
 
 

_________________________________________________________________________________________________ 
*Corresponding author e-mail: hudaelmnadily@gmail.com.; (Huda A Elmnadily). 
EJCHEM use only: Received date 06 March 2023; revised date 14 April 2023; accepted date 16 April 2023 
DOI: 10.21608/EJCHEM.2023.196921.7650 
©2023 National Information and Documentation Center (NIDOC) 
 
 

Egypt. J. Chem. Vol. 66, No. SI: 13 pp. 153 - 166 (2023) 

 

 

Zinc Accumulation in Wheat, and How It's Affected by Genetics  

and Sulphate of Zinc 

Huda A Elmnadilya*, Nagwa I. Elarabib, Mohamed M El-Foulya, 

 Reda E.A Moghaieb
b
 

a
Fertilization technologies department, National research center, Dokki,Giza-Egypt 

 
b
Department of Genetics, Faculty of Agriculture, Cairo University,Giza-Egypt 

Abstract 

The significant prevalence of zinc insufficiency in people makes it crucial to increase zinc (Zn) content in wheat grains on a 
worldwide scale. Grain-based diets high in zinc help combat the global issue of zinc deficiency. Inter Simple Sequence 
Repeats (ISSR) and Start Codon Targeted Polymorphism (SCoT) were used to analyes the genetic diversity of 10 Egyptian 
wheat cultivars in order to find the ones with the highest levels of built-in Zn bio-fortification. The level of polymorphism 
detected by SCoT was greater than that detected by ISSR. To clarify the influence of Zn foliar treatment on wheat grain 
production in 2019 and 2020, under conditions of zinc deficiency, Zn foliar application (5 g/L as ZnSO4.7H2O) was 
administered at two physiological phases (tillering and milking). Foliar treatment greatly raised the zinc content of the 
granules. A grain production boost of 50% was seen with a Zn content of 55 ppm. Zinc was bio-fortified in the Giza-168, 
Gemiza-7, and Gemiza-10 cultivars. This means that foliar treatment of ZnSO4 may be a useful and cost-effective method for 
achieving agricultural bio-fortification. 
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1. Introduction 
Global concern exists over human micronutrient deficits 
[1]. The highest-priority countries in Africa for enhancing 
zinc accumulation in wheat grain are Egypt and Morocco 
[2]. 30% of Egyptian students have poor diets and lack 
essential micronutrients like iron, zinc, and vitamin A 
[ 3]. 
A crucial food crop, hexaploid or common wheat 
(Triticum aestivumL., 2n = 6x = 42, AABBDD) will 
become even more crucial as the world's population 
rises [4]. Common wheat has a relatively low genetic 
diversity compared to its two donor species as well; 
the majority of the genetic variation seen in tetraploid 
wheat is not present in the readily available hexaploid 
germplasm [ 5]. Wheat grains are relatively low in 
essential micronutrients particularly Zn and Fe [ 1] 
because wheat verities cannot realize their full 
potential in Zn absorption and accumulation in grains 

[ 6]. Egyptian government reported that 3.6 million/ 
feddan have been planted and the average wheat yield 
reached about 9.7 million tonnes in Egypt  [7]. 
Globally, more than 30% of soil is low in plant-
available Zn  [8], for example in Egypt the availability 
of micronutrients especially Zn, Mn, and Fe in 
different soil types is mostly insufficient  [9] as it was 
affected by environmental and soil factors such as 
high pH, high concentrations of Ca, Mg, and P in soil 
solution  [10]. Thus, there are various methods for 
reducing micronutrient deficiencies in crops, 
including food diversity, food supplements, food 
fortification, and biofortification, which is the process 
of raising the concentration of micronutrients in the 
edible part of strategic crops like maize, wheat, and 
sweet potatoes [1]. There are two methods of adding 
micronutrients to food: a) agronomic biofortification 
using fertilization of the soil and foliar spray, and b) 
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genetic biofortification using plant breeding or 
genetic engineering [11]. Malnutrition can be 
decreased by choosing plants that contain a high 
concentration of micronutrients and growing them 
using traditional agronomic biofortification 
techniques [12]. Because of this, enhancing Zn 
accumulation in wheat grains depends greatly on 
understanding the genetic diversity among wheat 
cultivars. Various marker methods have been used to 
explore the genetic diversity and relationships of 
species, including DNA-based markers such as 
random amplified polymorphic DNA (RAPD) [13], 
inter-simple sequence repeats (ISSR) [14], 
chloroplast DNA markers, nuclear sequences [15]. 
The start codon targeted polymorphism (SCoT) 
method, which uses a single primer to anneal to the 
flanking regions of the translation initiation codon 
(ATG) on both DNA strands, is a novel, 
straightforward, and trustworthy gene-targeted 
marker system [16]. 
SCoT markers with high polymorphism and high 
effectiveness have been successfully applied in oak 
[18], ramie [19], Dendrobium [20], durum wheat 
[21], and bread wheat [22]. On other hand, foliar 
application of Zn had a positive effect on wheat grain 
yield [23] and improved Zn content of both the entire 
grain and endosperm while soil applications of Zn 
were not so effective [24], its efficiency depends on 
many factors like the time of foliar Zn application 
[25]. In the case of wheat, when foliar Zn was 
sprayed to wheat after the blooming stage, as 
opposed to applications made before the flowering 
period [26] it was demonstrated that the highest Zn 
content in grains was reached [27]. 

The current study's goal was to examine genetic 
variation among ten wheat cultivars using ISSR and 
SCoT genetic markers. Furthermore, the results from 
the two distinct markers were compared, and the 
ability of these cultivars to accumulate Zn in grains 
was evaluated by employing Zn foliar treatment at 
two different physiological phases (tillering and 
milking).  

2. Materials and Methods 

2.1. Plant materials 
In this study, ten wheat genotypes from the 
Agricultural Research Center (ARC), Giza, Egypt, 
were gratefully provided (Table 1). 

 

Table 1  
Names, pedigree and origin of ten bread wheat genotypes used in 
the study 
 

 

 

2.2. DNA extraction 
After seven days, complete DNA was extracted from the leaves of the germinated plants using the CTAB 

(Cetyl Trimethyl Ammonium Bromide) technique [27]. 
 

2.3. ISSR analysis  
Ten ISSR markers described by Rogers and Bendich  [28]  (2x), and 2 ul of primers from (Table 2) make up the 
PCR reaction mixture, which has a total volume of 25 ul. Amplifications were performed for the PCR reaction at 

NO Genotypes Pedigree Origin 

    

1 Sakha-94 Opata/Rayon//Kauz. Egypt 

2 Giza-168 
MIL/BUC//Seri CM93046-

8M-0Y-0M-2Y-0B 
Egypt 

3 Gemmiza-7 
CMH 74A.360 / SX // SERI 
8213 / AGENT CGM4611-

2GM-3GM-1GM-0GM 
Egypt 

4 Gemmiza-10 
Maya 74 “S”/On//1160-

147/3/Bb/4/Chat”S” 
/5/ctow. 

Egypt 

5 Gemmiza-11 

B0W"S"/KVZ"S"//7C/SERI
82/3/GIZA168/SAKHA61.C

GM7892-2GM—1GM-
2GM-1GM0GM 

Egypt 

6 Misr-1 

OASIS/SKAUZ//4*BCN/3/
2*PASTOR. 

CMSS00Y01881T -050M-
030Y-030M-030WGY-

33M-0Y--0EGY 

Egypt 

7 Misr-2 
SKAUZ/BAV92.CMSS96M
03611S-1M-010SY-010M-

010SY-8M-0Y-0EGY 
Egypt 

8 Shandaweel-1 

SITE//MO/4/NAC/TH.AC//
3*PVN/3/MIRLO/BUC. 

CMSS93B00567S-
72Y010M-010Y-010M-

0HTY-0SH 

Egypt 

9 Sids14 
Bow’’s’’/Vee’’s’’//Bow’s’/

Tsi/3/BAN 
Egypt 

10 Gemmiza-12 

OTUS/3/SARA/THB//VEE.
CCMSS97Y00227S-5Y-

010M-010Y-010M-2Y-1M-
0Y-0GM 

Egypt 
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95 °C for 5 min, followed by 35 cycles of primer annealing for 40 s at 72°C, elongation at 72 °C for 2 min, and 
final extension at 72 °C for 10 min. 

Table 2 

SCoT and ISSR primers names and sequences 

 

2.4. SCoT analysis 

Ten SCoT primers were selected according to Singh 
et al. [ 1] for genotyping assays (Table 2). The PCR 
reactions were performed in a 10 μl volume including 
1 μl of extracted DNA (50 ng/μL), 0.5 μl of each 
primer (2 μM/μL), 5 μl GeneDireX® One PCR™ 
(cat.no. MB203-0050) master mix, and 3 μl st. 
ddH2O (sterilized double-distilled water). The ideal 
PCR procedure included a5-minute initial 
denaturation at 94 °C, 35 cycles of DNA denaturation 
at 94 °C occurring for 30 s, primer annealing at 50 °C 
occurring for 45 s and at 72 °C occurring for 2 min, 
and a final extension at 72 °C occurring for 7 min. 
Following electrophoresis, all of the PCR findings 
were placed into 2% agarose gels stained with 
ethidium bromide, and a Biometra UV star 
transilluminator was used to view them. 

3. Data Scoring and Statistical Analysis 

By measuring the total of polymorphic bands from 
binary data, the percentages of polymorphism were 
calculated. ISSR and SCoT bands were manually 
graded as present ("1") or absent ("0") to estimate 
similarity among all the evaluated samples. The tree 
diagram was created by clustering the similarity data 
using the UPGMA (Unweighted Pair Group Method 
with Arithmetic Mean) approach using Systat ver. 7 
(SPSS Inc. 1997 SPSS Inc.3/97 standard version) 
[31]. Pairwise comparison across cultivars was 
performed using the Dice coefficient. The 

polymorphism information content (PIC), marker 
index (MI), and resolving power (RP) of the markers 
were determined to assess their informativeness in 
distinguishing between genotypes. PIC was 
computed using the formula in Yang et al. [32], while 
MI was calculated using Anderson et al. [33]. Each 
primer's RP was determined based on Varshney et 
al.[17]. 

3.1. Field experiment 

This experiment aimed to study the effect of foliar 
application of Zn at different physiological stages 
(tillering and milking) on Zn accumulation in wheat 
grains. Based on the combined data obtained from the 
ISSR and SCoT analysis, seven genetically distant 
commercial genotypes (Sakha-94, Giza-168, 
Gemmiza-7, Gemmiza-10, Gemmiza-11, Misr-1, and 
Misr-2) were selected and planted in the field. The 
experiment was designed in a split-split-plot design 
with three replicates. Two Zn treatments (without Zn 
and 5 g/L ZnSO4.7H2O) foliar spray [17]. Zn 
concentrations in selected cultivars before sowing are 
presented in (Table 3). The foliar spray was applied 
at two different physiological stages: tillering stage, 
and milking stage, and sprayed twice at tillering and 
milking stages [ 36]. Randomly placed grain plots 
were placed on the experiment site, and the soil was 
levelled with a wooden leveller, ploughed with a 
chisel plough, and divided into experimental units 
(plots). Each allotment is 10.5 m2 in size (3.0 m long 
and 3.5 mwide). 

P.NO Primmer name Seq5\ -------3\ 
Annealing TemoC Primmer 

name 
Seq5\ -------3\ Annealing TemoC 

1 SCOT-24 
CACCATGCTACC

GACCAT 
45 UBC-810 GAGAGAGAGAGAGAGAT 50 

2 SCOT-13 
ACGACTGGCACC

GATCG 
39 HB-13 GAGGAGGAGGC 50 

3 SCOT-14 
ACGACATGGCGA

CCACGC 
47 UBC-811 GGAGAGAGAGAGAGAAC 50 

4 SCOT-34 
ACCATGGCTACC

ACTGCA 
52 UBC-834 

GAGAGAGAGAGAGAGAGAGA
T 

50 

5 SCOT-52 
ACAATGGCTACC

ACTGCA 
52 UBC-835 AGAGAGAGAGAGAGAGYC 50 

6 SCOT-66 
ACCATGGCTACC

AGCGAC 
56 TA-1 

AGAGAGAGAGAGAGAGAGAG
C 

50 

7 SCOT-70 
ACCATGGCTACC

AGCGCGC 
47 UBC-818 CACACACACACACAG 50 

8 SCOT-71 
CCATGCCCTACC

ACTACCC 
49 UBC-823 TCTCTCTCTCTCTCC 50 

9 SCOT-77 
CCATGGCTACCA

CTACCC 
45 UBC-817 CACACACACACACAA 50 

10 SCOT-26 
ACCATGGCTACC

ACCGTC 
45 UBC-814 CTCTCTCTCTCTCTCTA 50 
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Table 3: Zinc content (ppm) in wheat grains before sowing in both seasons 

        Values are means of three replicates (n=3)

Table 4: Physical and chemical characteristics of soil (0-30 cm depth) before sowing 
 

 

 

Data are means for the first and second season (n=3), M=medium, L=low, vL=very low, H=high, vH=very high  
[38].

Wheat grains of 60 kg wheat grains/feddan were 
sowed on 23 December in the (2019/20) and 
(2020/21) seasons [37]. Wheat plants in all 
treatments were flowed and irrigated at sowing. 

3.2. Soil analysis  

After the completion of the soil preparation, and 
before to the application of fertilizer, a representative 
soil sample was obtained from the testing area (0-30 
cm depth). The soil sample was allowed to air-dry, 
then crushed in a wooden mortar, and then placed 
through a sieve with a pore size of 2 millimeters so 
that its physical and chemical characteristics could be 
analyzed. The results of the soil analysis are shown in 
(Table 4), and the values have been evaluated in line 
with the limits specified in Ankerman and Large [38]. 
According to Jackson [39], an assessment of the soil's 
physical and chemical qualities should be performed 
prior to planting seeds. 

At a rate of 70 units per feddan of ammonium nitrate, 
the suggested amount of nitrogen was supplied to the 
soil. The nitrogen was spread out over three 
applications: 1/3 during sowing, 1/3 at the first 
irrigation, and the last 1/3 at the second irrigation. 
Before sowing, the soil received 200 kg/fed of full-
dose superphosphate (15.5% P2O2) fertilization. 

At maturity, (140 days after sowing) the plants were 
harvested plant samples were taken to determine the 
following characteristics: 

• Grain yield, ardb / fed. (One ardb = 150 kg 
of grains). 

• Grain Zinc concentration (ppm). 

Determination of Zinc concentration in grains: 

An atomic absorption spectrophotometer was used to 
measure the amount of zinc in the shoot and root 
digest (GBC Scientific Equipment Pty Ltd A.C.N. 
005 472 686.). Using certified standard reference 
materials that were received from Germany's 
National Center of Standard Materials, grain zinc 
concentrations (mg Zn/grain-1) were calculated, and 
measurements were checked for accuracy. 

Statistical analysis: 

The results were subjected to a variance analysis. 
According toSnedecor [40], differences between 
treatment means were assessed using the LSD test 
with a 0.05 level of significance. 

4. Results 

4.1. SCoT analysis  

Start codon targeted (SCoT) analysis was carried out 
to investigate the genetic variations between the 
cultivars used. All of the employed primers produced 
PCR products with a variety of band sizes (Fig.1). 
Scot-24 produced the most bands (9 bands), whereas 
Scot-26 was the least productive as a primer (one 
band). There were 65 bands in total, with each primer 
having anywhere from 1 to 9 bands. Scot primers (14, 
24, and 77) revealed 100% of the polymorphism, 
while Scot primers revealed 86% of the 
polymorphism (66, 70, and 71). Scot24 had a PIC 
value of 0.00, SCoT-77 had a PIC value of 0.39, and 

Genotypes Sakha-94 Giza-168 Misr- 1 Misr -2 Gemiza -7 Gemiza -10 Gemiza -11 
        

1st season 29 26 32 30 22 29 30 
2nd season 27 25 30 29 23 27 32 

Characteristics 
Physical properties Macronutrients Micronutrients 

 
Texture pH EC (dS/m ) P K Ca Mg Na Zn Fe Cu Mn 

            
Clay 1.04 

vL 
0.95  
vL 

1.3  
vL 

28 
M 

31.3  
vL 

66  
vL 

35  
L 

0.75  
L 

2.1 
vL 

6.5  
vH 

6  
L 
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each primer had an average PIC value of 0.23 (Table 
5). 

Cluster analysis of SCoT analysis: 

Based on jaccard’s similarity index the ten cultivars 
were grouped into two clusters (Fig.2). Gemiza-10 in 
cluster I while Cluster II consisted of two clades the 
first contain the cultivar Shandweel 1 and the second 
divided into Four subclades the cultivars Giza-168, 
Misr-2 and Misr-1 respectively, the fourth subclades 
divided into two clades Gemiza-7 and the second 
clade divided into three clades (Gemiza-11 and Sids-
14) into first and third subclades while the third clade 
contains Gemiza-12 and Sakha-94.  

4.2. ISSR analysis  

Overall bands count, polymorphism, and percentage 
of polymorphism were provided in (Table 6), 43 
bands were present in all primers (Fig.3), with 3 to 8 

bands produced by each primer. UBC-823 produced 
the most bands (8 in all), whereas UBC-(810,834 and 
814), TA-1, and HB-13 primer produced the least 
bands (3 bands). The percentage of polymorphism 
that the various primers revealed ranged from 100% 
for UBC-823 primer to 67% for UBC-814 primer. 
PIC values were between 0.10 and 0.37 (for UBC-
814) and averaged 0.19 for each primer. The ISSR 
marker's (RP) value is 2.79. ISSR primer (MI) was at 
(Table 6). 

Cluster analysis of ISSR analysis: 

The ten cultivars were divided into two clusters 
(Fig.4). The first cluster contain Shandweel-1 cultivar 
and the second was divided into two clades, the first 
clade had Gemiza-12 cultivar while the second clade 
was divided into three subgroups one subclade 
contains Sakha-94 cultivar while the second 
subgroup divided to two clades (Gemiza-10 and Sids-
14). The third clade contains only Misr-1 cultivar 
while Giza-168 and Misr-2 were more relative.

 

 

 

 

  

Fig. 1: SCoT profiles demonstrated polymorphism among the 10 wheat cultivars. Lanes 1-10; Misr-1,Misr-2,Giza-168,Gemiza-7, 
Gemiza-10, Gemiza-11, Gemiza-12, Sakha-94, Sids-14 and Shandweil-1, respectively. M refers to DNA marker of 100 pb ladder. 
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Fig. 2 : ISSR profiles demonstrated polymorphism among the 10 wheat cultivars. lanes 1-10; Misr-1,Misr-2,Giza-168,Gemiza-7, 
Gemiza-10, Gemiza-11, Gemiza-12,Sakha-94, Sids-14 and Shandweil-1, respectively. M refers to DNA marker of 100 pb ladder. 

 

 

 

  

Fig. 3: Dendrogram based on Jaccard’ s similarity coefficients 
scored from SCoT data using UPGMA algorithm between the eight 
wheat cultivars. 
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Fig. 4: Dendrogram based on Jaccard’s similarity 
coefficients scored from ISSR data using UPGMA algorithm 
between the ten wheat cultivars. 

Fig. 5 : Dendrogram based on Jaccard’s similarity coefficients scored 
from SCoT and ISSR data using UPGMA algorithm between the ten 
wheat cultivars. 

 

 

 

 

 

4.3. Phylogenetic Relationship Based on Amplified 

SCoT and ISSR Fragments 

The data from ISSR and SCOT analysis combined to obtain 
a more realistic phylogenetic tree (Fig. 5).The phylogenetic 
tree divided the ten wheat cultivars into three major 
subgroups and two major clusters. The cultivar Shandweel-
1 was the only one in the first cluster. The Misr-1 cultivar 
is found in the first subgroup, the Gemiza-11 cultivar is 

found in the second subgroup, and the remaining five 
cultivars are found in the third subgroup, which is central. 

Table 5: SCoT primers names and polymorphism percentage

(NMB) number of monomorphic bands, (NPB) number of polymorphic bands, (TNB) total number of bands, (NUB) number of unique bands 

unique band (PPB), percentage of polymorphic bands, (PIC)polymorphism information content, (RP) resolving power, (MI) marker index

P.NO Primmer name TNB NPB NMB NUB P (%) M  % Pic MIC RP 

           

1  

SCOT-13 

 
7 

 
5 

 
2 

 
2 

 
71 

 
29 

 
0.11 

 
0.12 

 
6.12 

2 SCOT-14 5 5 0 2 100 0 0.16 0.05 2.30 

3 SCOT-24 9 9 0 0 100 0 0.37 0.03 3.67 

4 SCOT-26 1 0 1 0 0 100 0.00 0.12 1.67 

5 SCOT-34 8 7 1 2 88 13 0.25 0.08 4.73 

6 SCOT-52 8 7 1 1 88 13 0.26 0.07 5.06 

7 SCOT-66 7 6 1 2 86 14 0.27 0.08 3.67 

8 SCOT-70 7 6 1 1 86 14 0.30 0.05 2.90 

9 SCOT-71 7 6 1 2 86 14 0.22 0.06 3.83 

10 SCOT-77 6 6 0 2 100 0 0.39 0.03 2.94 

 Total 65 57 8 14 87 13 0.23 0.07 3.69 
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Table 6: ISSR primers names and the extent of polymorphism 

P.NO Primmer name TNB NPB NMB NUB P (%) M (%) PIC MIC Rb 

1 UBC-810 3 3 0 1 100 0 0.37 0.02 1.33 

2 HB-13 3 3 0 1 100 0 0.35 0.04 2.78 

3 UBC-811 7 6 1 3 86 14 0.15 0.06 2.72 

4 UBC-834 3 2 1 1 67 33 0.04 0.12 3.44 

5 UBC-835 4 3 1 1 75 25 0.11 0.07 2.79 

6 TA-1 3 2 1 2 67 33 0.09 0.13 3.83 

7 UBC-818 4 3 1 3 75 25 0.11 0.08 2.67 

8 UBC-823 8 8 0 0 100 0 0.40 0.02 1.61 

9 UBC-817 5 4 1 2 80 20 0.17 0.06 2.67 

10 UBC-814 3 2 1 1 67 33 0.10 0.13 4.06 

 
Total 43 36 7 15 82 18 0.19 0.07 2.79 

(NMB) number of monomorphic bands, (NPB) number of polymorphic bands, (TNB) total number of bands, (NUB) number of unique bands 

unique band (PPB), percentage of polymorphic bands, (PIC)polymorphism information content, (RP) resolving power, (MI) marker index.

4.4. Effect of Zn foliar application on wheat grain 

yield  

Both seasons (2019 and 2020) revealed that foliar Zn 
application during the different physiological stages 
had a substantial effect on yield as well as its 
component (Table 7), In comparison to the control, 
Zn treatments intensely increased wheat grain yield 
and biological yield. The twice foliar spray of Zn at 
the tillering and grain filling stages was the most 
effective treatment on grain yield as increased by 
(50% to 80%) to control. All cultivars showed high 
significance (p < 0.05) differences between 
treatments as Giza-168, Gemiza-7, and Gemiza-10 
had the highest grain yield (19 to 22 ardb/fed) when 
we applied Zn foliar spray at milking stages and also 
spray twice at tillering and milking stages, although 
Zn foliar at stem elongation slightly increased the 
grain yield by 30 % in most cultivars. 

4.5. Effect of Zn foliar application on grain zinc 

concentration  

The obtained results in both seasons revealed that 
foliar Zn application at different phonological stages 
had a significant effect on yield and its components. 
Data presented in (Table 8) showed a significant 
difference between all cultivars and treatments. 
Furthermore, the results indicated that applying Zn 

foliar spray at the milking stage increased Zn 
concentration in all cultivars in both seasons. Giza-
168, Gemiza-7, and Gemiza-10 had high grain Zn 
concentrations in the second season (55, 56, and 50 
ppm) respectively, while applying at tillering stage 
showed slightly increasing in Zn concentration by 
(2% to 10%) compared to the control. In addition, 
spraying Zn fertilizer twice at tillering and milking 
stage increased Zn concentration in all cultivars by 
80%. In this case there were a variation in grain Zn 
concentration and grain yield between all wheat 
cultivars. With this in mind the complex attribute of 
grain yield and grain Zn concentration is influenced 
by the impacts of genotype (G), environment (E), and 
their interactions (GEI). The GEI effect is significant 
for breeders because it reflects yield variance that 
cannot be explained by the individual G and E effects 
[41]. 

5. Discussion 

Plant breeding programmers are depending on 
using efficient and low-cost analytical approaches for 
assessing genetic variations in numerous genotypes 
[21] and [42].One of these approaches are ISSR and 
SCoT markers that provide more reliable diversity 
information and excellent tools for researching the 
genetic variation[43], the two markers produced 
encouraging results and grouping in the current 
experiment [44]. These markers offer more thorough 
and varied information regarding the genetic diversity 
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of Egyptian wheat accessions and within them [45]. 
Some plants, including snake melons [46], and 
sponge gourds [47] have produced dendrogram that 

don't match up when different markers are used to 
createthem.

Table 7: Effect of Zn foliar application at different wheat physiological stages on wheat grain yield (ardb/fed) 

Values are means ± Stander error (n=3), s for season 

 

Table 8: Effect ofZn foliar application at different wheat physiological stages on grain Zn concentration (ppm) 

Treatment Control Spray at 45 day spray at 65 day spray at 45 and 65 day 

Cultivars Sst Snd Sst Snd Sst Snd Sst Snd 
         

Misr-2 21.3 ± 0.6 24.6 ± 0.3 28.0 ± 0.5 28.0 ± 0.5 41.6 ± 1.4 40.0 ± 0.5 51.3 ± 1.2 44.3 ± 0.3 

Gemiza-11 22.6 ±1.4 29.0 ± 0.5 32.6 ± 0.6 32.6 ± 0.6 42.6 ± 1.7 34.3 ± 1.8 34.0 ± 0.5 32.6 ± 0.8 

Gemiza-10 21.3 ± 0.3 26.0 ± 1.0 26.6 ± 0.3 26.6 ± 0.3 37.0 ± 2.0 50.0 ± 0.5 35.3 ± 1.4 41.3 ± 0.8 

Giza-168 21.6 ± 1.6 25.3 ± 0.8 27.0 ± 0.5 27.0 ± 0.5 39.0 ± 2.0 55.6 ± 1.4 29.3 ± 0.3 55.3 ± 0.8 

MISr-1 21.6 ± 0.6 27.3 ± 0.3 26.3 ± 0.6 26.3 ± 0.6 37.0 ± 1.5 33.6 ± 1.2 38.6 ± 1.2 53.6 ± 0.8 

Sakha-94 19.6 ± 0.8 25.3 ± 0.3 30.3 ± 0.8 30.3 ± 0.8 35.0 ± 1.7 50.3 ± 0.8 41.6 ± 0.8 41.6 ± 1.3 

Gemiza-7 24.6 ± 0.8 22.3 ± 0.8 27.6 ± 0.3 27.6 ± 0.3 28.0 ± 0.5 56.3 ± 0.3 28.6 ± 0.3 46.0 ± 1.7 

Values are means ± Stander error (n=3) 

 

5.1. SCoT analysis 

This research shows that SCoT primers have a 
greater RP than ISSR primers. Genetic corrosion in 
grown wheat provides an excellent reason for 
assessing genetic variety among various cultivars and 
figuring out the possibility of increasing plant 
material efficiency [48], which may finally lead to 
enhanced food production [49] and [50] Intriguingly, 
the cultivar Gemiza-10 was in the first group of the 
created dendrogram based on SCoT markers, while 
the other cultivars were placed in the second group 
[51]. These findings support those made by Zhang 

etal. [52] who examined variance across 53 Chinese 
genotypes of Elymus sibiricus. The dendrogram 
separated the genotypes into three main groups and 
two minor groupings. Also, Abulela et al. [22] 
studied the genetic diversity between ten Egyptian 
bread wheat cultivars by SCoT markers and reported 
that SCoT marker generate cultivar specific markers 
with 23% which were similar to these results. 

5.2. ISSR analysis 

When compared to SCoT markers, the 
dendrogram based on ISSR markers also separated 
wheat cultivars into two major groups. Because each 
marker targets a different genomic sequence, the 

Treatment Control Spray 45 day Spray 65 day Spray 65 and 45 day 

Genotypes Sst Snd Sst Snd Sst Snd Sst Snd 

Misr-1 14.6 ± 0.6 13.8 ± 0.2 16.6 ± 0.3 17.8 ± 0.1 19.0 ± 0.0 18.0 ± 0.0 19.33± 0.3 21.0 ± 0.0 

Misr-2 14.0 ± 0.0 14.8 ± 0.1 18.6 ± 0.3 19.4 ± 0.1 19.0 ± 0.0 22.0 ± 1.0 21.0± 0.5 22.3 ± 1.2 

Sakha-94 14.0 ± 0.0 15.0 ± 0.3 19.0 ± 0.0 20.4 ± 0.1 19.0 ± 0.5 21.0 ± 0.0 19.6 ± 0.3 19.0 ± 0.6 

Gemiza-11 13.3 ± 0.3 13.7 ± 0.2 18.0 ± 0.5 17.8 ± 0.4 21.3 ± 0.3 19.3 ± 0.9 21.3 ± 0.3 21.0 ± 0.6 

Gemiza-10 14.0 ± 0.0 14.4 ± 0.2 18.3 ± 0.3 17.8 ± 0.4 21.0 ± 0.5 22.0 ± 0.0 21.3± 0.3 21.0 ± 0.0 

Giza-168 14.0 ± 0.0 14.1 ± 0.2 17.6 ± 0.3 15.1 ± 0.2 20.6 ± 0.3 19.3 ± 0.3 20.3 ± 0.6 20.7 ± 0.9 

Gemiza-7 14.6 ± 0.3 13.6 ± 0.1 19.0± 0.0 17.0 ± 0.3 20.3 ± 0.3 20.3 ± 0.3 20.00± 0.0 19.0 ± 0.0 
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polymorphism and cluster analysis between the two 
markers varies. A similar finding has been reported in 
earlier studies, which emphasizes the significance of 
ISSR and SCoT markers in detecting polymorphism 
and determining precise genetic links Al-Khayri etal. 
[53] and Özlem et al. [54] reported that ISSR markers 
provided greater recurrence, polymorphism, and the 
ability to distinguish across bread wheat cultivars. 

5.3. Effect of zinc foliar application on wheat 

grain yield  

Grain yield, followed by grain Zn absorption, was 
the most significant variable for explaining changes 
in grain Zn concentration [55].The time of Zn foliar 
application affected directly the grain yield as it 
increased by 50% when Zn sprayed twice at tillering 
and milking stages as Zn foliar spray at tillering stage 
increase the number of Spikes in m2 [56] while Zn 
foliar spray at milking stage increasing number of 
grains per spike by increasing of fertile spikelet per 
spike and 1000 grain weight [ 3]. The current findings 
are corroborated by Cakmak [57], who demonstrated 
that foliar treatment of micronutrients at the tillering, 
jointing, and booting stages improves wheat 
production. Microelements effectively increased 
photosynthesis rate and photo-assimilated 
translocation to the grain by improving enzymatic 
activity. Durum wheat [27] and bread wheat all 
indicated positive effects of Zn application on grain 
yield and agronomic parameters. These findings are 
consistent with those of Zoz et al. [57] who indicated 
that Zn plays a crucial role in biomass production. 
Furthermore, Mosanna et al. [58] demonstrated that 
Zn nano-chelate soil and foliar spray during the 
grain-filling stage increased maize pigment content 
and biological yield (75 and 54%, respectively). 
Therefore, pot and field trials yielded differing results 
for wheat cultivars and zinc application quantities. 
This could be due to variations in genetic make-ups 
and responses differently to various zinc application 
methods [59].  

5.4. Effect of Zn foliar application on grain zinc 

concentration  

Zn concentration increased in wheat cultivars by 
more than 50% after sowing in both seasons. 
According to Liu et al. [60], foliar zinc application is 
better because it can boost yield characteristics and 
grain zinc content by up to 80%. Ram et al. [61] 
reported that an increase in wheat production and 
grain zinc content at the same time, this approved 
with this results in both seasons (2019/20 and 
2020/21) which revealed that foliar Zn application at 

different phonological stages had a significant effect 
on yield and its components. These findings are 
supported by Hao et al. [62], who found that foliar 
micronutrient administration at tillering, jointing, and 
booting stages aids in improving wheat output in 
agreement with these findings, Nazir et al. [63] who 
demonstrated that in the field experiments, increasing 
the pool of Zn in the vegetative tissue during the 
reproductive growth stages (for example, by spraying 
foliar Zn fertilizers) epitomizes a crucial field 
practice in maximizing Zn accumulation in grain. 
Spraying Zn at the milking stage greatly increased Zn 
concentration in the grains [64]. Genetic and 
agronomic factors affect the accumulation of trace 
elements [65]. For example, Lina et al. [66] reported 
that foliar Zn application significantly increased Zn 
concentration and predicted bioavailability in both 
whole grain and flour of wheat, while Ning et al. [67] 
stated that foliar Zn application alone or in 
combination with soil Zn application significantly 
increased Zn concentration in wheat grain. 
Furthermore, Nikolic et al. [68] reported that foliar 
zinc application at the early milk stage of grain filling 
raises the zinc concentration in wheat grain. 

For Zn accumulation in grain, Zn must first be 
remobilized from shoots and then continue to 
accumulate in shoots during the grain-filling stage 
[69]. The internal remobilization of stored Zn inside 
plants and root acquisition has generally been linked 
to variations in Zn accumulation in grains.  

6. Conclusion  

Specific molecular markers like ISSR and SCoT 
were effective tools to study the genetic diversity 
between Egyptian wheat cultivars. There was 
variation between wheat cultivars in their ability to 
accumulate Zn in grains under Zn deficiency soils. 
Gemiza-7, Giza-168 and Gemiza-10 not only had the 
highest grain yield but also accumulated Zn 
effectively in their grains. Therefore they are most 
suitable cultivars for Zn biofortification breeding 
programs. 
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