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Abstract 

Create and characterize novel hydroxy propyl methyl cellulose (HPMC) -Xanthan gum ionically cross-linked hydrogel was 

the aim of the current investigation. Different xanthan gum and cross-linker ratios were used at a specific HPMC ratio to 

create the hydrogel. FTIR, Thermal analysis (TGA& DSC), SEM, and swelling degree index were used to assess the hydrogel 

that was formed. One of the factors utilized to decide that Formula HPXa 5 was the best was its high water uptake. In order to 

study the effects of HPXa 5 application on soybean plants cultivated under two irrigation regimes (D1, every 7 days, or D2, 

every 10 days), HPXa 5 was applied at ratios of 0, 2, 3, and 4 g/kg soil.  

The findings showed that plants which  received irrigation every seven days had higher growth parameters, photosynthetic 

pigments, and lower levels of osmolytes (proline), non-enzymatic antioxidants (phenolic and flavonoid compounds), 

malondialdehyde (MDA), hydrogen peroxide (H2O2), and antioxidant enzymes (catalase (CAT), peroxidase (POX), 

superoxide dismutase (SOD) and glutathione reductase (GR)) than plants that received irrigation every ten days. Regarding 

the HPMC-Xanthan gum hydrogel effect, it was clear that hydrogel application at all concentrations significantly increased 

the majority of the measured parameters (growth parameters, photosynthetic pigments, content of proline, phenolic and 

flavonoid compounds, activity of CAT, POX, SOD, accompanied by significant decreases in MDA, and H2O2   content ) in 

comparison to corresponding controls in soybean plants were irrigated every seven or ten days. It is clear that the root's dry 

weight responds to HPMC-Xanthan gum more strongly than the responds  Increases in total chlorophyll and decreases in 

MDA and H2O2 owing to 2g/kg HPMC-Xanthan gum were more pronounced in plants that received irrigation every 10 days 

than in plants that received irrigation every 7 days. It is important to note that HPMC-Xanthan gum hydrogel can be utilized 

as a useful tool to lower the amount of water needed for irrigation of soybean plants.  

Keywords: Soybean, HPMC, Xanthan Gum, ionically cross linked Hydrogel, Irrigation levels, Antioxidant system, 

Phosphated cross linked 

 

1. Introduction 

By 2030, there will be a severe water crisis due to 

increase in Global water consumption. In most parts 

of the world today, the agricultural sector uses more 

than 70% of the fresh water, which results in water 

scarcity [1,2]. At the same time, evaporation and 

runoff cause an average loss of 63% of the water 

delivered to agricultural areas [3]. Water stress 

induced several devastating effects on plants via 

disturbing various physiological and biochemical 

processes as carbon assimilation rate, leaf gas 

exchange, and photosynthesis thus reduced the plant 

growth [4]. In addition, excessive reactive oxygen 

species (ROS) produced by water stress led to 

oxidative stress, which is harmful to proteins, lipids, 

carbohydrates, photosynthetic pigments, and nucleic 

acids [5]. 

 Therefore, plants developed an antioxidant 

defence system (both enzymatic and non-enzymatic) 

detoxifying and balancing excess ROS. Antioxidants 

that are enzyme-based help to maintain defence 

against oxidative stress. The main antioxidant 

enzyme, superoxide dismutase (SOD), is responsible 

for converting ROS into H2O2, which is then buffered 

by the enzymes peroxidase (POD) and catalase 

(CAT) [6].  Carotenoids, ascorbic acid, and phenolic 

substances are recognized as the three most important 

non-enzymatic antioxidants [7]. Additionally, plants 

increase the production of osmolytes like glycine 

betaine, proline, free amino acids, etc. to reduce the 

negative impacts of water stress [8].  

Therefore, it is necessary to develop new 

techniques and technologies to increase water 

holding capacity of soil and increase crop resistance 

to water stress. One of these techniques is using 

hydrogel soil additives [9].  

Cross-linked hydrophilic polymer structures are 

known as hydrogels (super absorbent polymers). 
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When hydrogels come into touch with water, they 

transform into gels and can absorb 400 to 1600 times 

more water than they did before [10, 11]. The 

molecular weight, formation, and structure of 

hydrogel affect how much water is absorbed [12]. 

In addition, Ideal hydrogel materials must be 

characterized as non-toxic material, have high-

water absorption capacity, a low cost-effective 

material, high durability and stability, photo stable 

material, pH become neutral after swelling in the 

water, and biodegradable without formation of toxic 

species [13-15]. Numerous studies stated that 

hydrogels can enhance soil physical properties, 

chemical and biological properties especially in arid 

and semi-arid areas (porosity, bulk density, water 

holding capacity, soil permeability, infiltration rate) 

[11, 12, 16]. Because of the decrease in soil 

compaction due to increase in soil porosity, seed 

germination and seedling emergence rates, root 

growth and density, and soil erosion were all 

improved [17]. It was noted that adding hydrogels to 

sandy soil improved water availability to plants by 

decreasing drainage loss, swelling retention pores, 

and reducing soil hydraulic conductivity [18]. 

According to Bakass et al. [19] , the water holding 

capacity of sandy soil was enhanced from 171% to 

402% by adding hydrogel at 2 g/kg to soil. Hydrogels 

may affect nutrient-use efficiency in addition to the 

prolonged release of water by retaining the nutrients 

in the swelled mass and lowering their losses [20-23]. 

In general, super absorbent polymers increased soil 

water holding capacity, decreased irrigation 

frequency, decreased wasting of water and nutrition 

materials of soil, increased soil aeration, and caused 

better plant growth and enlargement and increased 

yield under water stress conditions [24-30]. 

Likewise, application of hydrogel in drought-affected 

soil increased the plant survival time owing to water 

saving in rhizosphere and sufficient soil moisture 

[31] and improved germination, plant growth, and 

nutrient uptake[32,33]. Recently, Prisa and Guerrini 

[9] showed that addition of hydrogel improved 

growth and quality of Zea mays and Solanum 

lycopersicum. The increase in average germination 

time and plant development increased in direct 

proportion to the quantity of hydrogel capsules sown 

into the soil. 

It is important to note that hydrogels contain 

cellulose, protein and starch in their structures [34-

36]. In this work, HPMC-Xanthan gum was used as 

the hydrogel. Xanthan gum is a polysaccharide used 

as food additive, thickening agent, emulsifier and 

stabilizer that prevent ingredient from separating 

EFSA Panel on Food Additives and Nutrient Sources 

[37]. The fermentation of glucose and sucrose results 

in the production of xanthan gum. It is made up of 

pent saccharide repeating units with the molar ratios 

2:2:1 of glucose, mannose, and glucuronic acid [38].  

The most significant leguminous seed crop used 

for human consumption, industry, and animal feed is 

soybean (Glycine max L.), which is planted in almost 

every country in the world. It has good nutritional 

properties, including high protein content (40–42%), 

oil content (18–22%), macronutrients, and mineral 

content [39]. Water stress can affect soybeans [40]. It 

requires large quantities of water for a high yield 

[41], therefore, water stress has a serious effect on 

soybean production. Even a short-term of drought 

during the growing season can reduce yields by 30% 

to 80% [42].  

The aim of the current investigation was to create 

and characterize novel hydroxy propyl methyl 

cellulose (HPMC)-Xanthan gum ionically cross 

linked hydrogel for usage as soil amendments.  Also 

Its effect on growth parameters and biochemical 

changes in soybean leaves in response to 

two irrigation levels were examined. 

2. Materials and Methods 

The hydroxy propyl methyl cellulose (HPMC) 

was imported from Dow CELLOSIZE™ Texture 

K100 M HPMC. Yields viscosity of 100,000 cP at 

low addition levels.  Xanthan was purchased from 

Sigma. Sodium tri-metaphosphate (STMP) and 

sodium sulfate were utilized as cross linkers. 

 

Hydrogel (HPMC-Xanthan gum) Synthesis 

Ten grams of HPMC were dissolved in 250 ml of 

water and then various amounts of xanthan gum 

(2.5.7.10) g were added gradually while the mixture 

was vigorously mixed. After vigorously agitating the 

mixture for one hour, it was then submerged in a pot 

of boiling water. The liquid was added 10 ml of 1 N 

NaOH after being chilled to 55 oC. After that, the 

cross-linking process was started by adding various 

of cross linker concentrations (Table 1) and 20% 

sodium sulphate (based on the weight of dry 

xanthan). By bringing the pH to 7 with 1 N HCl after 

5 hours, the process was put to an end. Following 

that, the modified HPMC hydrocolloid polymer was 

separated using centrifugation (4000 rpm for 20 min), 

rinsed with water (150 ml), and dried in an air oven at 

55 oC to prepare powder [43]. 

 

Hydrogel characterization  

Fourier transformed infrared spectroscopy (FT-

IR) 

HPMC Xanthan gum and a specific hydrogel 

sample were subjected to ATR-FTIR measurements 

using a Bruker VERTEX 80 (Germany) Platinum 

Diamond ATR, which uses a diamond disc as an 

internal reflector and measures refractive index with 

a resolution of 4 cm1. 
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Thermo gravimetric analysis (TGA) 

Using a Shimadzu TGA-50 thermo gravimetric 

analyzer, Columbia, EUA, in a nitrogen atmosphere, 

and heating the sample at a rate of 10 oC/min 

between ambient temperature and 600 oC, a thermal 

gravimetric analysis (TGA) analysis was carried out 

on a chosen hydrogel sample. 

 

Table (1): Composition of different formulation of 

different HPMC-xanthan hydrogel  

Hydrogel 

code 
HPMC(g) 

Xanthan 

(g) 

STAMP 

Cross 

linker  (g) 

HPXa1 10 2 0.02 

HPXa2 10 5 0.05 

HPXa3 10 7 0.07 

HPXa4 10 10 0.1 

Differential scaning calorimetry (DSC) 

A Shimadzu DSC-60 differential scanning 

calorimeter (DTA), manufactured in Columbia, EUA, 

was used to test a hydrogel sample. Similar to TGA, 

there was a similar scan rate and heating temperature 

range. 

 

Scanning electron microscopy (SEM)  

Scanning electron microscopy, FESEM 

QUANTA 250, was utilized to examine the hydrogel 

sample's surface morphology and cross-section 

topography. To reduce the effect of charging during 

the examination, gold was splattered on the dried and 

wet samples. 

 

Swelling degree (SD) 

According to Benhalima et al. [44], measurements 

of swelling degree (SD) were made in demineralized 

water at a temperature of 25 °C. Equation (3) was 

used to calculate the swelling degree under the 

examined swelling media at time t and expressed in 

g/g of dry hydrogel:  

 

 

 

Where Wd is the weight of the samples before 

immersion in swelling media (i.e. dry weight), and 

Wt is the weight of the sample at each time.  

The chosen dependent variable was the swelling 

degree (SD). The swelling capability was measured 

by carefully weighing the samples before and after 

immersion in demineralized water for 24 h 

(Y=SD24h) 

 

Pot experiment 

      To investigate the impact of HPMC-Xanthan gum 

hydrogel on growth parameters, chlorophyll content, 

and biochemical changes in soybean leaves in 

response to irrigation levels, a pot experiment was 

conducted at the Botany Department's greenhouse at 

the National Research Centre, Dokki, Cairo, Egypt, 

through two summer seasons. 

Plant material  

Seeds of soybean (Glycine max L., CV Giza 111) 

were supplied by Agricultural Research Centre 

(ARC), Agriculture Ministry, Giza, Egypt. 

Design of the experiment 

This experiment was set up as a two-factor, 

completely randomized block design (RCBD), with 

six replications. The first factor consisted of four 

levels of HPMC-Xanthan gum hydrogel (HPXa 5), 

which was chosen as the best preparation due to its 

high swelling index and high water uptake (0, 2, 3 

and 4 g/kg soil), and the second factor consisted of 

two irrigation levels (D1, once/7 days and D2, 

once/10 days). 11 kg of soil (air dry base) were put 

into the pots, which are 35 cm3 in size. The 

mechanical and chemical analyses of the sandy soil 

are shown in Table 2.  The soil was then mixed with 

HPMC-Xanthan gum hydrogel. After being sterilized 

with sodium hypochlorite, soybean seeds were sown 

in pots. For each irrigation level, there is a control 

group, a group of plants grown without hydrogel 

supplementation, and a group of plants grown with 

hydrogel supplementation at the following 

concentrations: (i) 2 g/kg soil; (ii) 3 g/kg soil; and 

(iii) 4 g/kg soil. Following the complete 

establishment of seedlings and the selection of the 

strongest seedling in each pot (21 days after sowing), 

watering treatments were initiated. The fertilization 

was carried out in accordance with the agricultural 

ministry's advice. 

Soybean growth 

For determining morphological traits, such as root 

and shoot length (cm), number of leaves per plant, 

root and shoot fresh weight (FW) (g), and root and 

shoot dry weight (DW) (g), plant samples were 

collected after 60 days after planting. After drying a 

plant sample in an oven for 48 hours at 50°C, dry 

weight was determined. 

Biochemical measurements 

Photosynthetic pigments i.e. chlorophyll a, 

chlorophyll b and carotenoids were estimated in fresh 

leaf tissues using the method of Lichtenthaler and 

Buschmann [45]. Proline content was extracted and 

calculated according to Bates et al. [46]. Total 

phenolic compounds (TPC) were determined using a 

Folin-Ciocalteau colorimetric assay modified by 

Elzaawely and Tawata [47]. Total flavonoid content 

(TFC) was measured by using the aluminum chloride 

technique modified by Chang et al. [48]. The 

malondialdehyde (MDA) content was evaluated 

using the method of Heath and Packer [49]. 

Hydrogen peroxide (H2O2) was determined following 

the method of Yu et al. [50]. Enzyme extracts were 

prepared according to the method of Chen and Wang 

[51]. Catalase (CAT) activity was determined by 

following the decrease in absorbance at 240 nm 
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according to Chen and Wang [51]. Superoxide 

dismutase (SOD) activity was evaluated by nitroblue-

tetrazolium reduction method [51]. Peroxidase (POX) 

activity was estimated by Kumar and Khan [52]. 

Glutathione reductase (GR) activity was estimated 

according to Rao et al. [53] by following the increase 

in absorbance at 340 nm. 

 

DNA isolation and PCR  

Total genomic DNA was isolated from young and 

fresh leaves of treated soybean plants according 

to modified cetyl tri methyl ammonium bromide 

CTAB method described by Khaled and Esh [54]. 

Ten ISSR primers were screened for the production 

of polymorphic products from all treated plants under 

study. Only five primers showed polymorphic 

patterns and were selected, as shown in Table 3. 

Moreover, polymerase chain reaction (PCR) was 

carried out within 15 µl reaction volumes. containing 

1 µl plant genomic DNA, 7.5 μL Master Mix (Gene 

Direx one PCRTM), 1 μL template DNA and 1 μL 

primer. 

PCR was programmed as: an initial denaturation 

at 94°C for 3 min, 45 cycles each of 94°C for 1 min, 

then 55oC for 30 sec., 72oC for 40 sec. for annealing 

and final extension at 72oC for 10 min. 

Amplification products were electrophoresed on 1.5 

% agarose in 1×TAE buffer. Then gel was stained 

with ethidium bromide and documented using gel 

documentation system. 

 

 

Table (2): Physiological and chemical analysis of soil 

used in pots 

Characteristics Value 

Physical properties 

       Particle size distribution 

Coarse Sand% 73.8 

Fine Sand% 15.5 

Silt% 6.5 

Clay% 4.2 

Texture Soil Sandy 

Chemical properties 

Organic matter content% 1.24 

pH 7.8 

EC ds/m 0.74 

             Cations meq/L 

Na+ 4.15 

K+ 0.23 

Ca++ 1.84 

Mg++ 1.25 

              Anions meq/L 

HCO3 0.64 

CO3 Nil 

SO4 0.93 

Cl- 5.6 

Statistical analysis 

Analysis of variance was used to statistically analyze 

the average of two seasons' supply of data. According 

to Silva and Azevedo [55], the differences between 

means were evaluated by the least significant 

differences (LSD). 

Table (3): Names and sequences of selected ISSR 

primers utilized in this study. 

Primers Primer Code Primer Sequence 

IS-01 844 B (CT)8 GC 

IS-02 17898A (CA)6 AC 

IS-03 HB 10 (GA)6 CC 

IS-04 HB 11 (GT)6 CC 

IS-05 HB 12 (CAC)3 GC 

3. Results 

Characterization of hydrogels 

Various hydrophilic natural polymers were used 

in the effort to plan and represent the HPXa hydrogel 

matrix and its use in drought stress. HPXa hydrogel-

based matrix has not yet been researched for 

applications including drought. The planned 

application could be used on an industrial scale and 

was affordable. Following analysis of the factor 

design, the optimal formula was selected as the most 

promising soil substrate conditioning materials. A 

thorough analysis of the selected materials was 

carried out to demonstrate their potential use in order 

to regulate soil moisture and enhance plant growth 

under drought stress. 

 

FT-IR spectroscopy  

Illustrative spectra of nominated polymers 

(HPMC, xanthan gum) and phosphate cross linked of 

optimized hydrogel HPXa were exposed in Figure 1. 

At 3437 cm-1, HPMC showed a clear broadband zone 

related to O-H stretching vibrations. C-H and C-O 

bonds were allocated bands at 2940 and 1060 cm-1 

[56].  A significant stretching vibration at 1655 and 

1119 cm-1 attributed to CH3 and C-O-C bonds was 

also demonstrated by HPMC [57].  Due to axial O-H 

deformation, xanthan gum produces stretching 

vibrations at 3413 cm-1. The stretching vibrations of 

the C-H group cause the peak at 2880 cm-1, while the 

stretching vibrations of the C-O group cause the peak 

at 1621 cm-1, and the bands near 1407 cm-1 are 

caused by the axial deformation of the C-O 

component of the enol [58]. The hydrogel's FT-IR 

spectra revealed that STMP interacted with HPMC 

and xanthan gum. 

A decrease in hydroxyl groups and no change in 

the quantity of carbonyl groups are anticipated 

because hydroxyl groups from xanthan and HPMC 

are implicated in the reaction with STMP and are 

transformed to O-P linkages in the crosslinked 

product. The absorbance at the maximum of the 

peaks caused by hydroxyl groups (3410 cm-1 to 3470 

cm-1) and carbonyl groups (1644 cm-1 to 1660 cm-1) 
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was taken from the FT-IR spectra to evaluate this 

behaviour. (Figure 1 a & b). The STMP polar 

molecules and the HPMC and Xanthan gum chains 

interacted with one another, shifting the 1296 and 

997 cm-1 (P=O and P-O-P bands, respectively 8, 9) to 

lower energy levels on the products. The presence of 

a peak at 1015 cm-1, which is connected to the 

production of P-O-C bonds between the cross linker 

and the polysaccharide, indicating the cross linking of 

the product. Cross-linked HPXa prepared hydrogel 

showed evidence of interaction between HPMC and 

Xanthan polymers with STMP cross linker (Figure 

1C).  

 

HPMC 

T%

Xanthan 

wavenumber(cm-1)

1000200030004000

hydrogel

Fig.1. FT-IR spectra of (a) HPMC (b) xanthan gum 

(c) HPXa Phosphated cross linked hydrogel  

Thermo gravimetric analysis (TGA)  

 

A TGA was carried out to examine the hydrogel 

beads' heat stability and rate of deterioration. Figure 2 

displays a progressive and sequential weight loss 

pattern for the chosen sample HPXa 5 TGA. The 

initial heat event causes water to evaporate, which 

results in a 2% weight loss. The temperature range of 

30 to 170 oC was used to measure this weight loss. 

The subsequent weight loss of 5-10% in the range of 

270-380oc is due to bond breakdown. About 80% of 

the sample was still present at this phase, which is 

equivalent to intermediate carbonaceous char 

material. Between 370 and 510oc, there is a 9% 

weight loss that is attributed to the oxidation of 

intermediate carbonaceous char components that 

have already formed [59].  

TGA offers an effective way to investigate the 

produced hydrogel's thermal stability. For the 

optimization of process parameters, understanding 

degradation and the manner of decomposition under 

the effect of heat is highly advised. The TGA curve 

advances one step at a time. The range for 

decomposition was 270–380 oC. The hydrogel 

residue was 85% at the highest temperature. Figure 2 

and Table 4 show that the sample's weight declined 

steadily as the temperature rose [60]  

The primary criteria utilized to determine the 

thermal stability of the prepared hydrogel are TGA 

data related to the temperatures corresponding to 

weight losses of 15% (T15), 50% (T50), 90% (T90), 

and maximum (Tmax). The higher T15, T50, T90, 

and Tmax numbers are, the higher will be the thermal 

stability of the prepared hydrogel [61].  

 

Table (4): TGA decomposition temperature of hydrogel 

% weight loss at various 

temperature oC 
Decomposition 

temperature range oC 
T 15 T 50 T 90 T max 

200 300 400 Max 

98 95 89 85.5 270 - 380 
More than 

600 

More than 

600 

More than 

600 

More 

than 600 

 

temperature

0 100 200 300 400 500 600 700

we
igh

t %

84

86

88

90

92

94

96

98

100

102

 

Fig.2. TGA thermo gram of HPXa 5  

 

Differential scaning calorimetry (DSC) 

The use of DSC allowed for the direct 

determination of whether a phase change is 

endothermic or exothermic as well as the reversibility 

of phase transitions, the temperature history, and the 

physical characteristics of the analysed materials. It 

also looked into possible interactions between various 

components of the hydrogel that had been 

synthesised. At 82.11 oC (45.01-110.2 oC), the 

hydrogel's melting transition was observed as a broad 

peak, which corresponds to the moisture loss (Figure 

3). According to Figure 3 and Table 5, there was 

thermo behaviour variability in the temperature range 

of 270 to 380o C. The breakdown of cross linkers that 

were created in the hydrogel during preparation was 

the cause of the variability. 

 

Table (5): DSC decomposition temperature oC 

 

 

HPX

a 5 

Decomposition temperature oC 

Initiation 

Temperatur

e 

Peak 

Temperatur

e  

Final 

Temperatur

e 

T

g 

270 300 380 37 
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temperature
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d
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-2.0
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-1.0

-0.5

0.0

0.5

Fig.3. DSC thermo gram of HPXa 5 

 

Scanning Electron microscopy (SEM) 

To determine the surface topography of the HPXa 

hydrogel matrix, SEM examination was completed. 

Figure 4 shows examples of SEM images of HPXa 

hydrogel cross sections before drying and after 

swelling for 24 hours in demineralized water. SEM 

images displayed many channels and spherical pores 

with various pore sizes that connected polymeric 

networks. The ability of the matrix to create both 

macro-porous structures and micro cavities. This may 

lead to the formation of a porous or permeable gel 

layer that allows the release medium to slowly diffuse 

water out of the matrix by entering the water's matrix 

and moving towards the plant. Therefore, the 

presence of pores and a gelling structure on the HPXa 

hydrogel points to the involvement of both diffusion 

and erosion mechanisms in regulating the release of 

water from the optimized HPXa hydrogel matrix, 

which will affect and control soil substrate moisture 

and have an impact on plants under drought stress. 

 

 
Fig.4. SEM cross section of selected hydrogel before 

at magnification 10,000 and 20,000 (upper two 

pictures) and after swelling for 24 hr. at 

magnification 5,000 in demineralized water (bottom 

picture). 

 

Swelling degree index 

The swelling behaviour of the hydrogel are 

presented in Table 6 and Figure 5 hydrogel    which 

had higher xanthan gum content displayed improved 

swelling properties at a constant pH 7. Due to the 

presence of ions in the cross linker, the HPXa 5 

formula's high xanthan and phosphate cross linker 

ratio demonstrated improved swelling capability. The 

gum's hydrophilicity increased as a result of the 

cross-linker's ion, which also increased the gum's 

swelling capabilities [62]. Therefore, the formula 

HPXa 5 was chosen as the best one based on the 

criteria of using a high water uptake hydrogel in a 

drought-stress application. Water diffusion into the 

hydrogel 3D network and the ensuing relaxing of the 

polymer chains are essential components of the water 

sorption mechanism. A swelling hydrogel's water 

transport phenomenon is greatly impacted by various 

factors  including the chemical composition of 

hydrogel, its equlibrium water content and swelling 

rate among others [63]. 

 

Vegetative growth parameters 

Table 7 shows that soybean plants irrigated every 7 

days was characterized by higher growth parameters 

i.e. root and shoot length, number of leaves/plant, 

root and shoot fresh weight, root and shoot dry 

weight than those irrigated every 10 days. 

Table (6): Swelling degree and water uptake  

Hydrogel 

code 

Swelling degree index %  Max Water 

uptake(ml/gm 

hydrogel) 
2hr 8hr 16hr 24hr 

HPXa1 100 120 150 180 180 

HPXa2 100 210 280 300 300 

HPXa3 100 250 290 350 380 

HPXa4 100 260 300 360 390 

HPXa5 100 300 400 480 500 

 

 
Fig.5. Swelling index of the HPXa hydrogel at pH 7. 

Hydrogel (HPMC-Xanthan gum) at all 

concentrations significantly increased most of growth 

parameters in plant irrigated either every 7 days or 10 

days relative to corresponding controls. It was 

obvious that 2 g/kg soil of HPMC-Xanthan gum was 

the most pronounced treatments. Since, it 

significantly increased root dry weight by 96.43% in 

plant irrigated every 7 days and by 104% in plant 
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irrigated every 10 days relative to corresponding 

controls. Likewise, it significantly increased shoot 

dry weight by 41.42 % in plant irrigated every 7 days 

and by 33.33 % in plant irrigated every 10 days 

relative to corresponding controls. It is obvious that 

response of root dry weight to HPMC-Xanthan gum 

is more pronounced than response of shoot dry 

weight.  

 

Photosynthetic pigments 

Table 8 shows that soybean plant irrigated every 7 

days was characterized by significant increases in 

total chlorophyll (a+ b), and carotenoids than those 

irrigated every 10 days. 

Hydrogel (HPMC-Xanthan gum) at all 

concentrations significantly increased chlorophyll a, 

chlorophyll b, carotenoids in plant irrigated either 

every 7 days or 10 days relative to corresponding 

controls. The increase in photosynthetic pigments 

was in opposite direction to hydrogel concentrations. 

It was obvious that 2 g/kg soil of HPMC-Xanthan 

gum was the most pronounced treatments. Since it 

increased total chlorophyll by 23.87% in plant 

irrigated every 7 days and by 56.49 % in plant 

irrigated every 10 days relative to corresponding 

controls. It is obvious that the percentage of 

increment of total chlorophyll to 2 g/kg soil of 

HPMC-Xanthan gum was higher in plant irrigated 

every 10 days than those irrigated every 7 days. 

 

Table (7): Effect of hydrogel (HPMC-Xanthan gum) on some growth parameters of soybean plants grown under 

two irrigation levels (D1) once/7days and (D2) once/10 days 

Treatments 
Root 

length 

(cm) 

Shoot 

length 

(cm) 

Number of 

leaves/plant 

Root 

fresh 

weight 

(g) 

Root 

dry 

weight 

(g) 

Shoot 

fresh 

weight 

(g) 

Shoot 

dry 

weight 

(g) 

Irrigation 

levels 

Hydrogel 

levels 

(g/kg soil ) 

Irrigation levels 

D1 15.40 39.23 7.80 2.63 0.92 18.42 5.02 

D2 13.63 35.79 7.63 2.58 0.75 17.28 4.56 

LSD at 5% level 1.05 0.94 0.15 0.23 0.10 0.20 0.07 

Hydrogel levels 

0 12.46 32.61 6.61 2.30 0.51 13.59 3.98 

2 15.33 41.92 8.37 2.89 1.01 21.65 5.46 

3 15.17 39.42 8.25 2.77 0.95 19.11 5.07 

4 15.08 36.09 7.63 2.46 0.87 17.06 4.65 

LSD at 5% level 1.49 1.34 0.21 0.33 0.14 0.29 0.09 

Interaction between irrigation levels and hydrogel levels 

D1 

0 13.25 34.25 7.21 2.33 0.56 14.45 4.08 

2 16.33 44.34 8.33 2.88 1.10 22.15 5.77 

3 16.00 41.33 8.33 2.86 1.04 19.39 5.29 

4 16.00 37.00 7.33 2.47 0.99 17.68 4.94 

D2 

0 11.67 31.00 6.00 2.28 0.45 12.73 3.87 

2 14.33 39.50 8.42 2.90 0.92 21.15 5.16 

3 14.33 37.50 8.17 2.68 0.86 18.82 4.85 

4 14.17 35.17 7.92 2.46 0.75 16.43 4.36 

LSD at 5% level 2.10   1.89 0.30 0.47 0.20 0.41 0.140   

 

Biochemical constituents of soybean leaf 

Figure 6 show that soybean plant irrigated every 

10 days was characterized by significant increases 

in proline content, MDA and H2O2 and non-

significant increase in non-enzymatic antioxidant 

(total phenolic  compounds and flavonoid content) 

than those irrigated every 7 days. 

At all concentrations HPMC-Xanthan gum 

hydrogel increased proline content, phenolic 

compounds and flavonoid content accompanied by 

decreases in MDA, and H2O2  in plant irrigated either 

every 7 days or 10 days relative to corresponding 

controls. The increase in proline content, phenolic 

compounds and flavonoid content and decrease in 

MDA and H2O2 was in opposite direction to hydrogel 

concentrations. It was obvious that 2 g/kg soil of 

HPMC-Xanthan gum was the most pronounced 

treatment. Since it significantly decreased MDA and 

H2O2 by 15.09 and 6.63% in plant irrigated every 7 

days and by 20.10% and 15.96% in plant irrigated 
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every 10 days relative to corresponding controls. It is 

obvious that the percentage of decease of MDA and 

H2O2 due to 2 g/kg soil HPMC-Xanthan gum was 

higher in plant irrigated every 10 days than those 

irrigated every 7 days. 

Enzymatic antioxidant 

Figure 7 shows that soybean plant irrigated every 

10 days were characterized by significant increases in 

antioxidant enzymes (CAT, POX, SOD, GR) than 

those irrigated every 7 days. 

Table (8): Effect of hydrogel (HPMC-Xanthan gum) 

on photosynthetic pigments of soybean plants grown 

under two irrigation levels (D1) once/7days and (D2) 

once/10 days 

Treatments Chl. 

a 

Chl. 

b 

Chl. 

(a+b

) 

Carotenoi

d 

Irrigatio

n levels 

Hydroge

l levels 

(g/kg 

soil) 
(mg/g fresh leaf tissues) 

Irrigation levels 

D1 
3.33

7 

0.78

3 

4.11

8 
4.499 

D2 
3.03

2 

0.82

4 

3.85

6 
3.931 

LSD at 5% level 
0.00

4 

0.00

4 

0.00

5 
0.003 

Hydrogel levels 

0 
2.56

7 

0.61

0 

3.17

8 
3.602 

2 
3.47

9 

0.91

2 

4.39

1 
4.567 

3 
3.41

0 

0.86

5 

4.27

5 
4.418 

4 
3.28

0 

0.82

7 

4.10

6 
4.273 

LSD   at 5% level 
0.00

6 

0.00

6 

0.00

7 
0.0041 

Interaction between irrigation levels and hydrogel 

levels 

D1 

0 
2.87

7 

0.70

1 

3.56

9 
3.854 

2 
3.55

9 

0.86

2 

4.42

1 
4.755 

3 
3.48

7 

0.80

2 

4.28

9 
4.711 

4 
3.42

8 

0.76

6 

4.19

4 
4.678 

D2 

0 
2.26

7 

0.51

9 

2.78

6 
3.351 

2 
3.39

8 

0.96

2 

4.36

0 
4.379 

3 
3.33

4 

0.92

7 

4.26

1 
4.124 

4 
3.13

2 

0.88

7 

4.01

8 
3.868 

LSD at 5% level 
0.00

9 

0.00

9 

0.01

0 
0.006 

At all concentrations HPMC-Xanthan gum 

hydrogel  significantly increased CAT, POX, and 

SOD, GR in plant irrigated either every 7 days or 10 

days relative to corresponding controls. The increase 

in CAT, POX, SOD, and GR was in opposite 

direction to hydrogel concentrations. It was obvious 

that 2 g/kg soil of HPMC-Xanthan gum was the most 

pronounced treatment. it significantly increased CAT, 

POX, SOD, GR by 16.94, 83.76, 53.62, and 19.70 % 

in plant irrigated every 7 days and by 12.62, 91.68, 

37.18, 17.67 % in plant irrigated every 10 days 

relative to corresponding controls. 

 

 
Fig.6. Effect of hydrogel (HPMC-Xanthan gum) on 

some biochemical composition of soybean plants 

grown under two irrigation levels (D1) once/7days 

and (D2) once/10 days 

 

 
Fig.7. Effect of hydrogel (HPMC-Xanthan gum) on 

some antioxidant enzymes of soybean plants grown 

under two irrigation levels (D1) once/7days and (D2) 

once/10 days ISSR Molecular Markers 

 

Table 9 and Figure 8 illustrated the effect of 

interacting hydrogel and drought stress on 

reproducible DNA fragments that detected by five 
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ISSR primers (Table 3). However, multiple fragments 

with different molecular weights were detected using 

these five ISSR primers, and the reproducible 

fragments distributed between monomorphic bands, 

polymorphic bands and unique bands. Moreover, 

there were 68 bands as total number of bands (TAF) 

with (85.92%) polymorphism percentage (PB %). It 

was noticed that the highest level of polymorphism 

was observed with IS-01 primer followed by IS-04 

primer which showed (92.31 and 91.67%) 

polymorphism, respectively, while the lowest 

polymorphism was 80.00% with both primers IS-02 

and IS-05. It was noticed that the detected bands were 

varied in number, polymorphism and range of its 

molecular weights between used ISSR primers (IS-02 

and IS-05) amplified the highest number of bands (15 

bands) with the lowest polymorphism percentage (PB 

%= 80%). With regard to IS-01, 13 bands were 

detected with this primer and molecular weights of 

these bands ranged between (1780.4 - 256.7bp), 

moreover, it distributed as 1 monomorphic bands 

(MB), 6 unique bands (UB) and 6 polymorphic bands 

(PB) with 92.31% polymorphism. Meanwhile, there 

were 15 bands with molecular weights (2169.8 - 

347.8 bp) and 80.00% polymorphism were detected 

using IS-02 primer, and distributed as 3 (MB), 7 

(UB) and 5 (PB).  Moreover, there were 13 bands 

with molecular weights (2148.0 - 489.9 bp) and 

84.62% polymorphism were detected using IS-03 

primer, and distributed as 2 (MB), 4 (UB) and 7 (PB).  

On the other hand, with IS-04 and IS-05, there 

were 12 and 15 amplified bands with molecular 

weights (2112.3 - 452.5 bp) and (1644.9 - 249.9 bp) 

were detected using IS-04 and IS-05, respectively. 

These previous bands were distributed as (1 MB, 6 

UB and 5 PB) and (3 MB, 7 UB and 5 PB) with IS-04 

and IS-05, respectively. Moreover, there were 

different polymorphic bands appeared under different 

treatments in this study (Fig.3). However, the 

distributions of these detected bands was varied 

under used treatments (hydrogel concentrations and 

irrigation level), such as, there were bands appeared 

as a result to water stress only and these were found 

only in control plants under all hydrogel 

concentrations and disappeared under water stress. 

On the other hand, there were polymorphic bands 

was observed as a result to the effect of hydrogel 

concentrations under two irrigation levels. 

 

Table (9): Effect of hydrogel (HPMC-Xanthan gum) on molecular characteristics and polymorphism of soybean 

plants grown under two irrigation levels (D1) once/7days and (D2) once/10 days 

Primers Marker size (bp) 
Amplified bands 

PB% 
TAF MB UB PB 

IS-01 1780.4 - 256.7 13 1 6 6 92.31 

IS-02 2169.8 - 347.8 15 3 7 5 80.00 

IS-03 2148.0 - 489.9 13 2 4 7 84.62 

IS-04 2112.3 - 452.5 12 1 6 5 91.67 

IS-05 1644.9 - 249.9 15 3 7 5 80.00 

Total 68 10 30 28 85.92 

Average 13.6 2.0 6.0 5.6 - 

TAF = Total amplified fragments, MB= Monomorphic bands, UB= Unique bands, PB =Polymorphic bands and 

PB (%) = Percentage of polymorphism.PB (%) = UB + PB / TB 

 

 
Fig.8. Effect of hydrogel (HPMC-Xanthan gum) on ISSR-based PCR fragments of soybean plants grown under 

two irrigation levels (D1) once/7days and (D2) once/10 days 

 

4. Discussion 

First of all, it must be mentioned that during 

summer season under normal conditions, soybean 

plants must be irrigated twice/week. This work 

includes two irrigation levels one/7 days and one/10 

days. It was noted that soybean plants irrigated every 

10 days was characterized by significant decreases of 
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different growth parameters relative to those irrigated 

every 7 days (Table 7). These decreases could be the 

result of disorder  brought on by drought stress on 

physiological and biochemical processes, such as the 

levels of plant growth regulators, photosynthetic 

assimilation activities, and activities of key enzymes 

involved in several essential metabolic processes 

[64]. The reductions in cell elongation, cell turgor, 

cell volume, and ultimately cell growth that occur in 

response to drought stress may be the cause of the 

losses in plant height [65]. Under drought stress, the 

observed decrease in shoot and root dry weights may 

be the result of reduced photosynthesis, decreased gas 

exchange activities, CO2 fixation, and ROS-induced 

cell damage [66,67]. Additionally, drought impacted 

the way plants interacted with water, lowered shoot 

water content, led to osmotic stress, inhibited cell 

expansion, cell division and consequently growth of 

plants as a whole[68]. 

It was noted that photosynthetic pigments of 

soybean plants irrigated every 10 days was 

characterized by significant decreases relative to 

those irrigated every 7 days (Table 8). These 

reductions in photosynthetic pigment contents might 

be caused by chloroplast lipids oxidation, 

disorganization of thylakoid membranes, damaging 

the photosynthetic apparatus, chlorophyll degradation 

by proteolytic enzymes such as chlorophyllase that is 

responsible for degrading chlorophyll and 

deterioration in chloroplast [69-73] Drought prevents 

or reduces photosynthetic carbon fixation generally 

through limiting the entry of CO2 into the leaf or 

directly stopping its metabolism [74]. 

Another common plant response to drought stress 

is accumulation of osmo-protectants such as proline 

[75]. The main roles of these compounds are 

improving osmoregulation, protecting the structure of 

different bio-molecules, membranes and scavenging 

free radicals [76]. Proline accumulation in plants has 

been observed to be more than 70 times higher under 

water stress conditions than under unstressed 

conditions [77, 78]. Ashraf and Iram [64] mentioned 

that the increase level of proline in cowpea plant acts 

as an indicator of its high drought tolerance. Proline 

is also regarded as an antioxidant and helps to 

maintain redox equilibrium, which protects plant 

cells from drying out [79]. 

Plants have different protection mechanisms for 

reduction or elimination of ROS that are produced 

due to abiotic stress. According to Guo et al. [80] and 

Hosseini et al. [81], plants respond to adverse effects 

of water stress by improving the production of non-

enzymatic defence systems as secondary metabolites 

(phenolic and flavonoid compounds) and antioxidant 

enzymes (SOD & CAT), which scavenge ROS[73, 

82]. 

Regarding non-enzymatic defence systems, 

Rivero et al. [83] verified the increase of total 

phenolic compounds in response to abiotic stress. 

The increase of total phenolic content played a 

significant role in regulation of plant metabolic 

processes [84]. Due to disruptions in numerous 

metabolic processes in plant cells brought on by 

stress, the levels of phenolic contents may have 

increased during drought stress [85]. Through their 

reactivity as electron or hydrogen donors, to stabilize 

and delocalize the unpaired electron, and from their 

function as transition metal ions chelator, phenolic 

compounds are potent antioxidant scavengers of free 

radicals [86]. Additionally, phenolic substances serve 

as a substrate for numerous antioxidant enzymes, 

reducing the damage caused by water stress [87].  

Plants are protected against environmental stress 

by secondary metabolites of phenolic origin called 

flavonoids [88].  Water stress dramatically boosted 

the flavonoid concentrations in maize plants, 

according to Ali et al. [89]. The increases of total 

amount of both phenolic and flavonoid compounds 

increased their antioxidant activity [90]. 

Drought stress causes an imbalance between the 

generation and detoxification of ROS, which leads to 

their accumulation [91]. Figure 6 demonstrates how 

drought stress caused soybean plants to significantly 

raise their H2O2 and MDA levels. Water stress led to 

the build-up of ROS, especially H2O2, which 

damaged plants via oxidation and created MDA [92]. 

MDA is a biomarker to estimate the level of lipid 

peroxidation or damage to plasma lemma and 

organelle membranes that are connected with 

damages triggered by ROS due to environmental 

stresses[93]. According to Hossain et al. [94], these 

increases may be caused by insufficient induction of 

the antioxidant system. 

Antioxidant enzyme system is one of the 

protective mechanisms because of its ability to 

scavenge ROS. There is a strong association between 

tolerance to oxidative stresses and increase in 

concentration of antioxidant enzymes [95]. SOD, 

CAT, POX and GR are responsible for ROS 

scavenging [96]. Drought increased SOD, CAT, POX 

and GR activities in soybean leaves (Figure 7). 

Abdelgawad et al. [97] and Havrilyuk et al. [98] 

mentioned that these increases in enzyme activities 

owing to its resistance under water deficiency. SOD 

is the first defence enzyme that converts superoxide 

to H2O2, which can be scavenged by CAT and 

different classes of POX and GR. These enzymes are 

the most important antioxidant causing the 

breakdown of H2O2 to water and oxygen molecule 

[96]. 

It was noted from Tables 3 hydrogel application 

induced the growth parameters of soybean plant 

irrigated every 7 days or 10 days relative to 
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corresponding controls. Moreover, incorporating 

different levels of HPMC-Xanthan gum hydrogel (2, 

3 and 4 g/kg soil) as super absorbent polymers into 

the soil under irrigation level (once/7 days) 

significantly increased soybean plant growth 

parameters (Table 7), total photosynthetic pigment 

(Table 8),  (osmolytes) proline, (non-enzymatic 

antioxidant) phenolic and flavonoid compounds 

(Figure 6), (antioxidant enzymes activity) catalase, 

peroxidase, superoxide dismutase, glutathione 

reductase (Figure 7), accompanied by significant 

decreases in MDA, and H2O2 (Figure 6) than those 

irrigated once/10 days. 

These findings are in line with those stated by 

Yazdani et al. [20]; Galeș et al. [99] who showed that 

application of super absorbent polymer under drought 

stress increased the total dry weight and grain yield 

of soyabean by increasing water-holding capacity of 

soil , water use efficiency, and improving aeration of 

the soil. In addition, Khadem  et al. [100] ; El-Asmar 

[101] stated that the application of hydrogel polymer 

to the soil enhanced seed germination, leaf water 

content, leaf chlorophyll content, root development, 

plant growth, minimized nutrient losses by leaching 

and decreased the adverse effects of water stress 

under arid region. Similarly under drought-stress 

conditions, Jarvis and Davies [102] described that 

super absorbent polymers improved leaf relative 

water content and photosynthesis rate that would 

enhance plant growth . 

Moreover, Rezashateri et al. [103]) reported that 

hydrogels seemed to increase root growth. Since, the 

formation of a better root system is favourable to 

obtain efficient utilization of water and nutrients 

resources [104]. Liao et al. [105] found that 

incorporating super absorbent polymer into the soil 

not only increased root biomass and adjusts root 

distribution, but improved the amount of water 

absorbed through increasing root length density and 

root surface-area density at the upper soil layer under 

a dry land cropping system [106]. It is well known 

from several researches that hydrogel can utilize the 

existing water and nutrients in the soil, create a water 

pool in the plant root zone, and release them 

gradually through a diffusive mechanism when the 

soil becomes dry. In this manner, the plant root may 

regulate or effectively use the drainage or 

evaporation of watered water [107, 108]. 

Additionally, applying hydrogel as a soil conditioner 

has the potential to increase water use efficiency. Its 

use decreased the amount of water needed for the 

ideal crop by 38% to 40% [108, 109]. Tongo et al. 

[110] stated that the interaction effect between 

drought stress and super absorbent polymers on the 

different growth parameters, proportion of root dry 

weight to aerial dry weight, photosynthetic pigments, 

catalase and peroxidase enzyme activity was 

significant. Recently, Havrilyuk et al. [98] concluded 

that the use of superabsorbent increased plant growth 

parameters under the conditions of the water shortage 

due to increased water availability and nutrients 

which consequently increased the cell division, cell 

expansion and cell elongation  

By balancing nutritional components and 

increasing CO2 fixation through prolonged stomata 

opening, the use of super absorbent polymers 

enhances cell membrane growth, leaf area index, leaf 

area duration, chlorophyll, and protein content, which 

contributes to the improvement in yield qualities of 

mustard [111, 112]. The increases in total 

photosynthetic pigments may be due to the role of  

eco-friendly hydrogel polymer in decreasing 

chlorophyll degradation or increasing chlorophyll 

biosynthesis due to supply of sufficient amount of 

water and nutrients to the plant in water deficit 

condition. Besides, carotenoid prevents the 

generation of singlet oxygen and protects plant from 

oxidative damage. By gently pumping water into the 

plant, hydrogel, according to Tongo et al. [110], 

improved photosynthesis. Additionally, the use of 

hydrogel polymers improved the water use 

effectiveness and CO2 absorption rate of plants 

cultivated under drought stress [73]. 

Unfortunate, there is no researches deal with the 

effect of hydrogels on changes in different 

biochemical metabolites during plant life. 

Meanwhile, all the collected facts on beneficial effect 

of hydrogel on plant growth and productivity depends 

on their roles in increasing the capacity of water 

storage of soil [26, 113], reducing wasting water and 

nutrition materials of soil [24], reducing water 

evaporation from the surface of soil [26] and 

increasing the aeration of soil [25] caused the better 

growth of plants under water stress condition [27]. 

Results of this work indicated in Figure 6 and 7, 

showed the promoted effect of hydrogel on proline 

content, antioxidant system, and inhibiting effect on 

H2O2 and MDA in soybean plant irrigated every 7 

days over those irrigated every 10 days. All of these 

facts concerned on hydrogel role in tolerating plant to 

water deficient and reflecting on enhancement 

antioxidant system of plant (non-enzymatic 

antioxidant and antioxidant enzymes) for detoxifying 

and neutralizing harmful ROS that produced under 

normal or stressed conditions . 

Molecular markers  

According to Mudibu et al. [114], ISSR is an 

effective marker type for locating polymorphisms in 

DNA sequences. Due to the use of lengthy primers, 

ISSR markers are very repeatable (16-25 mers).  A 

high amount of genomic polymorphisms can be 

detected with ISSRs since they often contain a lot of 

polymorphic bands (up to 97) [115]. In genetics and 

plant breeding, DNA-based molecular markers have 

been incredibly useful [116]. Given the high 

annealing temperature of primers, high repetition, 
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low cost, and available genomic data, ISSRs among 

DNA markers have an advantage [117]. However, 

Gaafar et al. [118] used five ISSR primers to evaluate 

the effect of different gamma ray doses on ISSR 

polymorphism of two Egyptian soybean varieties, 

and reported that there were variable amplified DNA 

bands detected by γ-radiation which might be 

produced by different types of DNA damages.  Clara 

et al. [119] used different ISSR primers to determine 

the relationship and similarity among different 

cultivars of sunflower and reported that Primers HB-

13 and HB-15 displayed the maximum 

polymorphism (100%). Moreover, Dawood et al. 

[120] used ISSR molecular markers to study the 

molecular changes chickpea as an effect of 

interaction between both proline and glycinebetaine 

with salinity, and they found that there were  a 

variety of different types of polymorphic bands were 

detected as a response to salinity effects. Also, Liu et 

al. [121] decided that there were several Random 

Amplified Polymorphic ( RAPD) markers linked 

with salt tolerance characteristics of different plant 

species. Moreover, Elsayed et al. [122] and El-Awadi 

et al. [123] studied the influence of salinity on growth 

and genetic range of broad bean and they obtained 

that all used primers provided polymorphic patterns 

among cultivars. 

5. Conclusion 

HPXa hydrogel were successfully prepared and 

characterized in terms of its physiochemical 

properties. HPXa showed greater swelling capacity. It 

could be decided that incorporating different levels of 

HPMC-Xanthan gum hydrogel as super absorbent 

polymers into the soil under irrigation every 7 days 

was more pronounced than those irrigated every 10 

days. However, under two irrigation levels, HPMC-

Xanthan gum hydrogel significantly increased most 

of soybean plant growth parameters, total 

photosynthetic pigment, proline, phenolic content, 

flavonoid, catalase, peroxidase, superoxide 

dismutase, glutathione reductase accompanied by 

significant decreases in MDA, and H2O2 relative to 

corresponding controls. It is worthy to mention that 

HPMC-Xanthan gum hydrogel have promising role 

in saving amount of water used in soybean 

agriculture via decreasing the number of irrigation 

along plant growth. 

 

Future work 

Developing better way to control the time of 

degradation of biodegradable polymers through 

blending with different molecular weight and 

different natural or synthetic polymers to get long 

acting biodegradable hydrogel. 
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