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Abstract 

In W-W El Minya district, 33 groundwater samples were collected, analyzed, and rated using various indices to assess water 

quality. The samples exhibited weakly acidic to faintly alkaline pH levels, excessive mineralization, weak to moderate salinity, 

and high hardness. The prevailing ions in the samples were Cl, Na, HCO3, and SO4 due to silicate weathering and hydrolysis of 

evaporite minerals. However, the World Health Organization's (WHO) recommended limits for Ca, Na, and Cl contents were 

exceeded in some samples. Piper's graph showed that all samples were of the SO4. Na-Cl type. Among heavy metals, Cd was 

the most prevalent, with 36% of samples exceeding the WHO safe level and 18% exceeding Food and Agriculture Organization 

(FAO) permissible values. The Heavy Metal Pollution Index (HPI) indicated that 48% of samples were suitable for drinking, 

while the Heavy Metal Evaluation Index (HEI) showed negligible levels of heavy metal pollution. The health risk assessment 

revealed non-carcinogenic and carcinogenic effects of Cd in the contaminated water. The Corrosion Ratio (CR) index suggested 

that metallic pipes could contaminate water with heavy metals over time. The Chloride Mass Balance (CMB) approach 

estimated that groundwater supply in the area was only 20.6% of total precipitation. To prevent adverse effects on residents' 

health, it is recommended that contaminated water be treated for cadmium pollutants.  
Keywords: Multivariate statistics; Oral non-carcinogenic effects; Oral carcinogenic effects; Corrosivity ratio; Chloride mass 
balance.

1. Introduction 

Water quality is strongly intertwined with public 

health, food supply, economic reform, ecological 

habitats, sustainable growth, and development in our 

communities [1]. Increased urbanization, building, 

farming, industrial activity, and natural cycles have 

harmed the quality of water, as well as their 

implications on human health globally [2]. A typical 

water quality analysis focuses on the purity of water 

bodies and their potential usage in industries, home 

use, drinking water, and irrigation [3, 4]. As a result, 

the water quality index (WQI) is regarded as a 

mathematical method that considerably reduces the 

complexity of raw data related to water quality and 

provides a single classification value that reflects the 

status of the quality of aquatic bodies or the level of 

contaminants [5].  

Water that is healthy to drink is essential for 

maintaining human health, so drinking water 

contamination poses a serious threat to people's health 

[6]. Freshwater forms 3% of the planet's water supply. 

Only a modest percentage (0.01%) of it is usable for 

humans [7]. Because of rapid overpopulation, 

urbanism, climate variability, the use of natural 

resources, and the desire for food, this meager amount 

of freshwater is still in severe demand [7]. With 

development comes an increase in the requirement for 

freshwater for industrial and agrarian uses, which 

could lead to a serious water crisis over the decades 

ahead [7]. The metabolism of the human body only 

requires some heavy metals in low doses, such as Cu, 

Se, and Zn [8].  There is a detrimental effect on human 

health when these elements exceed their safe limits [8, 

9].  The various diseases, such as cancer, that are 

caused by elevated levels of heavy metals have an 

increasing negative effect on health every day [8]. 

Human activities that emit heavy metals into the water 

include unregulated manufacturing operations, 
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municipal trash, and extensive uses for superfluous 

chemicals in agriculture [10].  Exposure to cadmium 

can damage the liver, blood, and bones, besides 

causing kidney disease [11].  According to health 

reports, there is ample proof that cadmium causes 

cancer [11]. 

Compared to drinking water guidelines as defined 

by WHO standards, the application of health risk 

indices has clear advantages because it considers body 

weight, metal content, and daily intake [8]. Therefore, 

estimating the human risk of Cd for children and adults 

(both cancer-causing and non-cancerous dangers) is 

vital. By evaluating the health impacts of toxic metal 

exposure to a reference dose (RfD) and cancer slope 

factors (CSF), the hazard quotient (HQ) is applied to 

define the carcinogenic and non-carcinogenic health 

impacts of toxic metals [12, 13]. Many scientists used 

the WQI and health hazard identification to gauge the 

purity of the water [5, 10, 14-23]. 

The primary purpose of this research is to evaluate 

the heavy metal content that can affect groundwater by 

comparing their concentrations to safe limits 

prescribed by the WHO and FAO [6, 24], and the safe 

limits of health risk for its usage in drinking and 

irrigation applications. In the framework of 

sustainable development through the 1.5 Feddan 

Project, the Egyptian Governorate is interested in the 

research area. 

 

2. Materials and Methods 

2.1. Location 

The research area spanned between longitudes 29o 

50ˊ- 30o 15ˊ E and latitudes 28o 10ˊ- 28o 30ˊ N, W-W 

El Minya district, Egypt, which is within the 1.5 

million Feddan project (Fig. 1). It represents the 

western lime-stone plateau; the ambient zone contains 

a stratigraphic succession built up of rock units from 

base to top: Minia, Samalut, Makattam, Moghra 

Formations, Pleistocene-Oligocene gravels, and 

Quaternary sediments (Fig. 2); [25, 26]. It derives its 

groundwater from the fractured Middle Eocene 

limestone aquifer, one of the most significant 

limestone aquifers in the Arab Republic of Egypt. 

Where the water-bearing layer is about 400m thick and 

the depth to the water table is 70–110 m (Fig. 2); [27]. 

 

2.2. Sampling and Methodology 

Thirty-three groundwater samples were picked up 

from the study area in April 2022 after being filtered 

and acidified with nitric acid (pH< 2); [28], and kept 

in close, pre-rinsed polypropylene containers (Fig. 1). 

The pH, total dissolved solids (TDS), and electric 

conductivity (EC) values were measured on-site using 

a HANNA pH-meter model HI 991300. In the 

laboratories of the National Water Research Center 

(NWRC), the principal elements and trace contents of 

the water samples under investigation were analyzed. 

The total hardness (TH) was titrated using the 

Eriochrome black T indicator and Na2-EDTA standard 

solution (0.01 M), [29]. While calcium, magnesium, 

sulfate, phosphorus, and heavy metals were measured 

using a HANNA spectrophotometer (HI 83215). 

Sodium and potassium levels were measured using a 

flame photometer (model Genway FPF-7). Carbonate 

and bicarbonate were identified using a sulfuric acid 

standard solution (0.01 N), phenolphthalein (1%) as an 

indicator for carbonate, and methyl orange (0.01%) as 

an indicator for bicarbonate [29]. Chloride was 

measured using a potassium chromate indicator 

solution and a silver nitrate standard solution [29]. The 

ionic balance error (e%) for the measured ions was less 

than 5%. 

The water quality index (WQI), developed by the 

Canadian Council, is applied to check whether water 

is fit for human, animal, and irrigation consumption 

[30]. Where its values were divided as less than 45 is 

poor,  

45–65 is marginal, 65–80 is fair, 80–95 is good, and 

95–100 is excellent [31]. 

The heavy-metal pollution index (HPI) rates the 

water's purity and suitability for drinking consumption 

regarding the metals [32]. It is computed from the 

following arithmetic equation (Eq. 1); [33]: 

 

    HPI = ∑ 𝑄𝑖𝑊𝑖/ ∑ 𝑊𝑖𝑛
𝑖=1

𝑛
𝑖=1                            (1) 

 

Wi is the weight unit; Wi = 1/Si; Si is the permissible 

limit for metal; Qi=Ci/Si*100; and Ci is the metal 

content in water samples. HPI values were categorized 

as < 25 being excellent, 26–50 being Good, 51–75 

being poor, 76–100 being very poor, and >100 being 

unsuitable for drinking [34]. 

The heavy-metal evaluation index (HEI) analyzes 

the cumulative influence of various metals on water 

purity [35]. It was estimated from this formula (Eq. 2): 

     HEI = ∑ 𝐻𝑐/𝐻𝑚𝑎𝑐𝑛
𝑖=1                                         (2) 
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Fig.1. Location map of the study area.
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Fig. 2. Geologic map and geological cross section for the research area [57, 58]. 

Hc is the metal content in water samples, and Hmac is 

the allowable limit for metal. HEI numbers were 

specified as < 10 being low, 10–20 being medium, and 

>20 being highly polluted [36]. 
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Several methods are used to estimate the potential 

health risks associated with the oral ingestion of water 

contaminants. These concepts are exemplified by the 

hazard quotients for the non-carcinogenic effects 

(HQN-C) and the carcinogenic effects (HQC) for each 

chemical, the hazard index (HI) for the non-

carcinogenic impacts in multiple pathways, and the 

target cancer risk (TCR) for pathways. All the terms 

listed above were calculated using the following 

equations: eqs. 3, 4, and 5; [37-39]. 

     

    CDIOral = C x IR /BW                                          (3) 

    HQN-C = CDIOral / RfD                                         (4) 

    HQC = CDIOral x CSF                                           (5) 

 

C is the element content in water (ppm); IR is the daily 

intake rate for adults, which is 2 L/day, and for 

children, it is 1 L/day [9, 13]. BW is the body weight, 

which is estimated to be 73 kg for adults and 32.7 kg 

for children [9, 13]. Oral reference dose is RfD for Cd 

is 0.0005 mg/kg/day, respectively [8, 13]. Cd also has 

a cancer slope factor (CSF) of 6.3 [8, 13]. 

The corrosivity ratio (CR) reflects how reactive 

groundwater is to corrosion [40, 41]. The values of 

ions are indicated in ppm in the equation applied to 

estimate CR (Eq. 6); [40, 41]. 

     

    CR=(Cl+SO4)/2(HCO3+CO3)                               (6) 

 

Chloride Mass Balance (CMB) is applied to 

quantify the recharge rate for groundwater wells in a 

dry environment, depending on the Cl content of both 

precipitation and groundwater [42]. Because Cl in the 

watershed is more stable, is constant over time, and 

only derives from direct rainfall on wells [42].  CMB 

was applied by numerous scholars [43-46]. CMB is 

estimated from the following equation (Eq. 7); [47]. 

     

     R=P*Clp/Clgw                                                    (7) 

 

R is the recharge rate (mm/yr.); P is the annual mean 

of precipitation (mm/yr.); Clp is the mean chloride 

content in rainfall (ppm); and Clgw is the average 

chloride concentration in the groundwater. The Cl 

content average in rainwater was computed using the 

formula (Eq. 8); [43]. 

 

 

 

     Cl=1.25+3/P                                                       (8) 

 

3. Result and Discussion 

3.1. Major Ions Chemistry  

Water samples' pH spanned from 6.2 to 7.94, 

fluctuating between a weakly acidic and a somewhat 

alkaline state (Table 1). According to Table 1, EC 

readings for water samples varied from 2930 to 4570 

µs/cm, which revealed that the water was excessively 

mineralized and that the concentrations were above the 

maximum allowable limit (MAC) set by FAO and 

WHO [6, 23, 48]. TDS concentrations fluctuated in the 

investigated water samples between 1784 and 3199 

ppm to vary from weakly to moderately saline [49] and 

surged on the MAC (Table 1). TH values in water 

samples varied from 373 to 805 ppm, which is 

regarded as a very hard water type (Table 1); [50]. 

Alkalinity contents in the analyzed samples fluctuated 

between 128 and 402 ppm (Table 1). 

According to the mean of the pivotal ions, 

which are 897, 652, 244, 143, 50, and 21 ppm, 

respectively, they can be sorted in descending order as 

Cl > Na > HCO3 > SO4 > Ca > Mg > K (Table 1). All 

water samples had Ca, Na, and Cl contents that were 

greater than the WHO MAC; vice versa, most samples' 

K, HCO3, and SO4 concentrations were less than the 

WHO MAC (Table 1). Therefore, Cl, Na, HCO3, and 

SO4 predominate due to evaporite mineral dissolution, 

silicate weathering, and cation exchange [51-53]. 

Additionally, K and Cl contents rose above FAO MAC 

in most water samples (Table 1). Na dominance relates 

to the fact that rainfall recharge proceeds more 

frequently than upward seepage from deeper wells 

[53-56]. The WQI findings showed that 69% of the 

samples were of fair purity quality for human drinking, 

fit for irrigation, and fit for livestock drinking (Fig. 3); 

[6, 16, 30]. 
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Table 1:  Physicochemical variables and indices in. the investigated water samples 

 

Variables Min.  Max. Mean Median Q1 Q3 
WHO 

,2022 

FAO, 

1994 

Samples exceeded the safe limits 

WHO FAO 

TºC 32 40 35 34.7 34 36     

pH 6.2 7.94 7.40 7.39 7.27 7.66 6.5-8.5 6-8.5   

EC (µS/cm) 2930 4570 3636 3630 3530 3760 1500 3000 
All Except 8 & 

9 

TDS (ppm) 1764 3199 2402 2451 2270 2541 1000 2000 
All Except 8 & 

9 

TH (ppm) 373 805 562 565 495 617 500  
Except 10, 11, 19, 

21, 23, 24 & 27 

 

Alk (ppm) 128 402 233 229 160 281     

Ca (ppm) 88 274 143 143 124 154 75 406 All  

Mg (ppm) 18 88 50 48 32 64 100 61  1-9 & 26 

Na (ppm) 366 810 652 559 510 600 250 920 All  

K (ppm) 11 28 21 22 20 24 12 78 Except 10 & 33  

CO3 (ppm) 0 0 0 0 0 0 -    

HCO3 (ppm) 156 402 244 229 195 281 250 610 18, 20-22, 30 & 32  

Cl (ppm) 729 1109 897 896 825 922 250 1063 All 2, 3, 6 & 18 

SO4 (ppm) 157 403 230 198 186 249 250 960 20, 21 & 31-33  

Al (ppm) 0 1.1 0.07 0.01 0.002 0.04 0.9 5 18  

Ba (ppm) 0.0002 0.21 0.07 0.05 0.04 0.07 1.3    

Cd (ppm) 0.001 0.04 0.01 0.002 0.001 0.01 0.003 0.01 
1, 3, 5, 7-9, 18, 19, 

24, 27, 29 & 33 

1, 3, 8, 18, 

19 & 33 

Cr (ppm) 0.0005 0.03 0.004 0.001 0.001 0004 0.05 0.1   

CO (ppm) 0 0.02 0.01 0.003 0.003 0.003 0.01 0.05 1, 3, 7, 10 & 33  

Cu (ppm) 0.001 0.46 0.05 0.02 0.003 0.05 2 0.2  18, 26 & 29 

Fe (ppm)  0.001 3.8 0.25 0.014 0.008 0.3 0.3 5 
10, 14, 18, 20, 22, 

29, 30 & 32 

 

Pb (ppm) 0.001 0.05 0.008 0.003 0.003 0.007 0.01 5 1, 8, 10, 19 & 33  

Mn (ppm) 0.005 0.202 0.036 0.022 0.005 0.05 0.4 0.2  26 

Ni (ppm)  0.0004 0.05 0.012 0.006 0.001 0.017 0.07 0.2   

Zn (ppm) 0.0002 0.12 0.02 0.01 0.001 0.03 3 2   

P (ppm) 0 0.24 0.135 0.2 0.000 0.2 0.24    
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 Fig. 4. Classification of WQI values for water samples.
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3.2. Heavy metals (HM) Evaluation 

Excessive HM content on the MAC generally has 

serious adverse health consequences for humans [10]. 

Table 1 lists the twelve metals that were investigated 

in water samples. Al contents are lower than the WHO 

MAC in water samples except for 1 sample (Table 1). 

Cd levels were significantly higher than the WHO 

MAC in 36% of samples, and according to the FAO 

MAC, they rose in almost 18% of samples; 

consequently, it has more influence on sample purity 

than the other metals (Table 1). All samples had Co 

and Pb contents within WHO MAC except for 15% 

(Table 1). Fe concentration increased on the WHO 

MAC in 24% of samples (Table 1). In 9% of water 

samples, the quantity of Cu was higher than the FAO 

MAC, whereas the amount of Mn was higher in one 

water sample (Table). Because the levels of Ba, Cr, Ni, 

Zn, and P were below the MACs, they hadn't 

influenced the water (Table 1). 

To quantify the level of heavy metals in drinking 

water, HPI and HEI are used [20]. HPI values for the 

water samples rose from 9.74 to 856.5, which were 

categorized as 33% unsuitable, 6% very poor, 6% 

poor, 48% good, and 3% exceptional (Table 2 and Fig. 

4); [34]. HEI values vacillated between 0.58 and 28, 

which were identified in the analysed samples as 85% 

low pollution, 9% medium pollution, and 6% high 

pollution (Table 2 and Fig. 4); [10, 36]. 

 

Fig. 4. HPI & HEI values classification for water samples. 
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Now that groundwater is the only substantial water 

supply in the desert territories, which are featured in 

the research area, the water supply is more crucial 

[10]. Considering that 36% of water samples were 

contaminated with cadmium, a metal that causes 

cancer, The health risk indices were applied to the oral 

exposure pathway for those waters contaminated with 

Cd to evaluate how much it would damage adults and 

children. According to HQN-C findings, 50% of the 

influenced samples are above the acceptable level (1) 

for the non-carcinogenic impact of Cd on adults and 

children (Table 2 and Fig. 5); [8, 9, 13]. All 

contaminated samples were over the guideline value 

(10–6) for carcinogenic effects of Cd on adults and 

children, according to HQC results (Table 2 and Fig. 

5); [8, 9, 13]. 

Table 2: Statistical indices values for water samples 

Indices Minimum Maximum Average 

HPI 9.739875 856.5340 179.7148 

HEI 0.578631 28.30165 5.921310 

CR 1.294759 3.886931 2.454223 

CDI Adults 0.00011 0.001096 0.0005029 

CDI Children 0.219178 2.191781 1.0058708 

HQN-C for Adults 0.000122 0.001223 0.0005614 

HQN-C for Children 0.244648 2.446483 1.1227610 

HQC for Adults 0.000690 0.006904 0.0031685 

HQC for Children 0.000771 0.007706 0.0035367 

 

 

   

Fig. 6. HQ values of oral exposure pathway for water samples polluted with Cd. 

3.3. Corrosivity Ratio (CR) 

CR assesses the rate at which water reacts with the 

metallic pipes that transport it, which produce a layer 

of rust that causes water pollution with HM [40, 41]. 

CR varied from 1.3 to 3.9 in water samples that 

exceeded the acceptable limit (1), as listed in Table 2. 

studied water considered more exposure to pollution 

with HM due to transport in metallic pipes over time 

for far distances (Table 2); [40, 41]. 

3.4. Chloride Mass Balanced (CMB) 

Based on the annual mean of precipitation and the 

average amount of Cl in rainwater and groundwater, 

CMB estimates the rate of groundwater recharge [46, 

47]. Groundwater recharge (R) in the research region 

was 4.04 mm/year and represented 20.6% of the 

annual Consequently, the rest of the rainwater 

precipitated in various forms but didn't recharge the 

groundwater [46]. 
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4. Conclusion: 

The pH of the water varied from slightly acidic to 

weakly alkaline; EC showed severely mineralized 

water that was above the MACs in all samples. The 

TDS in the water sample was classified as weakly and 

moderately saline and exceeded the MAC. The TH in 

the water samples was identified as a very hard water 

type. The contents of Ca, Na, and Cl are higher than 

the WHO MAC, and vice versa. In most samples, K, 

HCO3, and SO4 values were below the WHO MAC. 

Cl, Na, HCO3, and SO4 dominance in water samples 

indicated that evaporite dissolution, silicate 

weathering, cation exchange, and rainy recharging 

were the potential reasons. WQI established that water 

samples were appropriate for irrigation and livestock 

consumption, but their purity for human consumption 

was inferior. Cd content is more toxic than the other 

metals observed in water samples, which were 

polluted with 36% according to WHO MAC and 18% 

according to FAO limits. 48% of the samples, 

according to HPI, were suitable for potability. 

According to HEI, 85% of the water samples were low 

in HM contamination, and the remaining percentages 

varied from medium (9%) to high (6%). As Cd content 

polluted more than a third of samples, its content in 

those samples was evaluated and found to have non-

carcinogenic impacts on adults and children in 50% of 

contaminated samples. Also, it had carcinogenic 

influences on adults and children in all the polluted 

samples, according to health risk results. The studied 

water is very harmful when transported over long 

distances in metallic tubes because it reacts with the 

pipes, forming a rust coating and polluting the water 

with HM according to CR values. Because the 

recharge rate represented 20.6% of the annual 

precipitation in the studied area, groundwater recharge 

is very limited, depending on the CMB approach. It is 

recommended to treat 36% of the water to remove Cd 

to reduce the threat to the health of the study area's 

occupants. Due to the studied groundwater's 

constrained supply resources, it is advised that it be 

used carefully. 
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