

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Selective and efficient Cu-catalyzed 1,3-bipolar cycloaddition of propargylthiobenzoxazoline and aryl azides

Burkhon Zhurayevich Elmuradov^{*1}, Zulkhumorkhon Jalolidin qizi Pulatova², Ilkhom Sobirovich Ortikov²

¹ Department of organic synthesis, S. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 100170, Mirzo-Ulugbek

² Department of organic synthesis, S. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, 100170, Mirzo-Ulugbek str., 77, Tashkent, Uzbekistan

Abstract

It was carried out selective synthesis of the 2-propargylthiobenzoxazoline. A cheap and convenient method for synthesis of new benzoxazole-triazole hybrid molecules were developed by carrying out 1,3-bipolar cycloaddition reactions of the obtained 2-propargylthiobenzoxazoline with some aromatic azides. Factors influencing the course and direction of the reaction (catalyst nature, ratio of reagents, reaction temperature and duration) have been identified. The IR-, 1H and 13C NMR spectra of the obtai Keywords: 2-propargylthiobenzoxazoline, arylazides, 1,3-bipolar cycloaddition, Cu (I) halides, hybrid molecules.ned substances were analyzed and it was proved that they correspond to their structures.

Keywords: Type your keywords here, separated by semicolons ;

1. Introduction

Currently, in the field of medicine and pharmaceuticals in the world, one of the urgent tasks is the search, selection and production of nonsteroidal low-toxic, synthetic, biologically active substances that can replace natural drugs. The main part of currently used synthetic and natural drugs with medicinal properties are heterocyclic compounds containing nitrogen, oxygen, and sulfur. Among them, there are many five-membered heterocyclic compounds with 3 nitrogen atoms - 1,2,3-triazoles.

Currently, one of the most important issues is the targeted synthesis of new, promising biologically active compounds, their successful use in agriculture and medicine against various diseases. In particular, benzoxazole derivatives include anti-inflammatory [1], analgesic [2], anticonvulsant [3] and antiviral [4], antimicrobial [5-8], against tuberculosis [9-13] and cancer [14, 15] drugs. Therefore, it is of particular importance to create cheap, highly effective and environmentally friendly local preparations, to improve their physico-chemical and biological properties.

There are several marketed drugs (Fig. 1) having benzoxazole as core active moiety like, *nonsteroidal anti-inflammatory drug (NSAID)* - flunoxaprofen, benoxaprofen, *antibiotic*—calcimycin, *antibacterial*—boxazomycin B, *muscle relaxant* chloroxazone:

*Corresponding author e-mail: <u>b_elmuradov@mail.ru</u>.; (Burkhon Z. Elmuradov).

EJCHEM use only: Received date here; revised date here; accepted date here DOI: 10.21608/EJCHEM.2024.167226.7060

©2024 National Information and Documentation Center (NIDOC)

Figure 1. Marketed drugs containing benzoxazole core.

In Fig.2 are shown marketed drugs and biologically active molecules containing 1,2,3-triazoles, which

possess antifungal, antibiotic, anticancer and anti-HIV activities.

Figure 2. Marketed drugs and bioactive molecules containing 1,2,3-triazole core.

Although research in the field of benzoxazoles and their analogues - benzimidazoles and benzothiazoles began long ago, scientific and practical research based on compounds of this class is being conducted intensively in many countries of the world [16-18].

2. Experimental

IR spectra were recorded on a System 2000 IR Fourier spectrometer in KBr tablets, 1H NMR spectra - on a Unity-400+ instrument (operating frequency 400 MHz, internal standard TMS, δ scale) solvents - CD3OD, DMSO-d6. The purity of the

Egypt. J. Chem. 67, No. 9 (2024)

products and the progress of the reaction were monitored by TLC on Silufol UV-254 in the system benzene: methanol - 5:1. The melting points of the synthesized compounds were determined on the "Meltemp" (Germany) device.

Synthesis of 2-propargylthiobenzoxazoline (2) was carried out according to the method described in the literature [7]. From 7.5 g (0.05 mol) of benzoxazole-2-thiol (1), 5 ml (7.85 g, 0.066 mol, d=1.57 g/mol) of propargyl bromide, 5 g (0.036 mmol) of potash and 80 ml of acetone according to the

method 7.05 g (75%) of product (2) was obtained, melting point 48-50°C, R_f 0.44 (benzene:methanol – 5:1).

2-(((1-(3-Nitrophenyl)-1H-1,2,3-triazol-4yl)methyl)thio)-benzo[d]oxazole (3). (*General* procedure).

0.378 g (2 mmol) of 2-propargylthiobenzoxazoline (2), 0.328 g (2 mmol) of meta-nitrophenylazide, 0.008 g (0.021 mmol) of copper(I) iodide and 30 ml of toluene were placed into a round-bottom flask. The flask placed on a hot plate and connected to a reflux condenser, and a mixture was heated at the boiling point of toluene (110°C) for 5 hours. The progress of the reaction was monitored by thin layer chromatography. After the end of the reaction, a yellow precipitate began to form in the reaction mixture. The mixture was left overnight at room temperature, the formed precipitates filtered off, dried and 0.616 g (87.5%) product (3) was obtained, melting point 140-142°C, $R_f 0.58$ (benzene:methanol – 5:1). ¹H NMR (400 MHz, DMSO-d6+CCl₄, δ, ppm, *J*/Hz): 8.99 (1H, s, Het-H), 7.74 (3H, m, H-4,2,6), 7.29 (5H, m, H-5,6,7,3`,5`), 4.70 (2H, s, <u>CH</u>₂-S). ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ, ppm): 163.93 (C-2), 152.13 (C-7^a), 149.03 (C-3^a), 144.29 (C-3^{*}), 142.03 (C-6^{*}), 137.92 (C-4, triazole ring), 131.55 (C-1`), 128.24 (C-5⁾, 124.59 (C-5), 124.01 (C-6), 123.11 (C-4⁾), 122.69 (C-4), 118.76 (C-5, triazole ring), 115.18 (C-7), 110.28 (C-2`), 26.86 (CH₂). IR-spectrum (KBr, v, cm⁻ ¹): 3688 (C-H aryl), 2960 (CH₂ group), 1288 (C-N), 781 (C-S-C), 756 (NO₂).

2-(((1-(4-Nitro)-1H-1,2,3-triazol-4-yl)methyl)thio)benzo[d]oxazole (4).

Yield 0.619 g (80.5%), melting point 118-120⁰C, R_f 0.61 (benzene:methanol – 5:1). ¹H NMR (400 MHz, DMSO-d6+CCl₄, δ , ppm, *J*/Hz): 8.94 (1H, s, Het-H), 8.36 (2H, d, J=9.2, H-3`,5`), 8.20 (2H, d, J=9.35, H-2`, 6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J₁=1.49, J₂=7.08, H-4), 7.24 (2H, m, H-5,6), 4.70 (2H, s, <u>CH2</u>-S). ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): 163.90 (C-2), 152.13 (C-7^a), 147.03 (C-4`), 144.47 (C-1`), 142.31 (C-3^a), 141.40 (C-4, triazole ring), 125.63 (C-5), 124.58 (C-6), 124.23 (C-3`, C-5`), 122.65 (C-2`, C-6`), 120.81 (C-5, triazole ring), 118.77 (C-4), 110.27 (C-7), 26.80 (CH₂). IR-spectrum (KBr, v, cm⁻¹): 3094 (Ar(=C-H)), 749 (C-S-C group), 1597 (N=N), 1342 (=C-H), 1455 (C-O), 1236 (C-N), , 749 (NO₂), 682 (Ar (=C-H) deformation vibration).

4-(4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)benzoic acid (5).

Yield 0.619 g (88%), melting point 263-265⁰C, R_f 0.68 (benzene:methanol – 5:1). ¹H NMR (400 MHz, DMSO-d6+CCl₄, δ , ppm, *J*/Hz): 8.78 (1H, s, Het-H), 8.08 (2H, d, J=8.83, H-3`,5`), 7.95 (2H, d, J=8.96, H-2`, 6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J₁=1,45, J₂=7.02, H-4), 7.24 (2H, m, H-5, 6), 4.69 (2H, s, <u>CH</u>₂-S). ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): 166.65 (C-COOH), 164.04 (C-2), 152.13 (C-7^a), 143.94 (C-1`), 142.03 (C-3^a), 139.93 (C-4, triazole ring), 131.41 (C-3`, 5`), 131.27 (C-4`), 124.57 (C-5), 124.2 (C-6), 122.21 (C-2`, C-6`), 119.80 (C-5, triazole ring), 118.74 (C-4), 110.26 (C-7), 26.89 (CH₂). IRspectrum (KBr, v, cm⁻¹): 3059 (Ar(=C-H)), 1678 (C=C), 1558 (N=N), 1455 (=C-H), 1430, 1241 (C-N), 685 (Ar (=C-H) deformation vibration)

2-(((1-(2-Bromo-4-nitrophenyl)-1H-1,2,3triazol-4-yl)methyl)thio)-benzo[d]oxazole (6).

Yield 0.59 g (68%), melting point 144-145°C, R_f 0.69 (benzene:methanol – 5:1). ¹H NMR (400 MHz, CDCl₃ +CCl₄, δ , ppm, *J*/Hz): 8.59 (1H, d, J=2.67, H-3`), 8.32 (2H, m, Het-H, H-5`), 7.80 (1H, d, J=8.70, H-6`), 7.60 (1H, m, H-7), 7.44 (1H, m, H-4), 7.28 (2H, m, H-5,6), 4.70 (2H, s, <u>CH₂-S</u>). ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): 164.06 (C-2), 152.20 (C-7^a), 148.18 (C-4`), 144.18 (C-3^a), 141.81 (C-1`), 141.14 (C-4, triazole ring), 129.54 (C-6`), 128.69 (C-3`), 125.05 (C-5), 124.58 (C-6), 124.34 (C-5`), 123.71 (C-2`), 118.50 (C-5, triazole ring), 118.18 (C-4), 110.26 (C-7), 26.89 (CH₂). IR-spectrum (KBr, v, cm⁻¹): 3079 (Ar(=C-H)), 750 (C-S-C group), 1621 (C=C), 1454 (N=N), 1238 (C-N), 758 (NO₂), 664 (Ar (=C-H) deformation vibration).

2-(((1-(2-Methyl-4-nitrophenyl)-1H-1,2,3triazol-4-yl)methyl)thio)benzo[d]oxazole (7).

Yield 0.28 g (82%), melting point 145-146°C, Rf 0.55 (benzene:methanol – 5:1). ¹H NMR (400 MHz, DMSO-d6+CCl₄, δ , ppm, *J*/Hz): 8.47 (1H, s, Het-H), 8.24 (1H, d, J=1.67, H-5`), 8.03 (1H, s, H-3`), 7.67 (1H, m, H-6`), 7.56 (1H, m, H-7), 7.47 (1H, m, H-4), 7.24 (2H, m, H-5,6), 4.70 (2H, s, <u>CH₂-S</u>), 2.31 (3H, s, Ar-<u>CH₃</u>). ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): 164.09 (C-2), 152.12 (C-7^a), 146.61 (C-4`), 143.19 (C-3^a), 142.01 (C-2`), 141.39 (C-1`), 137.06 (C-4, triazole ring), 133.10 (C-6`), 125.79 (C-3`), 124.56 (C-5), 124.31 (C-6), 124.21 (C-5`), 123.71 (C-2`),

1121.30 (C-5, triazole ring), 118.70 (C-4), 110.27 (C-7), 26.80 (CH₂). 18.79 (CH₂). IR-spectrum (KBr, v, cm⁻¹): 3083 (Ar(=C-H)), 739 (C-S-C group), 1647 (C=C), 1597 (N=N), 1452 (=C-H), 1407 (C-O), 1233 (C-N), 880 (NO₂).

2-(((1-(3,4-Dichlorophenyl)-1H-1,2,3-triazol-4yl)methyl)thio)-benzo[d]oxazole (8).

Yield 0.288 g (76.5%), melting point 138-140°C, Rf 0.44 (benzene:methanol -5:1). ¹H NMR (400 MHz, DMSO-d6+CCl₄, δ, ppm, J/Hz): 8.80 (1H, s, Het-H), 7.23 (2H, m, H-5, 6), 7.47 (1H, dd, J₁=2.01, J₂=7.47, H-4), 7.57 (1H, dd, J₁=1.30, J₂=6.50, H-7), 8.14 (1H, d, J=2.61, H-2[`]), 7.88 (1H, dd, J₁=2.53, J₂=8.77, H-6`), 7.65 (1H, d, J=8.70, H-5`), 4.67 (2H, s, <u>CH</u>₂-S). ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): 163.95 (C-2), 152.12 (C-7^a), 144.09 (C-3^a), 142.01 (C-1`), 136.52 (C-4`), 133.24 (C-3`), 131.79 (C-4, triazole ring), 124.58 (C-5`), 124.22 (C-5), 122.38 (C-6), 122.10 (C-6[°]), 120.03 (C-5, triazole ring), 118.76 (C-4), 110.28 (C-7), 26.86 (CH₂). IRspectrum (KBr, v, cm⁻¹): 3081 (Ar(=C-H)), 748 (C-S-C group), 1623 (C=C), 1458 (N=N), 1236 (C-N), 665 (Ar (=C-H) deformation vibration).

2-(4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)benzoic acid (9).

Yield 0.58 g (82%), melting point 158-160^oC, R_f 0.57 (benzene:methanol – 5:1). ¹H NMR (400 MHz, DMSO-d6+CCl₄, δ , ppm, *J*/Hz): 8.24 (1H, s, Het-H), 7.91 (1H, dd, J₁=1.56, J₂=7.67, H-6`), 7.64 (1H, td, J₁=1.75, J₂=7.60, H-4`), 7.57 (2H, m, H-3`, 5`), 7.47 (2H, m, H-4, 7), 7.24 (2H, m, H-5, 6), 4.70 (2H, s, CH₂-S). ¹³C NMR (100 MHz, DMSO-d6+CCl₄, δ , ppm): 166.56 (C-COOH) 164.28 (C-2), 152.10 (C-7^a), 142.44 (C-3^a), 142.03 (C-5`), 136.05 (C-4, triazole ring), 132.33 (C-2`), 131.08 (C-3`), 129.83 (C-1`), 129.07 (C-6`), 126.82 (C-4`), 125.47 (C-5), 124.55 (C-6), 124.16 (C-5, triazole ring), 118.71 (C-4), 110.25 (C-7), 26.96 (CH₂). IR-spectrum (KBr, v, cm⁻¹): 3142 (Ar(=C-H)), 1602 (C=C), 1583 (N=N), 1452 (=C-H), 1237 (C-N), 693 (Ar (=C-H) deformation vibration).

3. Results and discussion

We carried out cycloaddition reactions in the presence of copper (I) iodide and copper (I) bomide. Only one triazole isomer was found to form from the reaction. The reaction was carried out by heating a 1:1 mixture of 2-propargylthiobenzoxazoline and various substituted aromatic azides in the presence of a small amount of copper(I) iodide and copper(1) bromide as catalyst in a toluene solution at a temperature of 110° C for 5 hours:

The progress of the reaction was monitored by thin layer chromatography. A benzene:methanol (5:1) system was used as an eluent. As a result, the corresponding 1,4-disubstituted triazole derivatives (**3-9**) were isolated in high yields (68-88%).

Egypt. J. Chem. 67, No. 9 (2024)

Table 1. Some physico-chemical data of the obtained hybrid molecules (3-9).

*System: benzene: methanol - 5:1.

 $C_{17}H_{11}N_4SO_3$

Η

We have chosen the method of obtaining solvent toluene, catalyst copper (I) iodide and copper (I) bromide as optimal conditions. By this method, the reaction was carried out at the boiling temperature of toluene for 5 hours. As a result, the corresponding 1,4-

COOH

Η

7

9

substituted triazole derivatives (**3-6**) were isolated in high yields (68-87.5%). The cyclization of 2propargylthiobenzoxazoline with *meta*nitrophenylazide showed the highest reaction yield of 87.5% (after recrystallization).

158-160

0.57

Table 2. The multiplicity of the corresponding protons (δ , ppm) in the ¹H NMR-spectrum of the obtained compounds (**3-9**)

$S-CH_2$	Ar-H	Het-H	Other
			groups
4.70 (2H,	7.74 (3H, m, H-4,2`,6`), 7.29 (5H, m, H-5,6,7,3`,5`)	8.99 (1H, s)	
s)			
4.70	8.36 (2H, d, J=9.2, H-3`,5`), 8.20 (2H, d, J=9.35, H-2`,6`), 7.57	8.94 (1H, s)	
(2H, s)	(1H, m, H-7), 7.47 (1H, dd, J ₁ =1.49, J ₂ =7.08, H-4), 7.24 (2H,		
	m, H-5,6)		
4.69	8.08 (2H, d, J=8.83, H-3`,5`), 7.95 (2H, d, J=8.96, H-2`, 6`),	8.78 (1H, s)	
(2H, s)	7.57 (1H, m, H-7), 7.47 (1H, dd, J ₁ =1,45, J ₂ =7.02, H-4), 7.24		
	(2H, m, H-5, 6)		
4.70	8.59 (1H, d, J=2.67, H-3`), 8.32 (2H, m, Het-H, H-5`), 7.80	8.32 (2H, m,	
(2H. s)	(1H, d, J=8.70, H-6`), 7.60 (1H, m, H-7), 7.44 (1H, m, H-4),	Het-H. H-5`)	
	7.28 (2H, m, H-5.6), 4.70 (2H, s, CH ₂ -S)	,	
. = 0			
4.70	8.24 (1H, d, J=1.67, H-5 [°]), 8.03 (1H, s, H-3 [°]), 7.67 (1H, m, H-	8.47 (1H, s)	2.31 (3H,
(2H, s)	6 [°]), 7.56 (1H, m, H-7), 7.47 (1H, m, H-4), 7.24 (2H, m, H-5,6)		s, Ar- <u>CH</u> 3)
4.67	7.23 (2H, m, H-5, 6), 7.47 (1H, dd, J ₁ =2.01, J ₂ =7.47, H-4), 7.57	8.80 (1H, s)	
(2H, s)	$(1H, dd, J_1=1.30, J_2=6.50, H-7), 8.14 (1H, d, J=2.61, H-2),$		
	7.88 (1H, dd, J ₁ =2.53, J ₂ =8.77, H-6`), 7.65 (1H, d, J=8.70, H-		
	5`)		
4.70	7.91 (1H, dd, $J_1=1.56$, $J_2=7.67$, H-6 [`]), 7.64 (1H, td, $J_1=1.75$,	8.24 (1H, s)	
(2H, s)	J ₂ =7.60, H-4 [`]), 7.57 (2H, m, H-3 [`] , 5 [`]), 7.47 (2H, m, H-4, 7).	、 · · /	
	7.24 (2H, m, H-5, 6)		
	$\begin{array}{c} \text{S-C}\underline{\text{H}}_2\\ \hline 4.70 \ (2\text{H}, \text{s})\\ \hline 4.70 \ (2\text{H}, \text{s})\\ \hline 4.69 \ (2\text{H}, \text{s})\\ \hline 4.69 \ (2\text{H}, \text{s})\\ \hline 4.70 \ (2\text{H}, \text{s})\\ \hline 4.70 \ (2\text{H}, \text{s})\\ \hline 4.67 \ (2\text{H}, \text{s})\\ \hline 4.70 \ (2\text{H}, \text{s})\\ \hline 4.70 \ (2\text{H}, \text{s})\\ \hline 4.70 \ (2\text{H}, \text{s})\\ \hline \end{array}$	S-C <u>H</u> 2 Ar-H 4.70 (2H, s) 7.74 (3H, m, H-4,2`,6`), 7.29 (5H, m, H-5,6,7,3`,5`) 8.36 (2H, d, J=9.2, H-3`,5`), 8.20 (2H, d, J=9.35, H-2`,6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J ₁ =1.49, J ₂ =7.08, H-4), 7.24 (2H, m, H-5,6) 4.69 8.08 (2H, d, J=8.83, H-3`,5`), 7.95 (2H, d, J=8.96, H-2`, 6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J ₁ =1,45, J ₂ =7.02, H-4), 7.24 (2H, m, H-5, 6) 4.69 8.08 (2H, d, J=8.83, H-3`,5`), 7.95 (2H, d, J=8.96, H-2`, 6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J ₁ =1,45, J ₂ =7.02, H-4), 7.24 (2H, m, H-5, 6) 4.70 8.59 (1H, d, J=2.67, H-3`), 8.32 (2H, m, Het-H, H-5`), 7.80 (1H, d, J=8.70, H-6`), 7.60 (1H, m, H-7), 7.44 (1H, m, H-4), 7.28 (2H, m, H-5,6), 4.70 (2H, s, <u>CH2</u> -S) 4.70 8.24 (1H, d, J=1.67, H-5`), 8.03 (1H, s, H-3`), 7.67 (1H, m, H-6`), 7.56 (1H, m, H-7), 7.47 (1H, m, H-4), 7.24 (2H, m, H-5,6) 4.67 7.23 (2H, m, H-5, 6), 7.47 (1H, dd, J ₁ =2.01, J ₂ =7.47, H-4), 7.57 (1H, dd, J ₁ =1.30, J ₂ =6.50, H-7), 8.14 (1H, d, J=2.61, H-2`), 7.88 (1H, dd, J ₁ =2.53, J ₂ =8.77, H-6`), 7.65 (1H, d, J=8.70, H-5`) 4.70 7.91 (1H, dd, J ₁ =1.56, J ₂ =7.67, H-6`), 7.64 (1H, td, J ₁ =1.75, J ₂ =7.60, H-4`), 7.57 (2H, m, H-3`, 5`), 7.47 (2H, m, H-4, 7), 7.24 (2H, m, H-5, 6)	S-CH2Ar-HHet-H4.70 (2H, s)7.74 (3H, m, H-4,2`,6`), 7.29 (5H, m, H-5,6,7,3`,5`)8.99 (1H, s)4.70 (2H, s)8.36 (2H, d, J=9.2, H-3`,5`), 8.20 (2H, d, J=9.35, H-2`,6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J_1=1.49, J_2=7.08, H-4), 7.24 (2H, m, H-5,6)8.94 (1H, s)4.69 (2H, s)8.08 (2H, d, J=8.83, H-3`,5`), 7.95 (2H, d, J=8.96, H-2`, 6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J_1=1.45, J_2=7.02, H-4), 7.24 (2H, m, H-5,6)8.78 (1H, s)4.69 (2H, s)8.08 (2H, d, J=8.83, H-3`,5`), 7.95 (2H, d, J=8.96, H-2`, 6`), 7.57 (1H, m, H-7), 7.47 (1H, dd, J_1=1.45, J_2=7.02, H-4), 7.24 (2H, m, H-5,6)8.78 (1H, s)4.70 (2H, s)8.59 (1H, d, J=2.67, H-3`), 8.32 (2H, m, Het-H, H-5`), 7.80 (1H, d, J=2.67, H-3`), 8.32 (2H, m, Het-H, H-5`), 7.80 (2H, s)8.32 (2H, m, Het-H, H-5`)4.70 (2H, s)8.24 (1H, d, J=1.67, H-5`), 8.03 (1H, s, H-3`), 7.67 (1H, m, H- 6`), 7.56 (1H, m, H-7), 7.47 (1H, dd, J_1=2.01, J_2=7.47, H-4), 7.57 (2H, s)8.80 (1H, s)4.67 (2H, s)7.23 (2H, m, H-5, 6), 7.47 (1H, dd, J_1=2.01, J_2=7.47, H-4), 7.57 (1H, dd, J_1=1.30, J_2=6.50, H-7), 8.14 (1H, d, J=2.61, H-2`), 7.88 (1H, dd, J_1=2.53, J_2=8.77, H-6`), 7.65 (1H, d, J=8.70, H-5`)8.80 (1H, s)4.70 (2H, s)7.91 (1H, dd, J_1=1.56, J_2=7.67, H-6`), 7.64 (1H, td, J_1=1.75, J_2=7.60, H-4`), 7.57 (2H, m, H-3`, 5`), 7.47 (2H, m, H-4, 7), 7.24 (2H, m, H-5, 6)8.24 (1H, s)

82

Structure of the resulting triazole derivatives confirmed by IR, ¹H and ¹³C NMR spectra. In ¹H NMR spectrum (DMSO-d6+CCl₄) of 2-(((1-(4-nitro)-1H-1,2,3-triazol-4-yl)methyl)thio)-benzo[d]oxazole (4), protons of the methylene group connecting the triazole ring are in a relatively weak area - at 4.70 ppm as twoprotonic singlet (2H, s, S-CH₂). Protons of the benzoxazole ring of molecule are: an one-protonic multiplet at 7.57 ppm (1H, m, H-7), one-protonic dublet of dublets at 7.47 (1H, dd, J₁=1.49, J₂=7.08, H-4), and two-protonic multiplet at 7.24 ppm (2H, m, H-5,6), signals of protons of 4-nitrophenyl group are found at 8.36 ppm (2H, d, J=9.2, H-3`,5`) and 8.20 ppm (2H, d, J=9.35, H-2`,6`). The proton in the triazole ring (Het-H) has a chemical shift as oneprotonic singlet in a rather weak field - 8.94 ppm (1H, s).

4. Conclusions

Thus, as a result of the conducted research, new benzoxazole-triazole hybrid molecules 3-9 were synthesized on the basis of Cu-catalyzed 1,3-bipolar cycloaddition reactions, which are very important for synthetic organic chemistry. These substances are targeted synthesis products. The structure of the synthesized compounds was proved using modern physical research methods: IR- and ¹H NMRspectroscopy. The conducted researches are important for the determination of the alternative synthesis, reactivity structure and of tricyclic 2mercaptobenzoxazole and their new derivatives, as well as for the creation of new biologically active substances.

5. Conflicts of interest

There are no conflicts to declare.

6. Acknowledgment

We thank for financial support of the Ministry of Innovative Development of Uzbekistan (Grant \mathbb{N}° F-FA-2021-408 "Study of the laws of introduction of pharmacophore fragments into the molecule on the basis of modern cross-coupling and heterocyclization reactions").

7. References

1. Pu Xiang, Tian Zhou, Liang Wang, Chang-Yan

Sun, Jing Hu, Ying-Lan Zhao and Li Yang. Novel benzothiazole, benzimidazole and benzoxazole derivatives as potential antitumor agents: synthesis and preliminary *in vitro* biological evaluation. *Molecules*, 2012, 17, 873-883.

 Satyanarayana Yatam, Surender Singh Jadav, Rambabu Gundla, Krishna Prasadh Gundla, Gangireddy Madhusudhana Reddy, Mohamed Jawed Ahsan, and Jithendra Chimakurthy. Design, synthesis and biological Evaluation of 2 (((5-aryl-1,2,4-oxadiazol-3yl)thio)benzo[d]oxazoles: New antiinflammatory

and antioxidant agents. *ChemistrySelect*, 2018, 3, 10305-10310.

- Ilkay Yildiz-Oren, Betul Tekiner-Gulbas, Ismail Yalcin, Ozlem Temiz-Arpaci, Esin Aki-Sener, Nurten Altanlar. Synthesis and antimicrobial activity of new 2-[p-substituted-benzyl]-5-[substituted-carbonylamino] benzoxazoles. Arch. Pharm. Med. Chem. 2004, 337, 402-410.
- Firyal W. Askar, Huda A. Hassan, Nahida A. Jinzeel. Synthesis of Some Heterocyclic Compounds Derived from 2-Mercapto Benzoxazole. Baghdad Science Journal, 2013, 10 (3), 766-778.
- Jian-Quan Weng, Xing-Hai Liu, Hua Huang, Cheng-Xia Tan and Jie Chen. Synthesis, structure and antifungal activity of new 3-[(5-aryl-1,3,4oxadiazol-2-yl)methyl]benzo[d] thiazol-2(3H)ones. *Molecules*, 2012, 17 (1), 989-1001.
- B. Sathish Kumar, B. S. Veena, P. V. Anantha Lakshmi, Kamala L., Sujatha E. Synthesis and Antimicrobial Activity of Novel 1,4,5-Triphenyl-1H-Imidazol-[1,2,3]-Triazole Derivatives // Rus. J. Bioorg. Chem., 2017, Vol. 43, No. 5, P. 589-594.
- Saloni Kakkar, Sanjiv Kumar, Balasubramanian Narasimhan, Siong Meng Lim, Kalavathy Ramasamy, Vasudevan Mani and Syed Adnan Ali Shah // Design, synthesis and biological potential of heterocyclic benzoxazole scaffolds as promising antimicrobial and anticancer agents. *Chemistry Central Journal* (2018) 12:96.
- Serdar Ünlü, Sultan Nacak Baytas, Esra Kupeli, Erdem Yesilada. Studies on Novel 7-Acyl-5chloro-2-oxo-3H-benzoxazole Derivatives as Potential Analgesic and Anti-Inflammatory Agents. Arch. Pharm. Med. Chem. 2003, 336, 310-321.

- Benazzouz A., Boraud T., Dubedat P., Boireau A., Stutzmann J.M., Gross C. Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. *Eur. J. Pharmacol.*, 1995, Vol.284, Issue 3, P.299–307.
- Patent WO2011047390A3 (USA) / Smith P.J., Ward D.N. // Heterocyclic benzoxazole compositions as inhibitors of hepatitis C virus. Published on 21.04.2011.
- Aflyatunova R.G., Babakhanova Kh.R., Aliev N.A. Benzoxazolinones. VI. Reaction of benzoxazolinone and benzoazolinethione with substituted u-halocarbonyl compounds // Chem. Nat. Compd., 1987, Vol.23, Issue 3, P.340-344.
- Chilumula N.R., Gudipati R., Ampati S., Manda S., Gadhe D. Synthesis of some novel methyl-2-(2-(arylideneamino)oxazol-4-ylamino)benzoxazole-5-carboxylate derivatives as antimicrobial agents. *Int. J. Chem. Res.*, 2010, Vol.1, Issue 2, P.1–6.
- Ryu C.K., Lee R.Y., Kim N.Y., Kim Y.H., Song A.L. Synthesis and antifungal activity of benzo[d]oxazole-4,7-diones. *Bioorg. Med. Chem. Lett.*, 2009, Vol.19, Issue 20, P.5924–5926.
- Ananya Srivastava, Leena Aggarwal, and Nidhi Jain // One-pot sequential alkynylation and cycloaddition: Regioselective construction and biological evaluation of novel benzoxazoletriazole derivatives. ACS Comb. Sci., 2015, 12, 17(1):39-48.
- Holla B.S., Poojary K.N., Rao Sooryanarayana B., Shivananda M.K. New bisaminomercaptotriazoles and bistriazolothiadiazoles as possible anticancer agents. *Eur. J. Chem. Med.*, 2002, 37 (6), 511-517.
- Mohi A.T., Al-Rubaye H. I., Askar F. W., Abboud H.J. Synthesis, Theoretical and Antimicrobial Activity Study of New Benzimidazole Derivatives. *Egypt. J. Chem.*, 2020, Vol. 63, No.8, P.2877-2886.
- Abdurazakov A.Sh., Saidov S.S., Okmanov R.Ya., Kubaev Sh.Kh., Elmuradov B.Zh., Alternative and efficient method for the preparation of 2-acetamidobenzimidazoles. *Egypt. J. Chem.*, 2021, Vol. 64, No. 5, P.2247-2252.
- Nadia H. Metwally, Galal H. Elgemeie and Fatma G. Fahmy, Green synthesis: Antimicrobial activity of novel benzothiazole-bearing coumarin

derivatives and their fluorescence properties, *Egypt. J. Chem.* 2022, Vol. 65, No. 2, P. 679 - 686.