partial state of charge operation (PSOC) 

prevent the proper dissolution of these crystals, 

leading to reduced charge acceptance, efficiency, and 

expedited battery failure. Hence, preventing 

irreversible sulfation is crucial in managing 

stationary lead-acid systems that change frequently. 

During the charging process, a battery's energy 

storage capacity decreases as its voltage increases. 

This occurs because lead sulfate on the electrode 

surface breaks down, dissolves, and releases sulfate 
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ions into the electrolyte. The greater the numbers of 

sulfate ions present in the electrolyte, the more 

intense the repulsion between the deposited ions and 

the incoming ones. The concentration of ions in the 

electrolyte, which is measured by the battery's state 

of charge (SOC), reflects this effect. A higher ion 

concentration corresponds to a higher SOC. 

Consequently, an increase in battery voltage leads to 

a higher SOC, resulting in a reduced capacity to store 

energy [60]. 

 

 
 Figure 5: SEM and EDX images for lead sulfate crystals growth 

in old lead-acid battery. 

 

 
3.2.  Battery charging model 

3.2.1. Thévenin battery model 

 

The first order Thévenin battery model, named a one-

time constant model, is an uncomplicated method for 

estimating the battery voltage behavior. It is an 

improvement to the earlier ECMs [30–33]. Figure 6 

symbolizes the Thévenin battery model EC. It 

represented the battery terminal voltage (Ub) by a 

simple voltage source (Uoc), an internal resistance 

(R), and a parallel capacitor-resistor section (R1//C1).  

Uoc signifies the open circuit or the no-load voltage 

of the battery. R1, the polarization resistance, 

signifies the contact resistance amid the surface of 

the plates and the electrolyte. C1, the polarization 

capacitance, acts for the capacitance linking the 

parallel plates. The Thévenin model was designed to 

reflect the dynamic characteristics of the battery in 

the form of a polarization voltage by adding the R//C 

components [26, 28, 61].The main limitation of this 

model is that all the parameters are treated as 

constants however they are battery dependent [20, 

50, 62, 63]. Besides, [19, 20, 28, 63] not account for 

the influence of SOC on the battery's voltage. 

However, these parameters are not consistently 

constant and vary based on several factors such as 

SOC, capacity, charging/discharging speeds, aging 

process, and temperature [31, 64]. 

 

 

 

 

 

 

 

 

 

 

 

                            

     Figure 6: Equivalent circuit for the Thévenin model. 

 

3.2.2. An improved Thévenin battery model 

A more precise Thévenin battery model (shown in 

Figure 7) has been developed to accurately depict 

battery behavior by accounting for dynamic nonlinear 

characteristics. This enhanced model characterizes 

the EC parameters (the resistors and capacitors in 

addition to the on-load voltage) as SOC-dependent 

variables. Additionally, it separately specifies the 

charging and discharging processes [46, 61, 65], as 

illustrated in Figure 6. Rc, R1c, and C1C symbolize the 

EC parameters during the charging process, and Rd, 

R1d, and C1d are the EC parameters during the 

discharging process. The nonlinearity of the EC 

parameters and the separation between the processes 

of charging and discharging provide a more reliable 

framework for simulating the battery performance in 

real-world scenarios across various operating 

conditions [26, 39-40].  

 

Figure 7: Improved Thévenin model for lead-acid battery. 

 

The improved Thévenin model is an expansion of the 

traditional Thévenin model. This model represents 

the battery dynamic approach by considering the 

nonlinear behavior of the EC electric parameters. 

Regarding the proposed equivalent circuit, the 

terminal battery voltage during charging (Ubc) can be 

expressed according to the following equations.  

 

$%& � $!&�'%(& �  '%(	&. )	 * +,� -(	&..	&/0        ��� 

Where Ubc stands for the terminal voltage during 

charging, Uoc signifies the open circuit voltage. The 
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last term in the equation represents Uov which 

symbolizes the overvoltage through the resistor-

capacitor section (R1c//C1c). 

 

3.2.3.  On-grid battery charging procedure 

Figure 8 displays the battery voltage recorded during 

pulse charge tests from the electricity grid at a 

charging rate equivalent to about C/25 in a SOC 

interval ranging from 20 to 90%. Ubc and Ibc represent 

the terminal battery voltage and the charging current 

during the pulse charge process, respectively. The 

inset magnifies the battery terminal voltage upon 

pulsed charging. It highlights the distinct stages that 

voltage bath through during both the charging and 

rest processes. It gives a brief imagination about the 

concentration polarization and the steady state 

regions upon pulsed charging. The inset shows three 

stages. Firstly, a rapid potential decreases 

immediately after removing the charging source, 

referred to as the IR jump stage is observed. This 

stage reflects the influence of the battery's internal 

resistance (R) and its effect on the voltage response. 

Afterward, the potential decreased gradually due to 

the diffusion effect. This stage was labeled as Uov in 

the inset and signified by a parallel capacitor-resistor 

section (R1c//C1c) in the EC. The last stage is the open 

circuit voltage recorded at the steady state and 

labeled as Uoc. 

 

 
Figure 8: Pulse charging at C/25 for 200 Ah Lead-acid battery 

from 20% to 100% SOC and the inset represents the magnification 

details of the rest interval. 

3.2.4.  Parameters identification 

As mentioned before, the non-linear behavior of 

the EC’s parameters was determined as a function of 

the SOC, where the battery voltage and charging 

current were recorded when subjected to successive 

charge and rest steps. The fitted equations were 

implemented in the investigated model as follows.  

The equ ation of the simulated battery voltage is 

derived from the EC postulated for the selected 

model. Additionally, the battery modeling equations 

are mainly based on the SOC which is quantified as a 

percentage.  

 

• Open circuit voltage (Uoc) 

Uoc was measured when the battery reached the 

steady state close to the end of the rest intervals in 

the charging test. Figure 9a displays the plot of Uoc 

and SOC and their fitted curves. The experimental 

data are represented by black dots, while the black 

line represents its fitted curve. Although it is 

commonly believed that the relationship between Uoc 

and SOC follows a linear trend [46,65], our research 

indicates otherwise [66]. Better approximation has 

been achieved by considering nonlinear relation and a 

quadratic polynomial fitting equation was used to 

approximately represent the relationship between Uoc 

and SOC, represented by Equation 5. 

1�� �  2! � �!. ��� � �! . ����   �3�     
Where ao, bo, and do are constants and equal 12.9, 

0.0007, and 0.0001, respectively. 

• Series resistance (Rc) identification: 
Rc is determined from the rapid decline in 

potential in the first stage of the recovery interval. It 

represents the resistance of the electrolyte and battery 

plates. Figure 9b illustrates the change of Rc as a 

function of the SOC. Our study successfully 

approximated the experimental Rc values through 

exponential fitting, resulting in equation 6. 

(& � +�2	��	.�����	.�����                      �4�    
Where a1, b1 and d1 are constants and equals -3.95, 

-0.0255, and 0.00036, respectively. 

 

• R//C components: 
The parameters of the R//C section were estimated 

from the recorded voltage variation (Uov) during 

recovery periods following the charging steps in the 

second stage, as illustrated in Figure 7. It is 

anticipated that the transients associated with the 

charge steps will dissipate within 5 minutes, based on 

settling time (t) estimation. The time constant (τ) 

measures the ability of the system to step to a certain 

fraction of its final value, usually 63.2%. According 

to Figure 5, it approximately takes one minute for the 

voltage to reach 63.2% of its steady state value 

during the recovery stage. Thus, the capacitance (C1c) 

is determined according to equation 7 as mentioned 

below: 

�	& � - 3(5  �  6(5                                             �7� 

 b
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Where, 6 � - 3   6 : A time constant in seconds 

Rx displays the resistance of the battery circuit 

during charge (Ro and Rov) and is calculated in 

equation 8: 

(5 � ( 8 (	&( � (	&                                                  �9� 

Figures 9c and d display the dependence of the 

parameters of the R//C section (R1c and C1c) on SOC. 

Utilizing curve-fitting analysis, R1c and C1c can be 

expressed as: 

"	&       � : 2� � �� � ���  ,    ��� < 7�2# � �# � ��� � �# � ��� � ,     ���  = 7�       �>�   
�	& � :2� � �� � ��� � �� � ��� � ,    ��� < 7�23 � �3 � ��� , ��� = 7�      �	��   
Where a2, b2, a3, b3, d3, a4, b4, d4, a5 and b5 are 

constants and their values are shown in table 1. 

 
Table 1: Values of a2, b2, a3, b3, d3, a4, b4, d4, a5 and b5 as the 

fitting constants 

 

 

Figure 9: The variation of the experimental data (black dots) of 
the electric circuit parameters (a) the open circuit voltage (Uoc), (b) 

internal resistance (Rc), (c) the series resistance (R1c), and (d) the 

series capacitance (C1c) with SOC and their fitted curves (black 

line).   

3.2.5. Model Validation 

Figure 10 represents the effectiveness of the 

improved Thévenin model. It displays the validity of 

the model by comparing the actual experimental 

battery voltage with the simulated one. The improved 

Thévenin model can successfully simulate the overall 

battery behavior during charging with an RMSE% 

=1%. 

 
Figure 10: Comparison between the terminal battery voltage 

recorded during charging (black dots) and the terminal voltage 
predicted via the improved Thévenin model (black line). 

 

 

4. Conclusion: 

The charging process and charge efficiency of 

lead-acid batteries across a wide range of states of 

charge up to 100% SOC were extensively studied. It 

was observed that charging the battery to a level 

higher than 90% SOC proved to be ineffective, in 

line with findings from previous studies. 

Additionally, the modeling of charging using electric 

circuit models and their validation involved assessing 

model parameters as a function of SOC using curve 

fitting techniques. This allowed for an accurate 

representation of battery performance while 

maintaining model simplicity and enhancing model 

topology by establishing an accurate relationship 

between battery capacity or SOC and voltage. To 

further enhance the ECMs model topology, a 

modified Thévenin model was experimentally 

validated on a 200 Ah lead acid battery at full 

charging (approximately 100% SOC), resulting in 

improved accuracy concerning the relationship 

between battery capacity or SOC and voltage. The 

validation resulted in a RMSE of around 1%, 

indicating that this model effectively captures battery 

behavior across its entire operating range. 
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7. Abbreviations 

Equivalent circuit model ECM 

equivalent circuit EC 

state of charge SOC 

parallel capacitor-resistor 

section 

(R//C) 

terminal battery voltage 

during charging 

Ubc 

battery charging current Ibc 

Open circuit voltage Uoc 

battery's internal 

resistance  

Ro 
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