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Abstract 

This study examines non-Newtonian nanofluid flow with heat transfer via a non-Darcy porous medium in the presence of 

effects. Additionally, the effects of the heat source, viscous and Ohmic dissipation, chemical reaction, electromagnetic fiel d, 

and Biot number are taken into account. The non-linear equations that control the flow can be made simpler by using 

appropriate similarity transformations. Then, using a shooting and matching approach, the Rung-Kutta-Merson method is 

utilised to derive numerical solutions for the velocity, temperature, and concentration of nanoparticles as functions of the 

problem's physical parameters. This analysis could lead to the development of a model that could help in the understanding of 

the mechanics of physiological fluids. Additionally, the implications of these parameters on these solutions are studied 

numerically and graphically. It is discovered that as the Biot number rises or falls, both tangential and normal velocities 

change. While the temperature increases or decreases as the pressure gradient and radiation parameters increase, the 

concentration of nanoparticles increases or decreases as the Schmidt numbers and magnetic field parameters increase.  
Keywords: Carreau nanofluid; heat transfer; thermophoresis effect; mixed convection; electromagnetic field; chemical reaction. 

 
1.Introduction 

Mixed convection takes place when the mechanisms 
of natural convection and forced convection work 
together to transfer heat. The phenomenon of mixed 
convection exists in several technical and industrial 
issues such as electronic devices chilled by fans, 
nuclear reactors refrigerated during the emergency 
stop, a heat exchanger placed in low-velocity 
surroundings, solar collectors, and so on. [1]. Mixed 
convective flows driven by differences in temperature 
and concentration at the different surface geometries 
through a porous medium have been extensively 
studied in the past and various extensions of the 

problems have been reported in the literature. The 
Mixed convection flow of viscoelastic nanofluid by a 
cylinder with variable thermalconductivity and heat 
source/sink is studied by Hayat et al. [2]. Pal and 
Mondal [3] investigated the effects of Soret and 
Dufour on MHD non-Darcian mixed convection heat 
and mass transfer over a stretching sheet with a non-
uniform heat source/sink. Mixed convection in a 
vertical micro-annulus between two concentric 
micro-tubes was examined by Avci and Aydin [4]. It 
became apparent that the increase in the mixed 
convection parameter increases the heat transfer. 
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Some important studies on the subject can be found 
in [5–7]. 

     Past two decades, non-Newtonian fluid flow 
studies were taking up greater attention and 
importance than Newtonian fluids, as far as their 
various industrial technical applications [8-14]. 
Nanofluids are a relatively new class of fluids that 
consist of a base fluid with nano-sized particles (1–50 
nm) suspended within them [15]. Nanoparticles being 
used in nanofluids are usually made of metals, 
oxides, carbides, or carbon nanotubes. Nanofluids has 
numerous applications such as transportation (engine 
cooling/vehicle thermal management), electronics 
refrigeration, nuclear systems refrigeration, heat 
exchanger, chemical process, as well as biological 
medicine. Non-Newtonian nanofluids are commonly 
available in several industrial technology 
applications, for example, the thawing of polymers, 
biological solutions, paints, tars, asphalt, glues, etc. A 
notable example of these efforts is found in 
references [16-18]. The problem of MHD non-
Newtonian nanofluid flow with a heat transfer under 
the effect of chemical reaction and radiation through 
a porous medium has been discussed by Eldabe et al. 
[19]. Various authors have explored the properties 
specific to different non-Newtonian nanofluid flows 
[20–29].  

The main objective of this paper is to extend the 
work ofEldabe et al. [30] in the case ofmixed 
convection, non-Darcian effect, and non-Newtonian 
nanofluid, viscous dissipation effect. Because the 
partial differential equations of velocity,temperature, 
and nanoparticle concentration are very highly non-
linear, it has been transformed into a non-linear 
ordinary differential equation using the appropriate 
similarity transformations. This system of equations 
is solved numerically by the applying Rung-Kutta-
Merson method with a Newton iteration in a shooting 
and matching technique. This analysis could make it 
a model that can support understanding the 
mechanics of physiological flows. 

 
2.Mathematical formulations 

Cartesian coordinates (x, y, z) are taken into account, 

where x is along a direction of fluid flow, y is the 

normal to x, and z perpendicular plane (x y). The 

electrically conducting Carreau nanofluid is flowing 

steadily into a shrinking sheet. The external applied 

magnetic field, while the electric field. 

A constitutive model of Carreau fluid may be 
written as follows:  
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where   γ is a second invariant of strain-rate 

tensor ij .                                             

The equations of continuity, momentum, energy, and 

nanoparticles concentration can be written, 

respectively, as [31-33]: 

= 0
u v

x y

 


 
, (4) 

2

20

2 * 2

0 0 0

1 1
= 1

2

( ) ( ) ( ) ,T C

u u p n u u
u v

x y x y y y

E B B u g T T g C C u C u
k



 

 
 


 

           
                 

      

 (5) 

 
2

2

2

20

2 0

0 0

2

=

1
1

2

1
( ) ( )

,

p

p

r

p p p

T B

T T K T
u v

x y c y

n u u u

c y y y

Qq
uB E T T

c c y c

T T C
D D

y y y









  


  
 

  

       
            


    



      
    

      

     (6)  

2 2

2 2

0

= ( )T

B

DC C C T
u v D A C C

x y Ty y


   
   

   
, (7) 



 EFFECTS OF BOTH VARIABLE ELECTRICAL CONDUCTIVITY.. 
__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 66, No. SI 13 (2023) 
 

2193 

where the thermal radiation heat flux; 

* 4
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
.We expect that thedifferences in 

fluid-phase temperatures in flow areenough small that

4T can be expressed as the linear function of 

temperature.  

4 3 4= 4 3T T T T   (8) 
Simplifying the foregoing system, we apply the 
following transformations: 
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It should be noted that n=1 leads to a boundary-layer 

flow of ordinary Newtonian conducting fluid. At the 

same time when we put Fs=
p

x




=0, n=1 and Bi→ ∞, 

this problem was investigated for the same boundary 

conditions by Eldabe et al. [30].Eqs. (10)-(12) are 

coupled non-linear ordinary differential equations of 

order three. For Carreau fluid, as the parameter n 

tends to zero, the fluid is becoming ordinary 

Newtonian. 

The boundary conditions in the non-dimensional 

form are:  

1
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3.Numerical solutions 

NAG Fortran libraries with help of subroutine 

D02HAF will be used to solve the foregoing system 

of equations (10-12). Moreover, then, the shooting 

technique is applied. The present subroutine might be 

needed to suppose missing initial and terminal 

conditions. The governing equations(10-12) have 

been solved by the Rung-Kutta-Merson method of 

order five. In the present subroutine, we haveused 

variable step size to control a local 

truncationerror,but then again, the modified Newton-

Raphson method is used to get successive corrections 

at the estimated boundary values.  

The process is repeated iteratively several times 

before convergence and accuracy have occurred. 

4. Discussion 

Here, we analysed graphically how the temperature, 

nanoparticle concentration, and the problem's 

physical parameters affected the tangential and 

normal velocities. Moreover, we obtained the 

numerical values of these physical quantities and 

tabulated the coefficients of skin-friction and both 

heat transfer and mass transfer by using Mathematica 

package Ver.10.1. The standard values of these 

parameters are taken as follows: 

𝑛 = 2, 𝑀 = 0.5, Da = 0.1, E1 = 0.5,
𝜕𝑝

𝜕𝑥
= −10, 

Re=0.5, Fs=0.4,We=0.5,Gr=0.5,Br=0.5,Pr=1,R=1 

Ec=3.5,Q0=1,Sc=2.5,Bi=0.5,Nt=3.5,Nb = 2.5,  

m = 2, 𝛿 = 0.8. 

 
Fig. (1). The variation of f with 𝜂, for different values n. 
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Fig. (2). The variation of f with𝜂, for different values Bi. 

 

Fig. (3). The variation of f’ with η, for different values We. 
 

 

Fig. (4). The variation of f’ with η, for different values Gr. 
 

     Biot number is a dimensionless quantity that 

measures the ratio of the reluctance of heat transfer 

from the inside of the body to the surface of the body. 

So, a small Biot number reveals low resistance to 

transport by conduction, and therefore very low-

temperature gradients within the body. Figures (1) 

and (2) display the variations of the normal velocity f 

versus the dimensionless coordinate 𝜂 for different 

values of dimensionless power-law index n and Biot 

number Bi, respectively. It is noted from these figures 

that the normal velocity increases with the increase of 

n, while it decreases as Bi increases. The result in 

Fig. (2) is due to the above definition of the Biot 

number. In addition, 𝑓 increases with 𝜂 for large 

values of n, and small values of Bi, till a definite 

value 𝜂 =𝜂0 (represents the maximum value of 𝑓) and 

it decreasesafterward. Furthermore, all curves for 

different values of both n and Bi are identical near the 

sheet, namely in the interval η ∈ [0, 0.21], otherwise, 

the effect of these parameters is clear; this is due to 

the fact that the shrinking sheet is cold initially.     

The Weissenberg number is defined by the ratio 

between elastic and viscous forces. Moreover, it 

usually measures the relation between the fluid stress 

relaxation time and a specific process time, i.e. 

Weissenberg number may help to increase the fluid 

flow. The variations of the tangential velocity f’ with 

the dimensionless coordinate η for various values of 

Weissenberg number We and Thermal Grashof 

number Gr are shown in Figs. (3) and (4), 

respectively, The graphical results of Figs. (3) and 

(4), indicate that the tangential velocity increases 

with an increase in the parameter We, while it 

decreases by increasing the parameter Gr, 

Furthermore, It is observed that for small values of 

We and large values of Gr, the relation between f’ 

and η is a parabola with a down vertex, i.e. f’ 

decreases  with  η till a definite value η=η0, 

(represents the minimum value of f’)  and it increases 

afterward. This absolute minimum value of f’ 

increases by increasing Gr, while it decreases by 

increasing We. The above definition of the 

Weissenberg number explains the result in Fig. (3). 

Moreover, this result agrees with those presented by 

[30]. 

Fig. (5). The variation of 𝜃with 𝜂, for different values Nt. 
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Fig. (6). The variation of 𝜃with 𝜂, for different values Nb. 
 

 

Fig. (7). The variation of 𝜃with 𝜂, for different values R. 
 

 

Fig. (8). The variation of 𝜑with 𝜂, for different values Sc. 
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Figs. (5) and (6) show the behavior of the 

temperature distribution θ with the dimensionless 

coordinate η for various values of the thermophoresis 

parameter Nt and Brownian motion parameter Nb, 

respectively. It has been seen from these figures that 

the temperature increases with the increase of Nt, 

while it decreases as Nb increases. It is also noted 

that for each value of both Nt and Nb, there exists a 

minimum value of θ whose absolute value increases 

by increasing Nb and decreases by increasing Nt, and 

all minimum values occur at η=0.17. Brownian 

motion is an inherent flow of particles dangled in a 

fluid. This random transport agrees with the fact that 

the temperature decreases with the Brownian motion 

parameter. So, the result in Fig. (6) agrees with the 

physical expectation, and is in agreement with those 

which are presented by [26]. The effect of radiation 

parameter R on the temperature distribution θ as a 

function of the dimensionless coordinate η is shown 

in Fig. (7). It is found that the temperature 

distribution increases by increasing R in the interval 

η∈ [0, 0.65]; otherwise it decreases by increasing R. 

So, the behavior of θ in this interval is an inversed 

manner of its behavior in the intervalη∈ [0.65, 0.18], 

except that the curves are quite close to each other in 

the second interval. 

Eq. (12) evaluates how the nanoparticles 

concentration distribution φ variations with the 

dimensionless coordinate η. The effects of both 

Schmidt number Sc and the local electric parameter 

E1 on the nanoparticles concentration distribution φ 

are given in figures (8) and (9), respectively. It is 

found that the nanoparticles concentration increases 

by increasing Sc, but it decreases by increasing E1. 

Furthermore, the nanoparticles concentration is 

always positive, and for large values of Sc and small 

values of E1, it increases with η till a maximum value 

of η, after which it decreases.  

 

Fig. (10). The variation of 𝜑with 𝜂, for different values Br. 
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Fig. (11). The variation of 𝜑with 𝜂, for different values Nb. 

The effect of nanoparticles concentration Grashof 

number Br on the nanoparticles concentration φ 

which is a function of η is given in Fig. (10). It is 

found that the nanoparticles concentration decreases 

by increasing Nb in the interval η∈  [0, 0.21]; 

otherwise it increases by increasing η. So, the 

behavior of φ in the interval η∈  [0, 0.21], is an 

inversed manner of its behavior in the interval η∈ 

[0.21, 1.2], and in the first interval, there is a 

maximum value of φ holds at η =0.2. Figure (11) 

illustrates the effect of Brownian motion parameter 

Nb on the nanoparticles concentration φ as a function 

of η. It is found that the behavior of φ for various 

values of Nb is in the same manner as the behavior of 

φ for various values of Br given in Figure (10), 

except that all curves are very ruffled than to each 

other than those obtained in Fig. (10). 

5. Conclusion 

     This problem extends the work of Eldabe et al. 

[30] to include mixed convection, non-Darcian effect, 

and non-Newtonian nanofluid, viscous dissipation 

effect. Since the partial differential equations of 

velocity, temperature, and nanoparticles 

concentration are very highly non-linear, it has been 

converted into the non-linear ordinary differential 

equation by using suitable similarity transformations. 

This system of equations is solved numerically by 

applying the Rung-Kutta-Merson method with a 

Newton iteration in a shooting and matching 

technique. This analysis can render a model which 

may support comprehension of the mechanics of 

physiological flows [34-50]. The obtained results can 

be outlined as follows. 

1) By increasing n and Sc, n, Br, and 𝛿 both the 

normal and tangential velocities increase while 

they decrease as E1, M, and Bi increase. 

Moreover, they increase or decrease as Da 

increases. 

2) The normal velocity becomes greater with 

increasing the dimensionless coordinate 𝜂 and 

reaches a maximum after which, it decreases, but 

the tangential velocity has an opposite manner, 

i.e. it has a minimum value. 

3) The temperature distribution increases as Da, 𝛿, 

Nt, We, and Re increase, while it decreases or 

increases as Q and Nb increase. Furthermore, it 

decreases or increases as Bi, Ec, Gr, Pr, R, Br, 

and Da increase.   

4) The temperature becomes lower with increasing 

the dimensionless coordinate 𝜂 and reaches a 

minimum at 𝜂=0.18, after which, it increases. 

5) The nanoparticles concentration has an opposite 

behavior with respect to the temperature 

behavior except that it decreases with the 

increase of 𝛿, Gr, Br, and We. 

Data availability 

The datasets generated and/or analyzed during the 

current study are not publicly available due to [All 

the required data are only with the corresponding 

author] but are available from the corresponding 

author on reasonable request. 

 

Acknowledgment 

The authors would like to express their sincere 
gratitude to the anonymous referee for her useful 
comments. 

 

Nb 1.5, 2.5, 3.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0

2.5



 EFFECTS OF BOTH VARIABLE ELECTRICAL CONDUCTIVITY.. 
__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 66, No. SI 13 (2023) 
 

2197 

Conflict of interest 

 

The authors have declared that this paper has no 
conflict of interest. 

 

Nomenclature 

Reaction rate constant A 

Constant B0 

Biot number Bi 

Concentration Grashof number  Br 

The nanoparticles concentration C 

Forchheimer 𝑠̀ constant C* 

cp The specific heat at constant pressure  
  

Darcy number Da 

Brownian diffusion coefficient DB 

Thermophoretic diffusion coefficient DT 

Constant E0 

Local electric parameter E1 

Eckert number Ec 

Forchheimer number Fs 

The fluid pressure p  

Prandtl number Pr 
 

Thermal radiation heat flux qr 
 

Heat source parameter Q0 
 

Radiation parameter R 
 

Reynolds number Re 
 

Schmidt number Sc 
 

The fluid temperature T  
The tangential component of velocity u 

The normal component of velocity v 

Weissenberg number We 

Tangential coordinate x 

Normal coordinate y 

 

Greek symbols 

  

Chemical reaction parameter 𝛿 
Zero-shear-rate viscosity 0  
time constant   
Kinematic viscosity   
Fluid density    

The electrical conductivity of the fluid 𝜎 
Stefan-Boltzmann constant 𝜎∗ 
the stress tensor components, ij  
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