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Abstract 
To enhance a photovoltaic system's performance, it is important to understand the electrical characteristics of its 
main components: photovoltaic modules and batteries. Models can simulate these components, but often require 
knowing specific parameters. Batteries are most complex as they alone deviate from ideality. The performance of 
batteries is primarily influenced by various factors such as electrolyte concentration, temperature, internal 
resistance, charging/discharging rate, and state of charge. Therefore, it is crucial to accurately understand battery 
behavior throughout operation. While electrolyte concentration is the most effective indicator of state of charge, it 
is difficult to measure directly in photovoltaic systems. Thus, voltage can be considered a good indicator of state 
of charge and battery behavior. Understanding battery behavior is vital for accurate modeling.  
Models' electric characteristics were assessed and derived as functions of state of charge using curve fitting to 
represent real performance without simplicity loss. This paper compares the improved Thévenin model to the 
Partnership for a New Generation of Vehicle (PNGV) model for 200 Ah lead-acid batteries. It also aims to link 
battery capacity/state of charge accurately to voltage by validating PNGV's 3% root-mean-square error (RMSE). 
While modifying Thévenin expressed dynamics, it did not fit the data below 50% state of charge appropriately. 
PNGV experimentally validated for real-time use discharging to 20% state of charge, accurately expressing 
behavior across the range. 
Keywords: lead acid battery; Equivalent circuit model; PNGV model; Thévenin model; Discharge mode. 

1. Introduction 

The provision of electricity has recently turned 

into a necessity for the ongoing survival and growth 

of emerging communities. Promoting the use of 

alternative energy sources, like solar energy, has 

been promising especially when considering Egypt's 

high levels of radiation. Photovoltaic systems are the 

most favorable environmental-friendly sources 

constructed to fulfill worldwide energy requirements 

for various applications [1]. One challenge created 

by these systems is that they are highly affected to 

both the weather variations and fluctuations in the 

electricity demand. Solar collectors output electricity 

only during the sunshine period [2].  

A storage unit is the choice for achieving a 

balance between the generation of electricity and its 

use [3]. Consequently, the core components for any 

PV system are Batteries as the storage unit. 

Lead-acid batteries have become a mature 

technology and are widely used in various 

applications [4-9]due to their low cost, high 

availability, and ease of manufacturing. They remain 

the predominant energy storage and delivery devices 

used in photovoltaic (PV) systems[6, 7]. Lead-acid 

batteries come in a variety of designs, sizes, and 

voltages to meet different needs. Developments have 

yielded maintenance-free models that can operate in 

any orientation. To satisfy changing requirements, 

two lead-acid battery types emerged. Sealed lead-

acid (SLA, also called gel cell) batteries and valve-

regulated lead-acid (VRLA) batteries replaced 

traditional liquid electrolytes with moistened 

separators and added safety valves to vent gasses 

during charging and discharging [10-13].  

A lead-acid battery's dynamic behavior depends 

on its state of charge, charging/discharging rates, and 

temperature [14-17]. Modeling these dynamics is 

complex, as is determining model parameters. The 

difference between electromotive force and terminal 

voltage stems from polarization effects, including 

ohmic voltage drop and overvoltage. Ohmic drop 

results from resistances in active materials, electrode 

grids, and porous separators. Overvoltage represents 

the extra energy needed for electrochemical reactions 
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to proceed at desired rates. Thus, the battery voltage 

is expressed as follows: 

𝑽 =  𝑽𝒐 + I × R                                  (𝟏) 

Where, V is the battery voltage during charge or          

discharge, Vo is the open circuit voltage at steady 

state; R is the internal resistance of the battery. I is 

the current passes from and to the battery. During 

discharge, the current has a negative value, 

indicating the flow of current out of the battery. 

Conversely, during charging, the current has a 

positive value, indicating the flow of current into the 

battery.  

Polarization varies with state of charge, current 

flow, temperature, and operating mode [16, 17]. 

Depth of discharge also affects performance 

deviations from ideal behavior. High-discharge 

applications subject batteries to partial state of 

charge cycling without full recharging, allowing 

sulfation to predominate. This forms large lead 

sulfate crystals that block active sites, decrease 

efficacy, and accelerate failure[18]. Consequently, 

terminal voltage is always lower than electromotive 

force during discharge but higher during charging. 

Due to these dynamics, modeling and parameter 

determination involve complex processes. Battery 

models can be classified by perspective 

(electrochemical, electrical, thermal, mechanical, 

interdisciplinary, depth, or technique [19-21]. 

Equivalent circuit models (ECMs) are widely used 

for modeling, simulation, and state of charge 

estimation [14, 15] without requiring an in-depth 

understanding of chemical mechanisms. They also 

avoid computational complexity by using a few 

easily measured electrical variables [22]. Over 

decades, ECMs for lead-acid batteries have 

undergone significant development. Techniques like 

neural network-based learning [23-25] and 

incorporating open circuit voltage as a state of charge 

predictor were crucial for enhancing dynamic 

performance [26-28]. Using the nonlinear 

relationship between state of charge and open circuit 

voltage further improved models [29]. ECM element 

parameter values are defined as constants, lookup 

tables, or fitted functions of state of charge and 

temperature [30].  

The simplest ECM was introduced as a linear 

model by Kim and Ha [31]. Numerous proposals 

followed, including the common Thévenin ECM 

(Figure 1) providing a straightforward representation 

of battery voltage (Ub). It incorporates no-load 

voltage (UOC), internal resistance (Ro), and battery 

overvoltage (represented by a parallel capacitor-

resistor combination, Rov//Cov). However, these 

values are not truly constant but vary with state of 

charge, capacity, charge/discharge rates, age, and 

temperature. Therefore, a more comprehensive 

model was developed to accurately capture lead-acid 

battery dynamic performance [16, 31]. 

 
Figure 1: Thévenin equivalent circuit model. 

 

An enhanced Thévenin battery model has been 

created to provide a more accurate portrayal of 

battery behavior through accounting for nonlinear 

characteristics dynamically [16, 32, 33]. This 

advanced model characterizes the internal resistance, 

self-discharge resistance, and overcharge resistance 

as variables dependent upon the state of charge. 

Additionally, the charging and discharging processes 

are separately defined, as delineated in Figure 2. This 

nuanced approach offers heightened fidelity 

compared to predecessor models that treated 

parameters as static [16, 32, 33]. By embracing 

nonlinearity and distinguishing charging from 

discharging, the improved model offers a more 

robust framework for simulating real-world battery 

performance over diverse operating conditions [14, 

34, 35]. 

 

Figure 2: Improved Thévenin model for Lead acid 

battery. 

 

To better model the kinetic voltage behavior of 

batteries (such as charge transfer, diffusion within 

electrodes and electrolytes, ion migration, and 

concentration gradients), improved "dynamic" 

equivalent circuit models (ECMs) incorporate 

additional electric circuit elements like resistors, 

capacitors, and conductors [34, 36]. It is a common 

practice to include multiple parallel resistor-

capacitor (R-C) combinations to satisfactorily 

represent the voltage behavior. However, relying 

solely on two R-C elements may not adequately 

capture the diverse range of voltage loss effects, in 

addition to computational costs considerations.  
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As batteries can be considered analogous to real 

capacitors serving as electrical energy storage, the 

stored charge amount can be described by the state of 

charge (SOC). Accordingly, some modification 

approaches involve a large series capacitance (C), 

such as the so-called Partnership for a New Generation 

of Vehicle (PNGV) model type. This model 

(illustrated in Figure 3) includes an open-circuit 

voltage (Uoc), a high-value series capacitor (Co), and a 

resistor (Ro), in addition to a parallel combination of 

Rov and Cov. The model aims to depict voltage 

variations through stored or depleted charges, 

specifically modeling Faradaic processes that account 

for battery electrochemistry simulations [14, 37]. 

 

Figure 3: Equivalent circuit of the PNGV model. 

 

This study will conduct a comparative analysis of 

the modified Thévenin and PNGV battery models. 

The analysis will include an evaluation of the model 

parameters and validation of each model using 

experimental data from a 200 Ah lead-acid battery. 

Validation will also utilize the manufacturer's 

technical specifications.  

The modified Thévenin and PNGV models will 

be simulated and compared to experimental 

discharge curves obtained for discharge rate of C/20. 

Model parameters will be extracted by fitting the 

simulations to the experimental data. Key metrics 

like capacity, internal resistance and voltage 

characteristics will be evaluated and compared 

between the two models and experimental results. 

Model accuracy and robustness will be assessed 

based on parameter estimation errors and goodness 

of fit statistics.  

The results will provide insights into the most 

suitable modeling approach for the given battery 

specifications and intended application. With accurate 

modeling, optimal control and utilization strategies 

can be developed for maximizing service life and 

performance of lead-acid batteries in stationary energy 

storage systems. 

 

2. Methods 

This section will outline the methodology, 

experimental protocols, and model validations using 

real battery data.  

 

3. Experimental Set-up 

Parameters for the equivalent circuit models 

(ECMs) were determined through pulse-discharge 

testing of a lead acid battery within a state of charge 

(SOC) range of 100-20%. The battery under 

examination is a gel-type lead-acid battery with a 

nominal capacity of 200 Ah at the C/20 discharge 

rate and a nominal voltage of 12 V.  

Batteries were charged through a photovoltaic 

system (shown in Figure 4) consisting of:  

• 2-solar panels 140 W Sunset 1406 (Isc 8.3 A, Voc 

21.8 V) and  

• TAROM 4545 charge controller [12/24 V– 45 A]   

• 12 V, 0.6 kW SUVPR inverter; converted the 

direct current to alternating current.  

 

3.1. Discharging methodology: 

 Before starting discharging process, the battery 

was charged to approximately 100% state of charge 

via the solar panels during daytime (8am-3pm) at 

current range of (6-9 A) and allowed to rest for 24 

hours before testing commenced. Discharging 

processes were operated used AC electric lamps with 

120 W. 

 

 

Figure 4: Schematic diagram for Solar PV system 
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3.2.  Model Validation using Real Battery Data 

The battery modeling equations are primarily 

carried out in terms of the SOC, and the battery 

terminal voltage equation is determined according to 

the equivalent circuit of the tested models. The state 

of charge is quantified as a percentage as follows [32]: 

SOC =  SOCo + [
1

Cn

 ∫ ±Ib

t

0

. dt] × 100               (2) 

Where SOCo represents the initial state of charge 

in percentage, Cn indicates the nominal capacity in 

amp-hours, Ib denotes the battery current in amperes, 

which is considered positive during charging and 

negative for discharging, and t represents the charge 

or discharge time. 

The parameters for these ECMs were determined 

through a pulse-discharge test conducted within a 

SOC range of 100-20%. For simplicity, the circuit 

parameters will be elucidated for only one discharge 

rate, C/20, presented in Figure 5. Figure 5a 

represents the battery voltage measured during 

discharge pulse tests performed according to the 

sequence: 15-minute discharge with a current of Ib= 

10 A, followed by a 45-minute recovery period. 

Figure 5b highlights both the diffusion control 

(concentration-polarization) region in addition to the 

steady state region upon pulsed discharging of the 

battery. Figure 5b magnifies the battery terminal 

voltage during different distinct stages; the discharge 

pulse intervals, and rest interval. According to Figure 

5b, the rest interval is divided into three stages: 

The first stage, named as IR jump, represents the 

rapid increase in potential just after removing the 

load and reflects the effect of internal resistance or 

Ro. 

The second stage, denoted as Uov, represents the 

gradient increase in potential and reflects the 

diffusion effect represented by a parallel capacitor-

resistor combination, Rov//Cov. 

The third stage represents the open circuit voltage 

at the steady state. 

 

4.  Results and Discussion 

4.1. The improved Thévenin model 

The first model presented is a dynamic approach 

to understanding lead-acid batteries, as an expansion 

of the Thévenin model that considers the nonlinear 

behavior of the electric parameters of the overvoltage 

processes, represented by an overvoltage capacitor in 

parallel with a single polarization resistor. The 

terminal voltage (Ub) is expressed according to 

equation 3.  

𝑼𝒃 = 𝑼𝒐𝒄−𝑰𝒃𝑹𝒐 − 𝑼𝒐𝒗                                     (𝟑)   

𝑼𝒐𝒗 =  𝑰𝒃𝑹𝒐𝒗. ⌈𝟏 − 𝒆
(−

𝒕
𝑹𝒐𝒗.𝑪𝒐𝒗

)
⌉                      (𝟒) 

 

Where, Ub represents the terminal discharge 

voltage, Uoc represents the open circuit voltage, and 

Uov represents the overvoltage across the resistor-

capacitor element (Rov//Cov). To validate the model, 

the terminal battery voltage will be simulated 

through the determination of the parameters of the 

considered ECM (Ro, Rov, Cov) from pulse-discharge 

tests. The parameters curves vs. SOC will be fitted, 

producing equations with SOC that will be 

incorporated into the corresponding simulation 

model as follow. 

 

 
 

 

Figure 5: (a) Pulse discharge at C/20/10 A for 200 

Ah Lead-acid battery (b) the battery terminal 

voltage and the applied current showing the 

discharge pulse intervals, and rest interval which 

include IR shift and the diffusion-controlled region 

and the steady state region during rest intervals. 

 

4.2.   Estimation of model parameters 

4.2.1. Self-discharge resistance (Rsd) 

The battery undergoes self-discharge when left 

for a long period under rest conditions. To configure 

the self-discharge resistance(Rsd), the self-discharge 
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current (Isd) is calculated from the data of the 

capacity loss within the storage time at 20oC given 

by the manufacturer [32], [38]. For A400 

Sonnenschein batteries, the self-discharging rate is 

estimated to be less than 0.05% per day [38]. The 

self-discharge current Isd at 20°C is assumed to be 

constant within each interval of the storage time [32]. 

Consequently, it can be explained as follows: 

𝑰𝒔𝒅 =
∆𝑺𝑶𝑪

𝟏𝟎𝟎
.
𝑪𝒏

∆𝒕
                                              (𝟓)  

ΔSOC is the decrease in the state of charge 

percentage of the battery when left under rest for time 

interval Δt, Cn is the rated battery capacity given by 

the manufacturer. Rsd can be estimated from open 

circuit voltage as follows:  

𝑹𝒔𝒅 =
𝑼𝒐𝒄

𝑰𝒔𝒅

                                                       (𝟔) 

A plot between Rsd values and SOC is depicted 

in Figure 6 to predict their mathematical relation 

using curve-fitting technique. The relation between 

Rsd and SOC is fitted by polynomial function and is 

expressed as: 

𝑹𝒔𝒅 = 𝟑. 𝟗𝟔 + 𝟎. 𝟎𝟎𝟓 × 𝑺𝑶𝑪
− 𝟎. 𝟎𝟎𝟎𝟎𝟐𝟏𝟔 × 𝑺𝑶𝑪𝟐             (𝟕) 

Figure 6: The relation between Rsd and SOC 

 

4.3. Open circuit voltage (Uoc) 

The Open Circuit Voltage (Uoc) was measured at 

the steady state at the end of rest intervals then it was  

firstly introduced and fitted as a parameter to be 

used in both ECMs under investigations. The 

experimental data were subjected to a quadratic 

polynomial fitting and a ƒ (SOC) according to 

equation 8 

 

Uoc = 11.87  + 0.015 x SOC -0.000065 x SOC2     (8) 

The graph of Uoc fitted results (determined from 

Figure 5, black line, and polynomial fitted, red line) 

and SOC is shown in Figure 7. 

 

 

Figure 7: Open Circuit Voltage (Uoc) fitting curve 

with SOC 

 

4.4. Series resistance (Ro): 

The parameter denoted as the series resistance 

(Ro) represents the series resistance determined from 

the voltage step responses at the end of the 

discharging intervals as shown in Figure 5b (the first 

stage in the rest interval) 

Figure 8 illustrates the values of Ro as a function 

of SOC. Notably, series resistance values are 

constant upon discharging before 45% SOC, 

showing a significant increase up to 7 folds 

afterward, reflecting a serious effect of Ro on the 

battery potential after 40% SOC. This increase is 

correlated with the increase of the total internal 

resistance (Ohmic and polarization resistances) 

accompanied with sulfation phenomenon [18], [29] 

which commonly occurs in this SOC range. In our 

study, a reasonably approximation of the 

experimental values of Ro through exponential 

fitting was achieved, resulting in f (SOC) equation.  

 

𝑹𝒐 = 𝟎. 𝟎𝟏𝟐 + 𝟎. 𝟐𝟗 × 𝟎. 𝟗𝟐𝟓𝑺𝑶𝑪                       (𝟗)    

 

4.5. R//C network:  

The electrical circuit model incorporates the 

parallel resistor//capacitor branch (Rov//Cov) to 

consider the battery's Faradaic processes, which 

cause deviation in the battery terminal voltage away 

from its ideal value. This network can be determined 

from the gradient change in the potential (Uov) 

during the rest interval as shown in Figure 5b (the 

second stage) according to Equation 4. 

Based on the estimation of the settling time (t) of 

the voltage response, it is expected that the transients 

for all discharge rates dissipate within 5 minutes. It 

is evident that the voltage reduction occurs slower for 

lower discharge rates, resulting in longer transient 

intervals [32]. Thus, the time constant (τ) chosen for 



 R. M. Abdo et. al. 

________________________________________________________________________________________________ 

Egypt. J. Chem. 67, SI: M. R. Mahran (2024) 

32 

this analysis is 1 minute and the concentration 

overvoltage capacitance (Cov) is estimated according 

to the following equations: 

 

 

Figure 8: Variation of series resistance (Ro) at 

different SOC. 

 

𝐂𝒐𝒗 =
𝒕

 𝟓𝑹𝒄
 =  

𝝉

𝑹𝒄
                                            (𝟏𝟎)  

 

Rc depicts the resistance of the battery circuit (Ro 

and Rov) and is determined according to the 

following equation: 

 

𝑹𝒄 =
𝑹𝒐 𝐱 𝑹𝒐𝒗

𝑹𝒐 + 𝑹𝒐𝒗

                                                 (𝟏𝟏) 

Using curve-fitting technique, Rov and Cov can be 

described as: 

𝐑𝒐𝒗 = 𝟎. 𝟎𝟎𝟗 + 𝟏. 𝟗𝟓 × 𝟎. 𝟖𝟕𝑺𝑶𝑪                       (𝟏𝟐)   

𝐂𝒐𝒗 =  −𝟏𝟓𝟒 +  𝟏𝟎. 𝟐𝟕 × 𝑺𝑶𝑪 − 𝟎. 𝟎𝟗𝟔𝟐𝟐 × 𝑺𝑶𝑪𝟐

+ 𝟎. 𝟎𝟎𝟎𝟐𝟕𝟔𝟓 × 𝑺𝑶𝑪𝟑          (𝟏𝟑) 

The values of Rov, Rc and Cov are shown in Figure 9. 

Figure 9: Experimental and fitted values of Rov and 

Cov as a function of SOC. 

 

• Uov simulation 

Figure 10 shows the experimental and ƒ (SOC) 

fitted data of Uov, expressed in the following equation: 

 

 Uov= 0.0935 + 18 x 0.86SOC                            (14) 

 

 

Figure 10: Experimental and fitted values of Uov as 

a function of the SOC. 

4.5.1. Validation of Thévenin model 

Figure 11 illustrates the validation results of the 

improved Thévenin battery model that shows a 

comparison between the simulated terminal voltage 

(Ub) and the actual discharge experimental data. The 

experimental values were remarkably approximated 

by fitting equations (number 8, 9, and 14) that are 

dependent on the state of charge (SOC). The 

remarkable equations were incorporated into the 

simulation model, for validation of model, matching 

it with the experimental results. From Figure 11, it 

seems that the improved Thévenin model cannot 

entirely simulate non-linear processes and transient 

response of the battery. This model shows a 

limitation at low SOC values, and hence, cannot 

correctly estimate the battery voltage upon 

discharging. The ECM parameters did not define to 

represent the battery real performance, limiting the 

model ability to run in matching the experimental 

results especially at SOC values less than 40%. The 

absolute error is presented in the inset inside Figure 

11, and the root-mean-square error of this model is 

around 6%.  
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Figure 11: Validation results of improved 

Thévenin model. 

 

To overcome the limitation of the improved 

Thévenin model at the low SOC region, a series 

capacitance is added to create what is known as the 

PNGV model. 

 

4.6. Validation of the PNGV model 

The second model is the PNGV model depicted 

in Figure 3, which includes a large series capacitance 

(Co) incorporated to the improved Thévenin model. 

The series capacitance is representing the distinction 

between stored/drained charges which impacts the 

internal voltage based on Uco and capacity 

components. The terminal battery model for 

discharging process is expressed as follows: 

 

Ub= Uoc - IbRo- Uov - Uco                           (15) 

 

4.6.1. Estimation of model parameters 

Uoc, Ro and R//C are common parameters in both 

the improved Thévenin and the PNGV models, 

consequently; only Co will be estimated herein. 

 

4.6.1.1. Series capacitance identification (Co) 

This ECM introduces a novel approach to 

modeling voltage fluctuations during battery cycling 

caused by variation of the amount of charges, by 

means of an ideal capacitor. Unlike previous models 

that utilized constant or controlled voltage sources, 

this model incorporates the limitations of real battery 

capacity by introducing an ideal capacitor in series 

with a constant ideal voltage source. The value of this 

capacitance (Co) represents the slope between charge 

variation (ΔQ) and voltage (ΔU), which can be 

calculated according to equation 16. 

𝐂𝐨 =  
𝚫𝐐

𝚫𝐔𝐜𝐨

=
𝐈𝐛.𝚫𝐭

𝚫𝐔𝐜𝐨

                                     (𝟏𝟔) 

In this study, ΔQ is expressed as the product of 

multiplying the battery current (Ib = 10 A) and the time 

span along which the current is applied (Δt= 900 s). 

The value of ΔUoc is evaluated by calculating the 

difference of voltages between two consecutive 

pulses, involving the battery recovery [14]. Figure 12 

displays the extracted values of Co at different SOC 

from the pulse discharge curve. These values exhibit a 

decreasing trend upon discharging and regression (f 

(SOC) equation that can be derived through nonlinear 

fitting as follows [14].  

 

𝐂𝒐 = 𝟏𝟏𝟐𝟒𝟎𝟎𝟎 −
𝟏𝟎𝟔𝟎𝟓𝟎𝟎

(𝟏 + (
𝑺𝑶𝑪
𝟑𝟔. 𝟖

)
𝟐𝟗.𝟐

)

𝟎.𝟎𝟕𝟐
      (𝟏𝟕) 

𝐔𝐜𝐨 =  
𝐈𝐛. 𝚫𝐭

𝐂𝒐  
                                                            (𝟏𝟖) 

 

 

Figure 12: Variation of series capacitance (Co) at 

different SOC. 

 

4.6.2. Validation of PNGV model 

Figure 13 shows the comparison between the 

simulated terminal voltage (Ub) and the actual 

discharge experimental data as a validation result of 

PNGV battery model. The experimental values were 

remarkably approximated by fitting equations that 

are dependent on SOC which were incorporated into 

the simulation model. The validation of model 

matches the experimental results ensuring its 

accuracy and reliability much better than the 

improved Thévenin model. PNGV is able to signify 

the battery Ohmic voltage drop, the transient voltage 

of diffusion and charge transfer processes and the 

variation of the internal battery voltage upon cycling 

due to SOC changes. The absolute error is presented 

in the inset insides, and the root-mean-square error 

this model is around 3%. 
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Figure 13: Validation results of the PNGV ECM 

showing the simulated terminal voltage (Ub) 

compared with the discharge experimental data at 

C/20/10 A.  

 

5. Conclusion: 

This paper has presented a comparative study of 

two different equivalent circuit models: the improved 

Thévenin model and the Partnership for a New 

Generation of Vehicle (PNGV) model. The modeling 

process began with a detailed analysis of 

experimental discharge tests. Data from pulsed 

discharge tests were used to obtain each battery 

model's parameters across a wide state of charge 

performance range. While the enhanced Thévenin 

model successfully simulated the overall battery 

behavior, its accuracy was notably compromised, 

particularly at lower states of charge. Conversely, the 

PNGV model was able to simulate the actual battery 

response with excellent accuracy. The PNGV model 

was successfully verified through practical testing, 

simulating the discharge voltage of the battery across 

its entire state of charge range with low error (RMSE 

≈3 %). This emphasizes the PNGV model's superior 

performance, especially in comparison to the 

Thévenin model, which faced challenges specifically 

in accurately representing lower state of charge 

values. Consequently, adding a large series capacitor 

considerably enhanced the model topology, 

signifying its reliability despite extensive variations 

in current and voltage. 

 

6. Nomenclature 

PNGV model The Partnership for a New 

Generation of Vehicle 

model 

RMSE Root mean square error 

percent 

PV systems Photovoltaic systems 

SLA batteries Sealed lead-acid batteries  

VRLA batteries Valve-regulated lead-acid 

batteries 

ECMs Equivalent circuit models  

SOC Battery’s state of charge 

AC Alternative current 

Isc   Short circuit current of PV 

Voc Open circuit voltage of PV 

Rsd Self-discharge resistance  

Isd Self-discharge current  

τ Time constant  

Ub Battery discharge voltage 

UOC Battery open-circuit voltage 

Ro Internal resistance 

Co Series capacitor  

Cn Nominal capacity 

Ib Battery current 

Rov//Cov Parallel capacitor-resistor 

combination 
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