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Abstract 

The levels of lipids in our bodies are regulated through regulatory proteins known as sterol regulatory element binding proteins (SREBPs). 
Dietary triglycerides are transported from the liver and intestine to body tissues by the microsomal triglyceride transfer protein (MTP). The 
role of the dysregulation of lipid components in metabolic diseases and cancer is reviewed herein. The current survey provides a 
comprehensive overview of published data spanning from 1997 to 2023, sourced from Scopus, Google Scholar, PubMed, Web of Science, 
and ScienceDirect, concerning dyslipidemia and the downregulation of SREBP-1, SREBP-2, and MTP gene expression by natural products. 
Natural products, mainly phenolic compounds such as hesperidin, luteolin, xanthohumol, silymarin, curcumin, and quercetin, triterpenes such 
as betulin, in addition to alkaloids as berberine, and fatty acids like oleic acid and α-linolenic acid were found to downregulate SREBP-1 and 
SERBP-2. Taxifolin, piperine, and ellagic acid inhibited MTP gene expression. Natural products regulating triglycerides and cholesterol-
related gene expression could be key lead drugs to new medicines used to treat hyperlipidemia, hypercholesteremia, liver cancer, breast 
cancer, and metabolic disorders. 
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Introduction 

Dyslipidemia is a collective term used to describe abnormal levels of triglycerides, cholesterol, and/or high-density 
lipoproteins. It is characterized by a complex interplay of various lipid components, including elevated triglycerides (TG) and 
TG-rich lipoproteins, along with increased postprandial TG levels [1]. The imbalance is made worse by lower levels of 
Apolipoprotein A-I (Apo A-I) and high-density lipoprotein cholesterol (HDL-C) [2]. Dyslipidemia is marked by an increase 
in Apolipoprotein B (Apo B), reflecting higher levels of atherogenic lipoproteins [3]. Notably, there is an elevation in low-
density lipoprotein cholesterol (LDL-C) particles number, especially the small dense LDL particles, which raises the risk of 
cardiovascular disease [4]. It was found that individuals with type 2 diabetes and metabolic syndrome commonly have 
dyslipidemia [5]. 
Dyslipidemia can be mediated by genetic factors, diet (such as unhealthy and ultraprocessed foods), lifestyle (such as 
sedentary lifestyle and smoking), and certain types of drugs [6]. Dyslipidemia can be a primary disease condition, or it can be 
secondary to certain disease conditions such as diabetes mellitus. Dyslipidemia contributes as a risk factor in fatal 
cardiovascular complications leading to the increase in risk of mortality [6–9]. 
Moreover, dyslipidemia in diabetic individuals is characterized by an increase in oxidized and glycated lipids, emphasizing 
the role of oxidative stress and glycation in lipid metabolism abnormalities associated with type 2 diabetes and metabolic 
syndrome [10].  
Excessive accumulation of liver lipids contributes to inflammation and lipid metabolism disorders, causing non-alcoholic fatty 
liver disease (NAFLD). This condition is considered as a major cause of hepatic cancer [11]. Therefore, controlling lipid 
levels would be a promising strategy for combating NAFLD and liver cancer. 
Currently, achieving an effective control of dyslipidemia is usually carried out with multi-drug treatment, preferably 
accompanied with lifestyle and dietary adjustments and restrictions. However, patients may have low compliance in following 
lifestyle changes [12]. In addition, long-term use of lipid-lowering medications can cause serious side effects. Therefore, 
finding alternatives from natural source and thus fewer side effects can be of great merit [7, 9, 13]. 
Nature serves as a significant and ongoing source of inspiration for researchers and scientists due to its abundance of bioactive 
compounds [14]. Natural products have long been utilized in traditional and modern medicine due to their diverse 
pharmacological properties, which include antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and anticancer, 
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antihypertensive,  activities, where the therapeutic efficacy of natural products is attributed to their complex structures and the 
specific mechanisms through which they interact with biological targets [15–22].   
Transcription factors are proteins involved in the process of converting, or transcribing, DNA into RNA [23]. Those 
concerned with lipid metabolism are the Sterol Regulatory Element-Binding Proteins (SREBPs) and the Microsomal 
Triglyceride Transfer Proteins (MTP) [24, 25]. Several phenolic compounds were found to be effective in regulating lipid 
metabolism. For example flavonoids can target lipid metabolism by inhibiting sterol regulatory element-binding protein-1 
(SREBP-1), leading to inhibition of fatty acid synthase and associated enzymes [11], specially rutin, which was found to 
downregulate the transcription of SREBP-1c in hepatic cell line, thus decreasing the levels of triglycerides and cholesterol. 
Taxifolin, as well, downregulated the transcription of SREBP-1c in mice fed with high fat-diet [11]. 
SREBPs are a class of proteins that were initially identified by Brown and Goldstein nearly thirty years ago. These proteins 
regulate the transcriptional level of body lipids, including triglycerides and cholesterol . According to Wen et al., (2018), 
SREBPs are the transcription factors that control the expression of the genes that govern the synthesis of fatty acids, 
cholesterol, and triglycerides [30]. Three isoforms of SREBPs—SREBP-1a, SREBP-1c, and SREBP-2—are recognized and 
have been found to regulate different pathways that slightly overlap [24, 30, 31]. 
The regulatory protein involved in the synthesis of cholesterol and fatty acids is SREBP-1a, and that involved in the synthesis 
of fatty acids is SREBP-1c. The gene encoding SREBP-1 is located on chromosome 17 [30]. The SREBP-1 gene uses a 
different transcription start site to encode each of SREBP-1a and SREBP-1c [30]. Following gene transcription, their mRNA 
is translated into the inactive SREBP-1 protein, which via regulated cellular transport, is activated at the Golgi apparatus 
through proteolysis. The active SREBP-1 protein finally moves into the cell nucleus, where it activates the fatty acid 
biosynthesis by upregulating the genetic expression of the involved enzymes, such as acetyl-CoA carboxylase (ACC) and 
fatty acid synthase (FAS). When the blood levels of fatty acids and triglycerides reach normal healthy levels, SREBP-1 is 
suppressed through end-product feedback inhibition. At the same time, the SREBP transcriptional activity is depressed. 
However, this step fails to occur in hyperlipidemic individuals [29, 32]. 
A similar process takes place in regulating cholesterol biosynthesis in the body. The involved protein is SREBP-2, which is 
carried on chromosome 22. SREBP-2 controls cholesterol synthesis in insulin-responsive tissues such as the liver. In case of 
cellular demand for cholesterol, or when the blood levels of glucose or insulin increase, SREBP-2 is activated through 
proteolysis at the Golgi apparatus, resulting in activation of the cholesterol biosynthesis pathway including all its enzymes. 
When cholesterol blood levels reach normal healthy levels, SREBP-2 is suppressed through end-product feedback inhibition, 
and at the same time, the SREBP transcriptional activity is depressed. However, this step fails to occur in 
hypercholesterolemic individuals [29, 32, 33]. 
On the other hand, MTP protein is responsible for activation of the assembly of VLDL (Very Low-Density Lipoprotein) and 
synthesis of chylomicrons in the liver and intestine [34]. In addition, VLDL is the lipoprotein responsible for the transport of 
lipids from the liver to body tissues, thus raising lipid levels in the body, while chylomicrons are responsible for the 
absorption of dietary lipids in the small intestine. Therefore, downregulating the gene expression of MTP protein is expected 
to decrease the lipid levels in blood [35–37].  
MTP is mainly produced in hepatocytes and enterocytes, and inhibition of its production was found to decrease the secretion 
and synthesis of VLDL in the liver and to reduce the plasma levels of triglycerides by decreasing the fat absorbed through 
chylomicrons [36, 38]. 
The term hyperlipidemia designates a group of medical conditions in which blood levels of triglycerides and cholesterol are 
increased above normal levels. This condition was found to be directly linked to fatal heart and blood vessel diseases [28]. In 
addition, high blood levels of triglycerides and cholesterol were recorded in certain types of cancer, such as hepatic and breast 
cancers. Besides, its pathogenesis was found to be associated with upregulated SREBP-1, SREBP-2, and MTP genetic 
expression [30, 35, 39, 40]. 
Although statins are currently considered a cornerstone in treating dyslipidemia because they inhibit the essential enzyme 
HMG-CoA reductase which is involved in the cholesterol biosynthesis pathway, their reputed drawbacks would preferably be 
avoided [36]. In addition to causing myopathy, rhabdomyolysis, and liver damage [28, 41, 42], statins inhibit HMG-CoA 
reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway, leading to a decrease in intracellular cholesterol 
levels. As a compensatory response, this inhibition triggers upregulation of the entire cholesterol biosynthetic pathway, 
including an increase in the expression of HMG-CoA reductase and other enzymes involved in the pathway [43]. Optimal 
treatment with statins still leaves a 60-80% residual cardiovascular risk [36, 44]. This residual risk is attributed to various 
factors, including persistent LDL cholesterol levels, elevated triglycerides, low HDL cholesterol, and other non-lipid-related 
risk factors, requiring further strategies such as combination therapies and lifestyle modifications to address this residual risk 
[44, 45]. Therefore, searching for natural products that can treat dyslipidemia by downregulating the gene expression of 
SREBPs and MTP, and thus suppressing the biosynthesis and absorption of lipids in the body from the very beginning, would 
be preferable. 
Other than just hyperlipidemia, SREBPs were found to contribute to the pathogenesis of several diseases and disorders. These 
include obesity, cancer, non-alcoholic fatty liver, diabetes mellitus, atherosclerosis, chronic kidney, and neurodegenerative 
diseases [40, 46, 47]. SREBPs contribute to these diseases through several pathways that generate reactive oxygen species 
(ROS), increase endoplasmic reticulum stress, and cause inflammation, autophagy, and apoptosis [29, 48]. Among natural 
products, polyphenols have been extensively studied for their antioxidant properties [49, 50]. For instance, the polyphenol 
resveratrol is known to specifically reduce ROS generation by upregulating antioxidant enzymes such as superoxide 
dismutase and catalase, and by directly scavenging free radicals [51–53]. This action helps to mitigate oxidative stress and 
inflammation, which are critical factors in the pathogenesis of cardiovascular and metabolic diseases [54, 55]. 
Targeting SREBPs and MTP gene expression might be a promising approach in treating liver and breast cancers [56]. Cancer 
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cells satisfy their high lipid and cholesterol needs by increasing the uptake of dietary lipids as well as their endogenous 
synthesis [57]. Increased de-novo lipid biosynthesis is a necessary hallmark of cancer progression and metastasis. Part of this 
effect was found to be due to the increased expression of SREBP-1 [58].  
Targeting De-novo lipid biosynthesis could be considered as a promising strategy in combating cancer since normal tissues 
depend on circulating lipids; meanwhile, cancer cells depend on de-novo synthesized lipids [58]. Blood levels of lipids are 
directly associated with hepatic and breast cancers. Several studies have proved that increased SREPBs activation is 
associated with cancer development [39, 40], tumor metastasis, as well as poor prognosis in breast cancer [30]. Moreover, in 
various types of cancers, it was found that the expression of SREBPs target genes are elevated above normal levels [59, 60].  
Likewise, it was observed that down-regulating the gene expression of SREBPs altered the metabolic pathways in cancer cells 
in-vitro [30]. In fact, downregulating the expression of MTP protein in obese mice was found to treat dyslipidemia and to 
shrink tumor volume by 50% via alteration of circulating lipids [61]. The mevalonate pathway, through which lipids are 
synthesized and controlled by SREBPs, was upregulated in hepatic and breast cancers. A possible explanation was the 
mutations in sterol-regulatory related genes such as SREBPs [29]. 
AMPK (AMP-activated protein kinase) is a cellular energy sensor that becomes activated in response to low energy 
conditions [62]. Once activated, AMPK exerts profound effects on lipid and cholesterol metabolism [63]. AMPK activation 
inhibits SREBPs, particularly SREBP-1c, which reduces the production of fatty acids and cholesterol precursors in the liver 
and other tissues [64]. Many natural products, such as glabridin from licorice root, polyphenols from black nightshade, and 
components from okra, have been shown to activate AMPK [65–67].  
The mechanism of action of natural products downregulating SREBP-1, SREBP-2, and MTP gene expression is represented 
in figure 1. 

Figure 1: Mechanism of action of natural products downregulating SREBP-1, SREBP-2, and MTP gene expression. 
 

The following survey intends to shed light on the nature of plant metabolites downregulating SREBP-1, SREBP-2, and MTP 
gene expression, their respective sources, and mechanisms of action to facilitate further incorporation in pharmaceutical 
formulations. Structural formulae of natural products isolated and/or identified in plants and proved to exert anti-
hyperlipidemic and/or anti-hypercholesteremic activities are represented in figure 2. Recently, these compounds were found 
to act through downregulating SREBPs and/or MTP gene expression. It can be observed that the majority of the mentioned 
examples are mainly of phenolic or terpenoid nature. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Representative examples of natural products downregulating SREBP-1, SREBP-2 and MTP gene expression. 
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1. Phenolic Compounds and Flavonoids 

1.1. Quercetin flavonoid 
Quercetin is a flavonoid widely distributed in plants. It belongs to the flavonols subfamily and acts as a pigment and is 

present in black tea, onions, citrus fruits, grapes, berries, cherries, apples, buckwheat, kale, tomatoes, and broccoli [68–71]. It 
is well recognized to possess anti-inflammatory, antioxidant, and neuroprotective potentials and is capable of protecting 
against aging-related diseases [71–74]. Quercetin reduces plasma LDL levels and prevents LDL oxidation, contributing to a 
decreased risk of cardiovascular diseases [71]. According to recent studies, quercetin quickly reduced the synthesis of fatty 
acids and cholesterol. Additionally, these investigations indicated that quercetin lowered the expression of the SREBP-1 and 
SREBP-2 genes [75–77]. 

1.2. Citrus fruits flavonoids  

For instance, hesperidin (hesperitin-7-rutinoside), a flavanone glycoside commonly present in citrus fruits (Citrus L. 
species, family Rutaceae) [78], successfully prevented the buildup of fat in mice receiving a high-fat diet, and in HepG2 cell 
lines exposed to oleic acid, besides exerting several pharmacological activities including anti-inflammatory and antioxidant 
[79–81]. In a clinical study [80], hesperidin treatment improved lipid and glucose metabolisms in non-alcoholic fatty liver 
patients besides reducing inflammation and liver steatosis. Furthermore, Chen et al. (2022) discovered that hesperidin reduced 
the accumulation of lipids in the liver through a number of mechanisms, including downregulation of SREBP-1C expression 
[80].  

Naringenin, another citrus fruits flavanone, was found to inhibit the secretion of Apolipoprotein B100 by downregulating 
the gene expression of microsomal triglyceride transfer protein (MTP) in HepG2 cells via a mechanism similar to that of 
insulin [82]. 

1.3. Celery and parsley flavonoids 

Luteolin (3’,4’,5,7-tetrahydroxyflavone), a flavonoid present in celery and parsley (Petroselinum crispum Mill. and Apium 

graveolens L., family Apiaceae), was found effective against many types of tumors. These include stomach, prostate, and lung 
cancers [83]. Luteolin significantly downregulated SREBP-2 and SREBP-1 expression and subsequently lowered fatty acid 
and cholesterol levels in the blood [83, 84].  

1.4. Hops prenylated flavonoids 

Hops (Humulus lupulus L., family Cannabinaceae) is a renowned anti-hyperlipidemic. The major constituent of its fruit is 
the prenylated flavonoid xanthohumol that exerts anti-oxidative, chemopreventive, and anti-inflammatory actions. A recent 
study [85] revealed that xanthohumol reduced the gene expression of SREBP-1 in mice liver, besides suppressing the 
development of obesity. Moreover, xanthohumol prevented the activation of SREBP by blocking its endoplasmic reticulum to 
Golgi apparatus transportation. Likewise, it was found to reduce cholesterol and triglyceride levels, thus preventing obesity, 
hepatic steatosis, and atherosclerotic plaque development [29, 85, 86]. 

1.5. Tamarind and pine flavonoids 

The flavonoid taxifolin present in tamarind (Tamarindus indica L, family Fabaceae) and Pine (Pinus species Lindl., family 
Pinaceae) was found to downregulate the gene expression of MTP protein [87, 88]. Furthermore, tamarind fruit pulp reduced 
total cholesterol and LDL-C levels in human subjects to a significant extent [89] while pine bark extract reduced LDL-C and 
increased HDL-C in human subjects [90]. 

1.6. Licorice root flavonoids 

Glabridin is one of the prenylated isoflavanes extracted from the roots of licorice (Glycyrrhiza glabra L., family 
Fabaceae). Glabridin was claimed to exert numerous bioactivities, including antitumor, cardiovascular and hepatic protection, 
anti-obesity, and anti-diabetes [91]. In fact, the glabridin-rich acetone extract of licorice inhibited adipogenesis in 3T3-L1 
adipocytes in-vitro, in addition to downregulating the expression of the lipogenic genes, stearoyl-CoA desaturase, fatty acid 
synthase, and SREBP-1 [92]. Moreover, in obese mice receiving a high-fat diet, AMPK (AMP-activated protein kinase) was 
activated by glabridin, and thus suppressing the expression of SREBP-1c [65]. 

1.7. Milk thistle fruit flavonolignans 

Silymarin, the active component of dried milk thistle (Silybum marianum L., family Asteraceae) fruits extract consisting of 
a mixture of flavonolignans is reputed for its well-established hepatoprotective, antioxidant, antifibrotic, and anti-
inflammatory properties besides being safe and clinically well tolerated. Recently, silymarin was found to suppress the 
expression of SREBP-1c mRNA [93–95].  

1.8. Red soybeans isoflavones and amino acids 

Several studies demonstrated the efficacy of soy beans protein in decreasing serum lipid levels [96]. The consumption of 
red soybean (Glycine species Willd., family Fabaceae) by mice fed a high-fat diet was found to decrease the expression of 
SREBP-1, this was referred to its isoflavone and amino acid contents [97]. 

1.9. Lizard’s tail lignans 
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Sauchinone, a lignan present in lizard’s tail (Saururus chinensis (Lour.) Baill., family Saururaceae), is well-known for its 
antioxidant, hepatoprotective, anti-inflammatory, and anti-steatosis properties [98, 99]. Both in-vivo and in-vitro, it was found 
to inhibit SREBP-1c through activation of AMPK (AMP-activated protein kinase) and inhibition of liver-X-receptor-α [100]. 
Another study prooved that sauchinone is capable of downregulating both SREBP-1 and SREBP-2 in HepG2 cells [99]. 

1.10. Turmeric herb polyphenolics 

Curcumin, the main active polyphenolic compound of turmeric (Curcuma longa L., family Zingiberaceae), has 
demonstrated a wide range of biological and pharmacological activities, including antimicrobial, anti-inflammatory, 
anticancer, anti-diabetic, anti-malarial, antiprotozoal, and antioxidant effects, making it a promising scaffold for drug design 
and development despite its low bioavailability challenges [101]. It was also found to promote weight loss in clinical trials 
and to reduce the incidence of obesity-related metabolic disorders [102]. Published data supported that, among natural 
products, curcumin is reported to significantly inhibit SREBPs signaling, and, consequently to manage dyslipidemia and 
decrease lipid accumulation through downregulation of SREBPs [103]. 

1.11. Mulberry leaf phenolics 

Mulberry (Morus species L., family Moraceae) leaf aqueous extract, a traditional Chinese remedy for treatment of obesity, 
is rich in phenolics and flavonoids. A dose-dependent decrease was observed in the level of triglycerides, preventing 
aggregation of lipid globules and downregulating the gene expression of SREBP-1c [104]. 

1.12. Black nightshade whole plant polyphenols 

Black nightshade (Solanum nigrum L., family Solanaceae) is known to be rich in polyphenols [66]. The aqueous extract of 
the whole plant was reported to exhibit lipid-lowering activity, reducing blood triglycerides and cholesterol levels in mice via 
downregulation of SREBP gene expression through AMPK-dependent phosphorylation of SREBP [66, 105, 106]. 

1.13. Oak bark and Pomegranate rind polyphenols 

Ellagic acid, a polyphenolic constituent of oak bark (Quercus species L., family Fagaceae) and pomegranate (Punica 

granatum L., family Lythraceae), was found to regulate the metabolism of cholesterol in hepatocytes through down-regulation 
of MTP mRNA [107]. Ellagic acid supplementation in mice enhances hepatic lipid metabolism and antioxidant capacity, 
improving cholesterol profiles and increasing specific enzyme abundances to promote liver health [108].  

1.14. Red grapes polyphenolic stilbenoids 

Resveratrol is a polyphenolic stilbene present in peanuts (Arachis hypogaea L., family Fabaceae) and red grapes (genus 
Vitis L., family Vitaceae) [109]. Studies revealed that resveratrol prevents fat accumulation in-vivo in the liver of mice 
receiving a high-fat diet and in-vitro in HepG2 cells [109]. In addition, it exerts anti-neoplastic effects against different types 
of cancers [110]. Besides resveratrol was claimed to downregulate the gene expression of SREBP-1 and to inhibit its activity 
in HepG2 cells. This was suggested to be mediated by the Sirt1–FOXO1 (Sirtuin 1-Forkhead box protein O1) signaling 
pathway [109].  

Besides, resveratrol was found effective against xenograft oral cancer by significantly reducing lipogenesis, mediated 
through downregulation of the gene expression of SREBP-1 and epidermal fatty acid-binding protein (E-FABP). In addition, 
it initiated autophagy in oral cancer cells, and this was suggested to be through inhibition of SREBP-1-mediated cell survival 
signaling [110]. Moreover, resveratrol was found to sensitize pancreatic cancer cells to the anticancer drug gemcitabine 
through inhibition of SREBP [111].  

Many strategies have been studied to enhance the bioavaliabilty of resveratrol. For instance, resveratrol-based coumarins, 
synthesized and characterized for their enhanced biomedical effects, showed improvements in pharmacokinetic properties and 
various therapeutic activities compared to resveratrol alone [112]. 

2. Triterpenoids 

2.1. Birch bark lupane triterpenoids 

Betulin is a lupane triterpenoid found in Birch bark (Betula species L., family Betulaceae). It downregulates cholesterol 
and fatty acid synthesis and reduces blood lipid levels while increasing insulin sensitivity and inhibiting SREBP maturation 
[29, 113]. 

2.2. Chaga lanostane triterpenoids 

Chaga (Inonotus obliquus Pilát, family Hymenochaetaceae), a mushroom traditionally used in Chinese Medicine to treat 
various gastrointestinal diseases, was found to possess significant anticancer, anti-inflammatory and hypoglycemic activities 
[114]. Its active constituents viz. the lanostane triterpenoids inotodiol, lanosterol, and trametenolic acid, significantly 
decreased hepatic lipid accumulation through the downregulation of SREBP-1c [114]. 

2.3 Okra fruits triterpenoids 

The alcohol extract of okra (Abelmoschus esculentus L., family Malvaceae) fruit, rich in quercetin glucosides and 
pentacyclic triterpene ester, was found to be effective in stimulating AMP-activated protein kinase (AMPK)  leading to 
phosphorylation of SREBP-1c and consecutively its downregulation [67, 106]. Its water extract, rich in polysaccharides, was 
relatively more stable in decreasing the expression of SREBP-1c [115]. 
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3. Miscellaneous Compounds 

3.1. Chinese goldthread alkaloids 

Berberine is an isoquinoline alkaloid isolated from several plants of family Berberidaceae, especially Coptis species. 
Among these, Coptis chinensis F. (Chinese goldthread) rhizome is considered one of the main sources of berberine [116]. 
Berberine was found to be effective in treating a variety of cancers, including liver, colon, breast, and lung cancers. Moreover, 
its lipid-lowering, immunomodulatory, antioxidative, cardioprotective, hepatoprotective, and renoprotective activities were 
reported [116, 117]. Besides, a clinical trial demonstrated that berberine can be used in the treatment of dyslipidemia alone or 
together with simvastatin [116]. Recently, berberine was proven to inhibit SREBP-1 activation and expression of its 
transporting protein SREBP and cleavage-activating protein (SCAP) [118, 119]. 

3.2. Black and white pepper alkaloids 

Piperine is the major pungent alkaloid in Piper nigrum L., family Piperaceae. It occurs in both black and white pepper and 
was found to lower plasma cholesterol levels through several mechanisms, including downregulation of the gene expression 
of intestinal MTP [120]. 

3.3. Unsaturated fatty acids 

Unsaturated fatty acids such as α-Linolenic acid (ALA) were found to downregulate SREBP-2, SREBP-1a, and SREBP-1c 
expression [121–124]. Moreover, PUFAs and oleic acid were reported to inhibit the proteolysis of SREBP-1 and to 
downregulate its expression. Thus, they could help in the treatment of hyperlipidemia and other metabolic diseases, taking 
into consideration that SREBP-1 activation was found to produce lipotoxicity, which contributes to several lipidemic 
disorders [29, 122, 123, 125]. 

3.4. Citrus pectin 

Pectin is a complex and soluble polysaccharide found in the cell walls of citrus fruits [126]. Pectin has long been 
recognized for its impact on lipid metabolism, proven by a clinical trial conducted in 1977 which involved administering 40-
50 g/day of pectin for two weeks to nine normolipidemic and hyperlipidemic patients. The results demonstrated that while 
pectin supplementation significantly decreased serum total and unesterified cholesterol levels in hypercholesterolemic 
subjects [127]. Recently, Wang et al. (2022) reported that citrus pectin lowered cholesterol and triglyceride levels in HepG2 
cells through downregulation of fatty acid synthetase and SREBP-1c [128]. 

3.5. Garlic bulbs 

Garlic (Allium sativum L., family Amyrallidaceae) is known to possess cardiovascular benefits and anti-hyperlipidemic 
activity [129]. Many human studies have proven that garlic can reduce the blood levels of total cholesterol and LDL-C in 
patients with hypercholesterolemia [130–132]. Garlic extract was recently reported to reduce the gene expression of SREBP-
1c, leading to a decrease in its target genes [105]. 

3.6. Chinese toad bufadienolides 

Cinobufotalin is one of the bufadienolides extracted from the venomous skin secretions of Chinese toads (Bufo bufo 

gargarizans Cantor, family Bufonidae). The dried skin secretion of Bufo bufo gargarizans has been used in Traditional 
Chinese Medicine in treatment of several types of cancers [133]. Many studies reported the powerful anticancer activity of 
cinobufotalin against hepatocellular carcinoma, human lymphoma, lung cancer, and colon adenocarcinoma through numerous 
mechanisms [134–138]. Among the various mechanisms cinobufotalin targeted cancer through inhibiting lipogenesis in 
hepatocellular carcinoma specifically by inhibiting SREBP-1 expression [136]. 

3.7. Fenugreek steroidal saponin 

Fenugreek (Trigonella foenum-graecum L., family Fabaceae) is known to decrease serum triglycerides and cholesterol, as 
well as hepatic lipids [139–141]. Diosgenin is a saponin phytosterol effective against lipid metabolism disorders and is 
extracted from fenugreek [142–144]. When mice on a high-fat diet were given diosgenin, their weight gain was considerably 
reduced and their lipid profile was improved. Furthermore, diosgenin suppressed their two-fold increase in the gene 
expression of SREBP-1c and its downstream gene, fatty acid synthase [142]. In-vitro, diosgenin inhibited the accumulation of 
triglycerides and downregulated the lipogenic genes’ expression, including SREBP-1c, in HepG2 cells. This activity was 
through inhibiting the transactivation of liver-X-receptor-α, which is the transcription factor responsible for stimulating the 
gene expression of SREBP-1c [140, 145]. 

Applications and Prospects 

Microsomal triglyceride transfer protein (MTP) regulates the absorption and transportation of lipids by playing a role in 
the assembly and secretion of Apolipoproteins as chylomicrons and VLDL in the intestine and liver [146]. A few MTP 
inhibitors have been identified, and they were proven to reduce the levels of plasma lipids. However, inhibiting MTP resulted 
in accumulation of lipids in the liver, a significant drawback that stopped previously identified MTP inhibitors from reaching 
clinical use [88]. For instance, Lomitapide is known to inhibit MTP activity and reduce lipid levels. However, its use is 
limited due to hepatotoxicity [147, 148]. Therefore, it appears essential to search for intestine-specific MTP inhibitors or to 
find lead drugs capable of regulating the expression of MTP instead of inhibiting it, to serve as starting points for further 
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optimization and development into potential therapeutic agents [146]. This mechanism offers a safer and potentially more 
effective strategy for managing hyperlipidemia. Therefore, natural products that downregulate the gene expression of MTP 
instead of inhibiting its activity can be considered as a better approach to lower plasma lipids. 

Using SREBP inhibitors in combination with fatty acid synthase (FAS) inhibitors in the treatment of cancer might be 
considered as a promising strategy in the treatment of primary cutaneous T-cell lymphomas (CTCL) [149]. FAS, the enzyme 
that catalyzes the biosynthesis of fatty acids, is highly expressed in CTCL and contributes to oncogenicity in other 
malignancies. However, inhibition of FAS was found to increase FAS expression due to feedback inhibition. Adding an 
SREBP inhibitor partially reduced the upregulation of FAS caused by FAS inhibitors. This is explained by the role of SREBP 
in upregulating FAS gene expression [149]. 

Recently, a novel stilbene resveratrol derivative (BF175) containing boron and two chlorine groups was synthesized. 
Adding boron to small molecules enhanced their binding to target molecules, such as proteins, DNA or RNA. BF175 inhibited 
the target gene expression of SREBP, while its non-chlorine-containing analogue showed no effects. BF175 repressed the 
expression of SREBP-1c only in HepG2 cells while decreasing the transcripion of both SREBP-1 and SREBP-2 genes in-vivo 
in mice liver [150]. Since Natural polyphenolics, such as resveratrol, are hindered by their relatively low bioavailability, using 
a similar strategy for chemical modifications can be developed for the improvement of their bioavailability. 

 
2. Conclusions 

In conclusion, sterol regulatory element-binding proteins (SREBPs) and microsomal triglyceride transfer protein (MTP) are 
responsible for regulating the process of endogenous lipids synthesis and the uptake of exogenous lipids. However, this 
process is disrupted in many metabolic diseases such as dyslipidemia, obesity, cancer, non-alcoholic fatty liver, diabetes 
mellitus, atherosclerosis, chronic kidney diseases, and neurodegenerative diseases. Targeting the gene expression of these 
proteins is a promising strategy for the treatment of many metabolic diseases. Strikingly, a large number of natural products 
downregulate the gene expression of SREBPs and MTP proteins, and thus could be considered as potential therapeutic agents 
in the treatment of hyperlipidemic conditions.  
Natural products reported to downregulate SREBPs are mainly of polyphenolic and terpenoid nature, including hesperidin, 
luteolin, quercetin, xanthohumol, curcumin, silymarin, and ellagic acid. Besides, the alkaloids berberine and piperine, citrus 
pectin, chaga, mulberry, black nightshade, garlic, red soya bean, and okra extracts were also active. Meanwhile, gene 
expression of MTP protein was reported to be downregulated by taxifolin, piperine, and ellagic acid. 
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