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Abstract 

Food is a principal need for the continued survival of all living organisms. Food safety is an essential demand that must be 

achieved to avoid its refusal. The contamination of food by the toxigenic fungi threatens food safety and security. This review 

aims to get an overview of the pathway of AFB1 enzyme biosynthesis and their interaction with the genes relating to the cluster 

genes of AFB1. It also aims to demonstrate the impact of the global environmental conditions that influence the secretion process 

of aflatoxin and the current information indicating that genes regulated by such environmental signals are interconnected with 

aflatoxin biosynthesis. Various fungi exist in food commodities, but not all can secret mycotoxins. Aspergillus fungi species are 

one of the dangerous enemies that have caused food condemnation. Aspergillus strains mainly produce aflatoxins as a secondary 

metabolite during their bioactivities. Aflatoxins are classified by the International Agency for Cancer Research, where aflatoxin 

B1 (AFB1) is considered a class I carcinogen. Aspergillus fungi may biosynthesis the aflatoxin through about 30 genes, with 

principal ones including aflR, ver-1, verA, avfA, and nadA. These genes cover about 75 kb of the fungal genome. With the 

advancement of molecular tools, the research of filamentous fungi developed dramatically and offered valuable opportunities 

to explain specific fungal pathways, such as the formation of secondary metabolites.  Using the advantage of these technologies 

to enhance food safety and security, the molecular analysis of toxigenic fungi will hopefully understand the role influencing the 

formation of toxins and allow the creation of new successful fungal toxicity control strategies. Extensive research has been done 

on the genes that are implicated in the formation of AFB1, which is one of the most harmful human and animal carcinogenic 

toxins. The existing review discusses the responsibilities of these genes and their potential effect on forming AFB1. The 

emphasis was on the Aspergillus flavus and Aspergillus parasiticus, deemed the critical pathogens characterized as the 

significant AFB1-generator in crops. This review perfectly understands factors, related genes, mechanisms, and pathways of 

aflatoxin production as a critical hazard that threatens food safety production. This review provided complete knowledge about 

reducing aflatoxin in the food chain supply. It supported the idea of eliminating aflatoxin secretion using novel strategies, 

leading to more safety in food production.  
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1. Introduction 

 

     Food is considered the principal need for the 

continued survival of all living organisms, including 

humans, animals, plants, and microbial organisms. 

Food supports the biological activities of living 

organisms during their life cycles, which requests to 

be offered in suitable amounts according to global 

requirements. Food safety is a worldwide demand, and 

it assists in food availability without health problems 

or refusal issues of food products. Besides, food 

security is a general concern in ensuring political 

stability in developing countries [1]. Although food is 

essential for the continuation of human life, it is also 

crucial in maintaining vitality and meeting human 

needs [2]. So, food should reach the final consumers 

at a high level of safety and ensure its availability 

wherever they need it. Food contamination is a real 

challenge that faces food safety and security. Food 

could be threatened by such contamination sources, 

which vary between chemical, physical, and biological 

hazards. In some cases, the risk occurs double through 

the existence of microorganisms that can produce 

metabolites with health-hazard impacts [3].  Two 

types of microorganisms are eligible to achieve these 
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risks in food commodities. The first one is related to 

the bacterial strain, which can secrete bacterial toxins 

[4]. A second hazard is toxigenic fungi's appearance 

on food products [5]. 

The risk of these fungi relates to their potential for 

producing mycotoxins, which could happen within its 

growth in food raw-materials and the final-food 

products [6].   It is significant to know that  

 

 

consumers are fighting against a shadow-hazardous 

kind of toxicology [7]. This happens according to the 

tasteless, colorless, and odorless mycotoxin 

compounds.  It is concluded that fungi's presence does 

not necessarily mean mycotoxin's existence, but its 

potential presence still exists [8]. Consequently, it is 

essential to know about fungal-producing toxins, 

mycotoxin excretion, and the mechanism of fungi's 

secretion [9].  Various types of toxigenic fungal strains 

are reported by their capability to produce hazardous 

compounds through their metabolic cycles. These 

compounds are designated as mycotoxins and were 

recognized by more than 400 hundreds of types [10].  

 Based on sclerotia size, A. flavus can be categorized 

into a pair of types. Type L and S. type L produce a 

few vast sclerotia sizes of more than 400μm. 

Reproducible conidia and inconstant levels of 

aflatoxin secretion also distinguish it. At the same 

time, type S can produce few conidial numbers, with a 

considerably small sclerotia size of less than 400μm 

and a high-consistent level of aflatoxin secretion in 

media [11, 12].  

Some strains of type L could not produce aflatoxin due 

to damage to the aflatoxin gene cluster, such as a 

toxigenic fungus [13].  

 Fungal strains are joined to a class of living 

organisms, which turns mycotoxin production into a 

process wholly controlled by the fungal preference. 

Also, this preference is affected by the growth 

condition of the fungal strain [14]. Usually, suitable 

conditions for fungal vegetative growth differ from 

those of mycotoxin excretion. Mycotoxins are 

classified as secondary metabolic compounds of 

fungal metabolism, which refers to their production 

occurrence under stress exercised on the fungal strain 

[15].     

 

2. The occurrence of the aflatoxins 

     Aspergillus sp. is the predominant strain of fungi, 

widespread in most food commodities.  This strain is 

familiar for its capacity to secrete a compound 

described as aflatoxins [16]. 

Figure 1: a diagram of Food hazard that are threating food safety and security 
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Aspergillus strains vary between two classes; the 

first category can secret just two types of aflatoxins 

(Aflatoxin B1 and aflatoxin B2). The second category 

of Aspergillus strains is secreting several aflatoxin-

types (Aflatoxin B1; B2; Aflatoxin G1; and aflatoxin 

G2). The first category mainly contains Aspergillus 

flavus subspecies flavus, while the second category, 

Aspergillus flavus subspecies parasiticus, is involved. 

Generally, the last strain is known as Aspergillus 

parasiticus and is more common in cereal-based 

products, with high secretion levels of aflatoxins [17].  

Aspergillus strains are known to contaminate cereals, 

threatening the essential food products in Egypt (bread 

and bakeries). The occurrence of aflatoxin 

contamination on a food product commonly means it 

should be condemned.  

 The most dangerous mycotoxins are recognized as 

aflatoxins, particularly the aflatoxin B1 (AFB1). 

Usually, the molecule AFB1 is the primary metabolite 

secreted by most aflatoxigenic fungi, with other 

derivatives secreted in fewer levels [18]. The sixties 

and seventies decades of the twentieth century were 

named the era of aflatoxin, as this pointed to many 

investigations. Hydroxyl derivatives of aflatoxins are 

just secreted in lower media-pH and manifest like 

minor metabolites [19]. 

 

 

 

 

 

The risk occurred due to the existence of the AFB1 

in metabolic cycles. The AFB1 considered a pre-

carcinogenic substance, causes several health issues 

by its entering the living tissues. Aflatoxins are present 

in global agro-food products, and they cause a 

significant loss of agricultural food products [20]. 

Aflatoxins are a natural hazard of Egyptian cereals 

during post-harvest handling [21].    

 

2. Aflatoxins classification  

 However, the fungal strain of Aspergillus 

could secret the aflatoxins of B-types and G-types 

[23]. Furthermore, other types of aflatoxins, known as 

derivatives, result from metabolic transformation 

inside the body systems.  Aflatoxin M1 and Aflatoxin 

M2 are the common types of these metabolites. 

Aflatoxin M is a hydroxyl derivative of Aflatoxin B, 

mainly occurring if ruminants and lactating animals 

feed on contaminated diets. Aflatoxin M derivatives 

may be excreted in bio-fluids like blood, milk, and 

urine [18]. Generally, the metabolic pathway of 

aflatoxins in the biological systems is so close. 

However, the active group of different aflatoxin 

molecules is related to the biological damage that 

occurred. In contrast, a change in the derivative active-

group joins to the degree of damage.  

 

Figure 2: incidence of the global aflatoxins measured in percentile ration of total cultivated crops [22]. 
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3. Aflatoxin metabolites 

 The research of aflatoxin detection and their 

determination uncovered several metabolites that 

resulted under several conditions from the principal 

aflatoxin structure. The conditions of each metabolite 

may differ from the other one, like the media's pH 

change.  Aflatoxin derivatives are varying due to the 

related conversion [24]. Other derivatives like 

Aflatoxicol, aflatoxin Q, aflatoxin B2a, aflatoxin P, 

and aflatoxin B23. The epoxide derivatives of 

aflatoxin B1, including AFB1-8, 9-endo-epoxide, and 

AFB1-8, 9-endo-epoxide, were reported to form AF-

adduct with protein and DNA molecules [25]. The data 

in Figure 4 represents the familiar derivatives of 

aflatoxins known to be more existence and detectable.  

 

4. Aflatoxin structure and cause for the name 

Aflatoxins are di-furanocoumarin derivatives in 

which a lactone ring is part of the coumarin compound. 

Coumarin is a crystalline, colorless solid with a 

pleasant odor. This molecule can be defined as a 

benzene derivative substituted by a lactone-like chain 

with two neighboring hydrogens. Coumarins can act 

as chemical protection in plants in the defense system 

[26]. Two types of aflatoxins are different according 

to their fluorescence emission. The emission lights are 

identified as green and blue fluorescent. This is 

noticed if the aflatoxin is detected using thin-layer 

chromatography through UV determination. This 

explains the reason for the aflatoxin capital name-

letters [27]. The aflatoxin B (AFB1 and AFB2) refers 

to their blue fluorescent, and the aflatoxin G (AFG1 

and AFG2) refers to their green fluorescent.  The 

structure of aflatoxin B is a ring of bifuran merged 

with a molecule of coumarin containing a Penta-

shaped ring [28]. The coumarin here attaches to a 

Hexa-shaped ring for the aflatoxin G structure.  

Aflatoxin M is considered a metabolite of aflatoxin B, 

so it has the same structure by adding a hydroxyl group 

to the bifuran rings. 

The first biotransformation product of the 

aflatoxins known was the AFM type, which was 

discovered in animals’ body fluids [29, 30], while the 

other two types were known as AFGM types and were 

isolated from the sheep-urine [31]. Besides the AFM 

and AFGM types, hydroxyl-aflatoxin types were 

identified as metabolic aflatoxins such as AFB2a, 

AFG2a, AFB3, Aflatoxicol, Aflatoxin Q1, AFR0, and 

AFP [32]. By excluding the AFB2a and AFB-epoxide 

derivatives, the previous metabolic compounds are 

deemed as biotransformation detoxification forms of 

the most dangerous aflatoxin (AFB1) [33].  The AFB1 

is metabolized mainly via the P450 mono-oxygenase 

mechanism into a reactive 8, 9-epoxide derivative of 

aflatoxin.  This epoxide will react to form DNA or 

protein adducts, which their formation leads to 

mutations and carcinogenicity.  

 

5. The global ratio of Aflatoxin occurrence 

Mycotoxin's global occurrence varies throughout 

the places of determination. This variation depends on 

several factors affecting the ratios of mycotoxins-

contamination recorded in food commodities. 

Recently, Climate change has been considered the 

main factor controlling the dominant fungi inoculation 

of agro-food products, which consequently relates to 

the existing type of mycotoxin. Generally, each fungus 

has optimum conditions for both vegetative growth 

and secretion of secondary metabolites. Depending on 

these conditions, the biological activities of the fungi 

will take the principal pathway. The fungi can produce 

the toxic metabolites of mycotoxin, termed as 

toxigenic fungi. These fungi could grow on a broad 

spectrum of agro-food materials, lead to their spoilage, 

and may turn them to condemn.   

The ratio of mycotoxins present in a world place 

did not mean the absence of other mycotoxins in this 

place. Each place worldwide has a dominant 

mycotoxin, which presents a high ratio of food 

commodities. However, the contamination by other 

mycotoxin types is recorded by low ratios. 

Figure 3; chemical composition of aflatoxin compounds 

derivatives (Aflatoxins B1; B2; G1; G2; M1; M2) [34]  
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Figure 4; the familiar derivatives of aflatoxin metabolites that could be resulted during In-vivo aflatoxin metabolism [35] 
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Figure (5) represents the dominant mycotoxin of each 

world area and the ratio of the globally-mycotoxin 

existences. Based on the data displayed in this figure, 

Africa and Southern-east of Asia are the highly 

contaminated areas by aflatoxins. In this regard, a 

demand for the search for novel strategies that can 

limit this type of risk is an urgent need. 
 

5. Biosynthesis of Aflatoxins 

The presence of secondary metabolism is 

considered a significant signal that is known in 

toxigenic fungi. The differences in secondary 

metabolites (SMs) are notable, where Aspergillus 

species have been known to be rich in the SMs genes 

[37-39]. It is known commonly that the production of 

secondary metabolite molecules is expressed as non-

essential for the vegetative growth of fungi. These 

metabolites participate in the fungal adaptation to the 

surrounding growth environment during their life 

cycle. More than 48 kinds of the protein of the NRPS 

and PKS were predicted in Aspergillus oryzae, while 

at least 26 specific SMs clusters in Aspergillus 

fumigatus were identified [37]. It is indeed hard to 

identify the SMs, and much more complicated to  

 

 

 

 

attribute the biological functions of such molecules 

[40]. 

Until the discovery of penicillin at the beginning of 

the last century by Alexander Fleming, awareness and 

respect of fungal-SMs stayed relatively unclear. They 

have been extensively studied because of these 

metabolites' naturally biologically active existence 

and commercial benefits. Whether as pollutants or as 

bioactive components, the molecules of the SMs affect 

peoples’ lives. The molecules of food additives (like 

Kojic acid), antibiotics (like penicillin), and even 

lipids-reducers (including lovastatin) are effective 

SMs produced by Aspergillus fungi with benefit 

impacts [41]. The metabolites of fungi, further 

including harmful outputs, are identified as 

mycotoxins. Aflatoxins are known as stable molecules 

produced by Aspergillus-species fungi, which mainly 

spoil cereals, legumes, and nuts. It is both toxigenic 

and causes carcinogenicity, where aflatoxins-exposure 

was reported to be associated with toxic syndromes 

[42]. The AFs have shown to connect with 

hepatocellular carcinoma [43]; this was led to a 

parallel for understanding factors that affect their 

synthesis besides the mechanism to avoid their 

toxicity.   

Several pathways are involved in the SMs 

biosynthesis, including the large multifunctional 

Figure 5; the risk degree and mycotoxins existence ratios in various global-places 
https://www.biomin.net/fileadmin/_processed_/0/b/csm_IG_MTXSurvey_2021_Global_EN_5cf2fd1eb6.png [36] 

 

https://www.biomin.net/fileadmin/_processed_/0/b/csm_IG_MTXSurvey_2021_Global_EN_5cf2fd1eb6.png
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fluctuating proteins. This was reported clearly in the 

PKSs and non-ribosomal peptide synthases (NRPSs), 

which contribute to complex structures towards the 

SMs. Many pathways contribute to the formation of 

the SMs, with the most abundant class of polyketides 

being [40]. Generally, Mycotoxins, including the AFs 

group, are typical polyketide and non-ribosomal 

peptides formed by Aspergillus fungal species [40, 

44]. AFs are still the best-distinguished fungal SMs. 

The AFs-biosynthesis genes accompanying the aflR 

specific-pathway regulator were established within a 

70 kb DNA cluster close to a telomere of chromosome 

3 in fungi strain [45, 46]. Simple research has 

investigated the AFs-production precursor 

(sterigmatocystin) and has contributed considerably to 

describing the AFs production pathways. It also 

significantly assists in realizing AF- the regulative 

mechanism, which has lately been addressed. 

 

Considerable efforts have been made, and 

expenditures have been sustained globally since the 

recognition of aflatoxins to track their incidence and 

improve preventive and management strategies. A 

cornerstone in discovering the chemistry of aflatoxin 

biosynthesis was monitoring a color mutant 

accumulating the dark-red dye of the norsolorinic acid 

(nor) during the inspection of A. parasiticus fungi [47-

50]. Since the nor is an initial stable precursor of 

aflatoxin throughout the biosynthetic pathway of 

aflatoxin, such finding has enabled the identification 

of more primary intermediates of aflatoxin. It has 

established preliminary stage derivatives in the 

pathway of aflatoxin [33, 51, 52]. 

 The pathway of the aflatoxin gene cluster is 

identified in Aspergillus (flavus and parasiticus) 

following the cloning of many other significant 

biosynthesis pathways [53-57]. The increment in 

awareness about clusters promoted is a globally rising 

interest among investigators who have encouraged the 

complete understanding of aflatoxin biosynthesis. 

Throughout the explanation of the biosynthetic 

pathway, the regulatory mechanism, an intermediate 

pathway, related enzymes, and genes were more 

clarified to explore the critical steps in the synthesis 

process [54-62]. In aflatoxin biosynthesis, as many as 

about 30 genes are possibly implicated. The 

aflatoxins-pathway gene in Aspergillus (flavus and 

parasiticus) is concentrated on chromosome 4 [63-68]. 

The outdated gene terms are listed above the line, and 

the modern gene terms are consistently designated just 

below the line according to gene convention [68].  

 

6. Introduction to Genetic Biosynthesis of 

Aflatoxin 

Earlier investigations have shown that aflatoxins 

are reproduced via the pathway of the metabolic 

polyketide [45, 68-70]. The A. parasiticus and A. 

flavus strains showed that genomes are aligned 

throughout the aflatoxin biosynthesis throughout their 

mapping of super-positioning DNA cosmid clones 

[45, 65, 69]. The genetic cluster for aflatoxin synthesis 

within Aspergillus strains of A. flavus side to A. 

parasiticus typically consists of 25 genes covering 

about 70 kb. The aflR gene, as a positive regulator, is 

located in the cluster, coding for a specific sequence of 

the DNA and zinc-finger protein binding, and also is 

necessary for transcriptional activation of most of the 

target aflatoxin gene [69]. The database declared that 

the aflJ gene is divergently and adjacent to the 

transcribed from the aflR gen. No noticeable similarity 

with any other genes/ proteins has been reported for 

the aflJ gene. Although the exact role of the aflJ is not 

fully demonstrated yet, other aflatoxin cluster genes 

are essential for expression [22, 23]. The activity of 

most aflatoxin genes has been postulated through 

genetic or biochemical means [45, 71, 72].  Only four 

genes, out of 25 genes found in the AF pathway, have 

to experimentally understand the purpose of their 

protein product: norA, norB, aflT, and ordB. 

 

7. The main steps in aflatoxin-biosynthesis 

7.1. The Gal 4-E47 

    The primary step of aflatoxin biosynthesis is 

connecting to the Gal4, a transcriptional activator 

bound to Upstreaming Activator Sequences enhancer 

sequences found in DNA. Also, it is deemed a short 

oligonucleotide that responds to DNA binding to zinc-

finger protein. Moreover, Gal47 has biological 

activities, including Carbohydrate metabolism, 

Galactose metabolism, Transcription, and 

Transcription regulation. It also has a metal-binding 

functionality besides its function in positive RNA 

transcription regulation during aflatoxin biosynthesis. 

The E47 is a fundamental helix protein essential for 

lymphocyte development [73, 74]. It is adequate for 

activating the transcription and gene encoding 

terminal if overexpression occurs [75, 76]. Therefore, 

the E47 holds over specific features demanded 

regarding a master regulatory protein like the MyoD 

features, but E47 is broadly formulated [77]. It is also 

important to note that E47 knows a specific 

mechanism in the DNA-binding function. The Gal4 

was involved in plasmid encoding, namely as GAL4-

E47, a short oligonucleotide that binds to DNA and 

energizes the gene transcribing.   
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Figure 6. The aflatoxin pathway gene-cluster of Aspergillus flavus 

strain. [48]. 

 

 

During the aflatoxin- biosynthesis, the regulator 

gene was aflR, recognized as a type of Gal4 type 47-

KDa joined to zinc-finger protein. The aflR gene 

connects to a palindromic 5/-TCGN5 CGA-3/ 

sequence motif through the AF-gene promoter section. 

At least one region of this type is ready to bind, mostly 

in promoter regions of aflatoxin genomes throughout 

200bp of the transcription initiation region. In contrast, 

little putative linking regions were recognized more 

upstream [69, 73]. The distinguished point of the 

Gal4-type protein of the aflR was related to its 

recognition of its palindromic-binding sites as a dimer 

[78].  Under the control of negative regulators, the aflR 

perhaps does self-regulation [53, 79-82]. Upstream 

components could be interested in adverse control of 

aflR promoter activity [53, 56]. 

 

A) Acetate conversion to norsolorinic acids 

(nor) 

  Norsolorinic acids (nor) were reported as the 

initial equiponderant precursor of aflatoxin [44, 45, 

60]. The starter substrate for aflatoxin synthesis is a 

hexanoyl initiator unit [50]. The synthesis of 

polyketide from a hexanoyl initiator unit requires two 

fatty acid synthases (fas) and polyketide synthases (nr-

PKS, pksA). Norsolorinic acid anthrone (nor-

anthrone) formation requires extensions of seven 

iterative, malonyl-derived ketides [83-88].  

According to the investigation by Mahanti et al., 

[89] cloned a 7.5-kb is a board transcription by 

complementarity genetic needed for the nor synthesis 

in mutation-blocked A. parasiticus. The identity and 

similarity of its protein were reported highly (48% and 

67%, respectively) towards the beta sub-unit of the 

fatty acid synthesis (fas1) in two kinds of 

microorganisms.  The updating term of the fas-1A 

gene was fas-1, which is represented in the aflatoxin 

biosynthesis of the DNA genome. A further large 

transcript (fas-2A) encoding the fatty acid synthase α-

subunit throughout the aflatoxin gene cluster has also 

been recorded [85, 89, 90]. 

Biochemical evidence has been shown to illustrate 

the function of the FAS and the PKS in aflatoxin 

biosynthesis [91, 93]. More data have been published 

on the preliminary stage of the aflatoxin biosynthetic 

pathway, including the synthetase of fatty acids and 

polyketide synthases [83, 84, 86, 87, 92]. 

 In a fas-1 disrupted transforming, the N-acetyl-

cysteamine thioester of hexanoic acid was integrated 

into the nor. A synthase gene of polyketide (pksA) in 

A. Parasiticus is necessary for aflatoxin biosynthesis 

via gene disruption [53, 54]. Noranthrone is the 

expected substance converted by pksA. 

Transformation of noranthrone to the NOR, the initial 

equilibrium intermediate pathway [48, 83, 94-97], is 

poorly described, but it has been suggested that 
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noranthrone oxidase, or monooxygenase, should be 

catalyzed or spontaneously occur [49]. The in-depth 

investigations prove that the gene product hypC is a 

necessary nor-anthrone oxidase that activates nor-

oxidation [60]. The new fas-2, pksA, and  fas-1 terms 

were changed to aflB, aflC, and aflA, respectively [63, 

67, 98]. A gene homolog of afl-A, afl-B, and afl-C in 

A. nidulans are the stc-J, the stc-K, and the stc-A, 

respectively [92]. 

 

B) Norsolorinic acid transformation to 

Averantin (AVN) 

The initial equilibrium intermediate of aflatoxin 

biosynthesis pathways was recognized as NOR, 

resulting from the UV-generated disruption mutants in 

A. parasiticus and A. flavus [96, 99]. The NOR-

accumulating mutants, whose aflatoxin biosynthetic 

pathway is not fully suppressed, are Leaky mutants. 

The aflD (nor-1) gene, which encodes a reductase, has 

been cloned via genetic complementation [100]. The 

NOR reduction was catalyzed by a recombinant Nor-

1 protein generated in E. coli bacteria. Consequently, 

aflD (nor-1) encodes the ketoreductase necessary for 

transforming the NOR 1'-keto group to the Averantin 

1'-hydroxyl group [101]. 

Disruption of the gene nor-1 has verified the 

aflatoxin-biosynthetic pathways' participation in 

NOR-to-AVN transformation [102]. The homologous 

gene nor-1 in A. nidulans is the stcE [85]. In the AF 

cluster, genes sequence homology to nor-1, such as 

norA and norB, are expected to encode 

dehydrogenases of aryl-alcohol. Also, such types of 

protein can catalyze NOR-to-AVN decreases 

depending on the cell's reductive condition and may 

clarify the leakiness of the nor-1 mutation and whether 

they are capable of complementing the function of nor-

1 [103]. 

 

C) The transformation of the AVN to 5'-

Hydroxy-averantin (HAVN) 

Experimental studies on radioisotope integration 

provide the most substantial evidence to define the 

transformation of AVN to HAVN [104, 105]. The 

transformation of the nor to averufin (avf) is controlled 

through three enzymatic paths: (1) a reductase-

catalyzed nor to AVN, (2) a monooxygenase-

catalyzed the nor to HAVN, and (3) a second 

dehydrogenase-catalyzed the HAVN to the avf [106]. 

The oxidation reactions were also considered 

reversible, and NADPH was the favored cofactor 

[107]. The P-450 monooxygenase was encoded and 

disrupted by the gene initially called ord-1 [108]. The 

substrate-feeding experiments of the ord-1 mutant 

stated that HAVN seems to be intermediate in AVN to 

AVF transformation. The ord-1 gene is strongly 

similar to A. nidulans in the StcF sequence, designated 

to be the aflG (avnA) gene [92]. 

 

D) The HAVN Transformation to Oxoaverantin  

and Averufin 

One of the primary intermediates in aflatoxin 

synthesis is averufin (avf) [109-114]. A few other 

intermediates are being confirmed to be implicated in 

the AVN to AVF transformation [113], where the 

Averufanin (AVNN) is deemed one of them. Later, the 

experiments revealed that it is a shunt metabolite but 

not a genuine intermediate aflatoxin [94,120]. To 

encode alcohol dehydrogenase, the gene cluster adhA 

was recognized [113, 115]. The AdhA deletion 

mutants have been shown to accumulate primarily the 

HAVN. After extended development, the mutants 

could generate minimal quantities of the AVNN that 

were inconsistent with the AVNN as a shunt 

metabolite.  

Therefore, an appropriate cytosolic enzyme may 

transform the HAVN directly or indirectly into the 

AVF. Earlier in the 21st century, two cytosolic 

enzymes and a novel intermediate of the aflatoxin 

pathway called 5'-oxoaverantin (OAVN) were 

identified between the HAVN and the AVF [116]. The 

adhA gene controls the HAVN-to-OAVN 

transformation enzyme. The deletion mutant of gene 

adhA is leaky, suggesting that the transformation from 

the OAVN to the AVF can require extra enzymes or 

genes. Enzymatic processes were also suggested for 

the aflatoxin biosynthetic pathway and the potential 

participation of specific enzymes [117].  

 

E) The AVF Transformation to Versiconal 

Hemiacetal Acetate (VHA) 

A cytochrome P450 mono-oxidase, CypX, and aflI 

(avfA) gene are concerned with transforming AVF to 

VHA. While this transformation demands the aflI gene 

activity, the gene oxidative function is obscure [118].  

The aflI gene is also included in a strain of A. nidulans 

as a homolog stcO gene [92, 118]. The integration of 

the mutant accumulation of the averufin from strain 

Aspergillus SRRC strain to the A. flavus gene (aflI) 

reactivates the strain’s capability to transform AVF to 

VHA and secrete aflatoxins [118]. The aflI (avfA) 

encoded protein will likely participate in the ring-

closure process of hydroxy Versicolor-bone formation 

with the CypX-specific gene. To carry out the 

transformation, it was likely that gene-avfA is 

correlated to the P450 monooxygenase as no specific 

intermediates other than AVF arise from the 

degradation of either gene. 

 

 

F) Transformation of the VHA to Versiconal 

(VAL) 

The esterase enzyme is interested in transforming 

the VHA to the VAL, where it was purified in A. 

parasiticus [119-122]. The aflJ esterase gene (estA) 

was recognized as a section in the aflatoxin gene 

cluster [123]. In the biosynthetic gene cluster of A. 
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nidulans ST fungi, the homologous gene is the stcI 

gene. The cumulative metabolites of the estA gene 

suppress-mutants were predominantly the VHA and 

the versicolorin A (verA) [124]. The versiconol 

acetate accumulation and other intermediates of 

aflatoxin synthesis compounds were recorded, such as 

the VAL and versicolorin B [106, 125]. Afterward, 

more versicolorone (VONE), VOAc, and VHA-

containing metabolic grids were recognized [116]. 

Admittedly, it is now established that the estA-

encoded esterase catalyzes the transformation 

throughout the aflatoxin biosynthetic pathway of both 

VHA to VAL and VOAc to VOH [126]. 

 

G) Transformation of the VAL to the 

Versicolorin B (ver B) 

The investigation of Lin and Anderson [127] was 

the first to offer enzymatic confirmation that VAL is 

translated to the verB by such a cyclase. Such an 

enzyme is established as versicolorin B synthase [128-

130]. The gene was cloned and referred to as the vbs 

gene. Revealed recombinant protein from the vbs gene 

is shown to demonstrate the predicted cyclase activity 

[129-131]. The VAL cyclase and the verB synthase 

were isolated separately from the Aspergillus fungal 

strain. An enzyme catalyzes the cyclodehydration 

VHA-racemic side chain to the verB. This is another 

crucial step towards creating aflatoxin as it closes the 

aflatoxin bisfuran ring, the moiety essentially 

connected to the toxigenic and carcinogenic actions of 

aflatoxin. The vbs gene was called aflK [132]. In the 

A. nidulans ST fungi, the stcN is known as a 

homologous gene biosynthetic cluster. 

 

H) The verB transformation to Versicolorin A 

(verA) 

The verB is the essential branch point contributing 

to establishing either AFB1/ AFG1 or AFB2/AFG2. 

Close to AFB2/AFG2, the tetrahydro-bisfuran ring is 

located in verB, and similar to AFB1/ AFG1, a dihydro-

bisfuran ring is also included in the verA. The 

translation of verB to verA demands the de-saturation 

of the difuran ring by the unstable enzyme of 

microsom in verB [133]. The instability of the stcL in 

A. nidulans has abolished ST synthesis and culminated 

in the verB [94, 134].  

 

I) The verA Transformation to Demethyl-

sterigmatocystin (DMST)  

The verB Transformation to Demethyl-dihydro-

sterigmatocystin (DMDHST). Much detail has been 

mentioned in the biochemical transition steps from the 

verA to the DMST [135]. The aflM (ver-1) gene 

transcription by gene integration with verA 

accumulating in A. parasitic CS10 was considered 

responsible for transforming the verA to a non-isolated 

intermediate gene. A ketoreductase, identical to Nor-

1, is expected to encode the aflM (ver-1) gene. The 

ver-1 homolog, stcU, was detected—the double 

mutation of the stcU and the stcL accumulated in only 

verA [136]. The stcS gene (previously referred to as 

verB), also known to be the similar gene of the P-450 

monooxygenase, has also been characterized, and 

analyses have shown that it also engages in verA-

transformation into DMST-formation. The StcS 

interference culminated in verA, as did Ver-1 

disruption [137].  

     The stcU and the stcS are necessary to transform 

verA to the DMST. The stcS-homologue, aflN (verA), 

has also been described in the A. parasiticus strain [81, 

87].  A third enzyme, known as hypA (aflY), is 

required for the transformation.  A Baeyer-Villiger 

monooxygenase is expected to encode such genes. The 

instability of such an allele sometimes resulted in the 

concentration of verA, such as ver-1, suggesting that it 

acts without allowing intermediate formation as part 

of the enzyme complex. The OrdB, known as a fourth 

enzyme, has also been transforming. Like the AvfA, 

the homolog CypX is deemed an assistance 

monooxygenase protein. 

 

J) The DMST Transformation to 

Sterigmatocystin (ST),  

* The DHDMST Transformation to dihydro-

sterigmatocystin (DHST) 

Two O-methyltransferases are reportedly 

participating in the biosynthesis of aflatoxins [138]. 

The O-methyl-transferase I catalyzes methyl transfer 

from S-adenosyl-methionine (SAM) to DMST and 

DHDMST hydroxyls for processing the ST and the 

DHST, respectively. The enzyme of 43-kDa is 

isolating and characterizing of the A. parasiticus [139, 

140]. Centered upon a partial sequence of amino acids, 

the refined dmtA-enzyme was segregated from A 

parasiticus as the corresponding gene [141]. The 

recent investigation simultaneously isolated the same 

gene from other Aspergillus species but called it the 

omtB gene [118].  The consensus SAM-binding motif 

contains the expected dmtA-encoded protein [141].  

The omtB homolog was recognized as the stcP, which 

was recognized as being necessary for DMST-

transformation to the ST in A. nidulans, as shown by 

gene disruption [142]. 

 

K) The ST Transformation to the OMST 

    * The DHST Transformation to the DHOMST         

The O-methyltransferase gene is needed to 

transform the ST to OMST and DHST to DHOMST. 

It was first cloned by reverse genetics from A. 

parasiticus using antibodies against clarified O-

methyltransferase A [59, 143]. Such a gene was 

initially called omt-1, then omtA, and eventually 

designated as aflP [143]. The enzyme recombination 

was generated by E. coli, where substrate-feeding 
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studies showed its efficiency in transforming ST to 

OMST [143]. O-methyltransferase A has strong 

specificity for the substrate but cannot methylate the 

DMST or the DHDMST. 

Therefore, the O-methyltransferases A encoded by 

the aflP gene is the enzyme trustworthy for ST to 

OMST transforming and the DHST to DHOMST. This 

gene's (aflP) genomic DNA sequence was cloned from 

the two main Aspergillus strains [144]. This homolog 

of the aflP gene was also observed in other Aspergillus 

strains of non and aflatoxigenic strains [145]. The 

disappearance of the aflP orthologue was counted as 

the reason why A. nidulans generate ST as the final 

result instead of aflatoxins. 

 

L) The OMST Transformation to AFB1 & 

AFG1  

*The DHOMST transformation to AFB2 & AFG2 

Based on feeding studies, the association between 

aflatoxin B and G groups’ formation has been 

suggested [146]. For this reaction, a P-450 mono-

oxygenase gene in A. flavus called ord-1 existed 

significantly [147, 148]. This P-450 mono-oxygenase 

gene, the ordA, has been cloned in A. parasiticus and 

participated in the transformation of OMST and 

DHOMST to (AFB1/AFG1) and (AFB2/AFG2), 

respectively, and was demonstrated in the yeast 

system [154]. In the late stages of aflatoxin 

biosynthesis, whether the aflQ (ordA) gene is 

producing is unclear, where the ordA gene catalyzes 

two successive mono-oxygenase reactions. Recent 

investigations have proposed synthesizing G-group 

aflatoxins includes additional enzymes [149]. Once 

the cypA gene has been cloned and characterized, it is 

evident how cypA has encoded the P450 

monooxygenase for aflatoxin G-group production 

[71]. 

The nadA gene has recently played an important 

role in producing AFG1/ AFG2 [43, 150]. The gene of 

nadA was stated as an enzyme for AFG1-translation of 

modern intermediate aflatoxin called nadA [159]. The 

norA gene was previously assumed to be active in the 

synthesis of the nor gene, leading to a degree of 

sequence resemblance to the nor-1 gene. [103]. 

Nevertheless, recent studies prop the hypothesis that 

aflE (norA) is implicated in the AFB1 production 

throughout the two final stages [60]. An oxidation 

transaction in OMST-transformation to aflatoxin is 

perhaps included in the transcript hypB gene, a 

homolog of hypC. Conveniently, there are incomplete 

nadA and norB genes in only the G-group aflatoxin 

maker. Tentative findings suggest a relation refers to 

the norB function in the transcription of other proteins, 

which mainly creates AFG1 / AFG2 [151]. 

 

M) Other biotransformations of aflatoxins 

(Aflatoxins M) 

Aflatoxins M (AFM1 and AFM2) are deemed bio-

conversion mammalian products of Aflatoxin B; these 

derivatives are isolated and described from bovine 

milk [152-154]. Since entering the mammalian body, 

the liver P450 enzymes convert aflatoxins into 

reactive-epoxide intermediates, which are much more 

mutants or hydrolyzed and have become a little 

dangerous for the AFM1 and AFM2 molecules. Even 

then, recently, the aspertoxin feeding studies (12c-

hydroxy-OMST) have shown that A. parasiticus 

develops AFM1, AFM2, AFGM1, and AFGM2 (as 

minor aflatoxins), also develops the AFB1, AFB2, 

AFG1, and AFG2 (as principal aflatoxins) [155].  

 

8. Genetic Regulation Implemented for Aflatoxin 

Biosynthesis  

The genes of the aflatoxin pathway are arranged in 

clusters; this was very clear in the genome of A. flavus 

and A. parasiticus, where they are simultaneously 

expressed [67, 98].  The aflR, considered a positive 

regulation gene, exists at the center of the gene cluster. 

The aflJ is adjacent to aflR and was found to be 

implicated in the regulation of transcription [126, 

156]. Other physically unrelated genes of the veA or 

the laeA are displayed as having a regulation role in 

aflatoxin metabolic pathways [157, 158]. 

 

9. Pathway-Specific Transcription Factor 

Encoding Genetic Control by aflR Gene 

    For highly energetic transcription of aflatoxin 

structural genes, a specific sequence of 47KDa zinc-

finger protein is required to link to DNA encoded by 

the aflR gene [132]. The AflR links are a potential 

functional dimer, similar to the other regulatory 

protein (Gal4-type), which can link with palindromic 

sequences. In the promoter sites of gene-structural, it 

connects to the 5'-TCGN5CGR-3 'palindromic 

sequence [58, 159]. The AflR-linking motifs are 

between -80 and -600 positions, with the 

preponderance relative to the translation start site at -

100 to -200 positions. In some instances, AflR attaches 

to a deviated sequence instead of the usual motif, as 

seen in the situation of the avnA. 

        Only one available binding motif is chosen as 

the linking region if there is more than one being active 

[58, 159]. The more upstream motif, for turning on the 

expression of hypC, is found to belong to another 

gene. Regulation of other aflatoxin pathway genes is 

abolished by deleting aflR in A. parasiticus [160]. In 

A. flavus and A. parasiticus, the high expression of 

aflR re-arranges the aflatoxin pathway gene 

expression and aflatoxin accumulation. [79, 132]. The 

present findings indicate the direct participation of 

AflR in controlling aflatoxin-biosynthesis. Surly, in 

their promoter regions, a total of the up-regulating 

genes found by encoding-profiling utilizing the 

microarray assays of the DNA in comparison to wild-
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style and aflR-suppressed strains of A. parasiticus 

possess an assent AflR linking motif [161, 162]. 

 

10.  Encoding a Putative Transcriptional Co-

activator Genetic Regulation by aflS gene 

            Bidirectionally, aflR-translated resulted in 

the aflS gene essential for the aflatoxin synthesis while 

not exhibiting substantial homologous recombination 

by encoded protein contained in databases [156]. A 

region of the 737 bp internal transcribed is shared 

between aflS and aflR genes. In the gene conversion 

aflR of A. parasiticus, the performance of intermediate 

aflatoxin pathways was substantially enhanced in 

transformants containing more additional of the aflR 

and aflS [81]. 

       Quantitative PCR showed that the absence of 

aflS transcription is correlated with a five to 

twentyfold decrease in the production of specific 

aflatoxin biosynthesis pathways of the aflS knockout 

mutants. Mutants could not generate intermediates of 

aflatoxin, and no aflatoxins were secreted [156].   

Deactivating the aflJ gene did not have a discernible 

impact on the transcription of aflR. The over-

expression in the A. flavus aflJ gene was recorded by 

non-raising of the aflR, omtA, or ver-1 transcription. 

Otherwise, it appears to have some effect on aflC 

(pksA), aflD (nor-1), aflA (fas-1), and aflB (fas-2) 

genes [163]. These latter genes are necessary for early 

intermediates of the aflatoxin biosynthetic pathway. 

The aflS modulates the transcription mechanism in 

conjunction with aflR pathway genes, is still needs 

more investigation. 

 

11. Genetic Regulation by the laeA gene on 

Secondary Metabolism 

    The strain of A. nidulans fungi was the first to 

recognize the innovative global regulatory gene of the 

laeA [157]. As shown by its inclusion in the genomes 

of all fungi sequenced, this gene is well maintained in 

fungi. Besides the AF-cluster, the LaeA gene is a 

nuclear protein that contains a binding motif of S-

adenosyl-methionine and transcription activities. 

Instances have included a reference to A. nidulan 

sterigmatocystins and penicillins cluster, A. fumigatus 

gliotoxin cluster, and A. flavus aflatoxin cluster [157, 

164]. The full-genome analysis of the transcription 

profiles of wild style with the laeA-suppressed of the 

A. fumigatus was also performed [165], where the 

results were expressed that LaeA positively regulates 

the expression of twenty to forty percent of main 

categories of secondary genes for metabolite 

biosynthetic pathways. It also controls specific genes 

not associated with clusters of secondary metabolites 

[166]. Regarding the suspected regulatory mechanism, 

the LaeA methylated histone-proteins differentially 

change the chromatin template for the expression. A 

primary function of LaeA is to control gene-cluster 

metabolism established toward observation whose 

conidial amounting to a wild-style level was generated 

by laeA-deleted strains [157]. The latest studies of 

non-aflatoxigenic A. parasiticus (sec-) variants 

developed by serial mycelia transfer of parents (sec+) 

have shown that laeA was encoded in both strains 

[167].  

 

12. Encoding a Regulator VeA gene impacts ( 

fungal development and mycotoxin formation) 

        In the strain of A. nidulans, the veA gene was 

initially important for light-conditional requests [168]. 

In comparing the light impact of the veA+ and veA1 

on sterigmatocystin formation, the result displayed the 

ability of the two strain types to generate 

sterigmatocystin. In contrast, the veA+ strain grown in 

darkness produced the highest amount. Furthermore, 

the VeA-absence in the two Aspergillus strains 

(parasiticus and flavus) resulted in a wholly lost ability 

to generate aflatoxins irrespective of the illumination 

[41]. The VeA gene contains the motif of a bipartite 

nuclear localization allusion, and its relocation to the 

nucleus is light-dependent. It also includes the alpha-

carrier protein of importin [169]. The VeA gene is 

primarily found in the nucleus in the dark; it is present 

in both the cytoplasm and the nucleus under the light. 

The VeA has no identifiable DNA-binding thresholds 

and is likely to affect the development of the ST and 

AF via protein-protein interactions with some other 

regulation factors.  Its activity can be modulated by 

post-translational modifications such as 

phosphorylation and dephosphorylation.  

 

13. Aflatoxin Biosynthesis and their Factors 

Affecting 
13.1. Carbon sources 

         Aflatoxin production has long been 

influenced by carbon, nitrogen, amino acids, lipids, 

trace elements, and other nutritional factors [170]. The 

media with a provenance of nitrogen and carbon are 

considered the best nutrition for the AF-formation 

[171]. The association between the carbon source and 

aflatoxin formation has been well established. The 

production of aflatoxin is facilitated by simple types of 

sugar [91]. Connexion has been documented between 

alpha-amylase activity and the development of 

aflatoxin in A. flavus [172]. A gene cluster associated 

with sugar-utilizing was found in A. parasiticus near 

the aflatoxin gene cluster, as described in a study by 

Yu et al. [118].  The near physical connection between 

the two gene clusters might indicate the relationship 

between the carbohydrate processing clusters leading 

to aflatoxin biosynthesis induction. A good carbon 

source for promoting aflatoxin production is the lipid 

substrate. In A parasiticus and A. flavus, the lipase 

gene, lipA, was cloned.  
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13.2. Nitrogen 

Nitrogen has a very close relation to AF production 

[91]. Media-containing amino acids help the 

development of aflatoxin, whereas the medium-

containing NaNo2 and NaNo3 did not show any 

impact [173]. Nitrate has also been proposed to 

suppress the development of averufin and aflatoxin 

[174, 175].  It has been documented that nitrate seems 

to have a suppressive impact on the formation of 

aflatoxin, and aflR over-expression overcomes the 

regulation by a negatively-influence of aflatoxin 

pathway gene transcription [81]. Nitrogen use 

efficiency genes and a nitrogen-regulation gene have 

been cloned in as an area gene of A. parasiticus.  

Numerous AreA binding motifs were recognized in 

the aflR-aflS intergenic site [82, 176]. The binding of 

the areA gene may protect AflR linking. The amino 

acids may have various effects on the development of 

aflatoxin. The investigations show that tryptophan 

suppresses the aflatoxin-formation process, but the 

tyrosine of A. flavus speeds up the process of aflatoxin 

formation [162]. 

 
13.3.       Temperature 

    The aflatoxin formation was impacted directly 

by temperature. The optimum development of 

aflatoxin is observed at temperatures close to 30 °C 

[177]. The production of aflatoxin is almost 

completely inhibited when the temperature rises above 

36 °C. Using microarray gene profiling and RT-PCR 

verification, genome-wide gene profiling suggested 

that elevated temperature was connected to a substrate 

in aflatoxin pathway gene expression. A large number 

of transcripts of both the regulatory genes aflR and aflJ 

were found by RT-PCR [177]. It has, therefore, been 

hypothesized that the behavior of AflR or some other 

unknown regulatory factor could be influenced by 

temperature. The AflJ is more influenced by the high 

temperature than the aflR. A change in the aflJ to aflR 

ratio makes aflR unfunctional for transcription 

activation. 

 

13.4. Water Activity 

Extreme outbreaks of aflatoxin in maize were 

reported due to warm climate conditions [178, 179]. 

The mechanism of infestation of A. flavus in maize 

under these circumstances is not well known. A 

combination of these factors may be included in 

potential scenarios: (1) the plant defense system is 

weak under conditions of water pressure; (2) plant 

tissues damaged, which were infected by the insects, 

thereby creating chances of the mold spores to enter; 

(3) enrichment by the spores of fungi spread during 

dry weather into the air. 

 

 

13.5.  The pH value of the culture  
In acidic media, aflatoxin synthesis by A. flavus 

happens but is inhibited with alkaline media. The 

PAC-C gene was recognized as a transcription 

regulatory factor of pH [134, 180].  The pacC linking 

region has been recorded at the aflR promoter region 

[58]. A putative pacC linking region near the aflR 

transcription's starting region effectively regulates the 

pH of aflatoxin excretion [181]. This region was 

displayed as a suppressing area in the non-aflatoxin-

conducive peptone medium [180]. The action of 

regulation could connect with the pacC linking to that 

region under alkaline properties of media to suppress 

the transcription of the aflR acid-gene and hence the 

production of aflatoxin. The PacC and areA linking 

regions of intergenic sites in the aflR-aflJ indicate that 

environmental signals (like pH) control gene 

expression [82]. 

 

13.6. Fungal development stage  

Secondary metabolism is associated with 

sporulation and sclerotial development. At around the 

same time, spore formation and secondary metabolite 

formation occur. Some sporulation-deficient mutants 

cannot develop aflatoxins, and some sporulation-

inhibiting compounds in A. parasiticus even inhibit the 

production of aflatoxins. The aflatoxin-producing 

potential was progressively reduced in reaction to a 

series of subcultures. The increases in the 

development potential of aflatoxin have been followed 

by marked morphological changes [182]. 

 

13.7.  The impact of oxidative Stress 

 In A. parasiticus fungal strain, oxidative stress 

causes the development of aflatoxin. However, the 

oxidative stress and biosynthesis of aflatoxin were 

associated, as was previously mentioned. Significant 

increases in aflatoxin output were reported in A. flavus 

regarding treating tert-butyl hydroperoxide or gallic 

acid. Similar treatment with A. parasiticus also 

induced the development of aflatoxin [183]. 

Hydrolyzable tannins significantly inhibit the 

biosynthesis of aflatoxin, with gallic acid being the 

principal anti-aflatoxigenic constituent of these 

tannins. Gallic acid decreases structural gene 

expression within the biosynthetic aflatoxin cluster. 

Gallic acid tends to block the signal transduction 

pathways. 

Applying phenolic acids and other antioxidant 

molecules to A. flavus with oxidative stress decreases 

the production of aflatoxin without affecting the 

growth of fungi. Another antioxidant that prevents 

aflatoxigenesis is caffeic acid. A. flavus treated with 

caffeic acid microarray analysis identified a gene 

called ahpC2, an alkyl hydroperoxide reductase 

potentially involved in quelling the aflatoxin 

production signal. However, when treated with caffeic 
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acid, there was non-observed impact on the expression 

of laeA [172]. 

 

13.8. Effect of plant metabolisms 

The metabolites of plants play some role in the 

production of aflatoxin. The N-decyl aldehyde 

reduces, under some conditions, both the fungal 

growth of A. parasiticus and its aflatoxin secretion are 

affected by more than 95 percent compared to control 

[184]. Octanal decreases the vegetative growth of the 

fungi by 60 percent, but it raises the excretion of 

aflatoxin by five hundred percent. However, hexanal 

decreases the vegetative growth of the fungi by 50 

percent, but it has no impact on the production of 

aflatoxin. The linoleic acid derivatives have been 

reported to reduce the development of aflatoxin [185]. 

Regulation of aflatoxin levels in goods should include 

pre and post-harvest stages and routine identification 

and screening. 

 

14. Future outlook regarding the management 

the  aflatoxin-contamination issues 

Aflatoxins ' economic effects and possible dangers 

to human health have displayed the requirements to 

prevent or mitigate their food and feed contamination. 

The initiative includes tracking, managing, and 

regulating the amount of Agro-Food products from 

farms to the markets. 

A) Future prospective in detection and screening 

Surveillance programs have been developed to 

influence by reducing the aflatoxin hazard ingestion. 

Analytical test assays were improved to detect many 

food samples [63] rapidly. The TLC, HPLC, and GC-

MSMS are existing determination strategies for 

accurately identifying and measuring the quantities of 

aflatoxins. The ELISA technique is also considered a 

precise method determined at 0.1 ng/mL for rapidly 

analyzing aflatoxins [186].  

 

15. Future prospective in pre-harvest 

Recently, the main direction in controlling the 

aflatoxin contamination in food crops, particularly 

cereals, has been achieved by utilizing atoxigenic 

Aspergillus strains to cause a mutation in the producer 

strains. Two major projects are still being worked on 

at this point. In Africa, the project was known as 

“Afla-Safe.” Later, it had a factory producing a 

commercial product with a trademark. The website of 

this project is https://.a.flasafe.com/a.flasafe/, and the 

project has succeeded in limiting the aflatoxin 

contamination through the bio-controlling stage using 

a non-producer strain that affect the metabolic 

pathways of aflatoxin biosynthesis in the field. The 

second project was established in Europe, 

incorporating eight countries.  The website of this 

project is https://.mcoykey.eu. The project is also 

interested in discovering and exploring a new strain of 

fungi as a control agent that can regulate the aflatoxin 

gene as a novel methodology for stopping the AF 

hazard. 

  

16. Modern-prospect of food bio-preservation 

Some modern investigations were interested in 

limiting the aflatoxin contamination of food materials. 

These critical studies are interested in the impact of 

lactic acid bacterial metabolites [187, 188]. These 

investigations reflect various bio-active molecules 

[189, 190], which could regulate the aflatoxin 

excretion in liquid media using high-producer strains 

of aflatoxins. The In-vitro studies displayed the 

valuable impact of these molecules on inhibiting the 

fungal ability to secrete aflatoxins [191]. The 

determination of aflatoxin amounts in the growth 

media reflects decreases in aflatoxin-producing 

compared to the control. Moreover, the bacterial cells 

and their postbiotics were also capable to reduce 

metabolites of aflatoxin such as aflatoxin M1 [192].  

Knowledge of the biological and genetic pathway 

for synthesizing mycotoxins, especially aflatoxins, has 

helped lead to a new aspect of development in limiting 

the production of these toxins by fungi. Recently, 

molecular docking (modeling) and molecular 

dynamics have been used to predict inhibition 

pathways for producing aflatoxins by applying some 

active ingredients in fungal growth environments, 

mainly phenolic compounds [193-196]. The results 

revealed the ability of several phenolic compounds, 

essential oils [195], and some alkaloids [194] to 

influence the production pathways of mycotoxins 

through genetic prediction of the nature and stability 

of the association between these substances and the 

genes responsible for the secretion of aflatoxins. 

However, further studies need to discover these 

molecules’ genomic impact. Utilization of novel types 

of non-traditional oils that possess a unique oxidative 

stability may have a critical function to inhibit the 

fungal producing of toxin [197-200]. This point can 

open a new vision of research to limit the mycotoxin 

contamination through the oxidative effect of special 

oils type. 

 

Conclusion     
    Aflatoxin is a mutant and carcinogenic 

compound secreted by fungi on food commodities. 

Aflatoxin is produced through complicated pathways 

of Aspergillus gene clusters. More than twenty genes 

participate in aflatoxin-metabolic pathways. These 

genes vary between principles and intermediate ones, 

which regulate the sequenced steps of aflatoxin bio-

synthetic stages. Several environmental and growing 

conditions contributed to the influence of aflatoxin 

secretion and its related genes. The perfect 

understanding of these factors and their related genes, 

including their mechanisms and pathways, will 
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facilitate the modern steps and efforts that target 

eliminating aflatoxin secretion, leading to more safety 

in food production. The limitation of aflatoxin 

secretion throughout affecting the synthesis gene-

clusters should consider the pivotal genes that count as 

critical points through the synthesis steps. Moreover, 

molecular docking and dynamics could be applied for 

enhancing toxin suppression process. This review is 

uncovering the relation between the gene clusters of 

aflatoxins and how to avoid AF accumulation.  
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