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Abstract 

5, 10, 15, 20-tetraphenylporphyrinatocobalt(II) complex has been found to be an efficient catalyst for the oxidationn of 3,5-di-
tert-butylcatechol to 3,5-di-tert-butylbenzoquinone by molecular oxygen) in dimethylformamide. Measurement of dioxygen 
uptake was used to monitor the oxidation process. The oxidation reaction rate constant was reported to be linearly related to 
the concentration of catalyst, and saturation kinetics were shown to be dependent on both 3,5-di-tert-butylcatechol 
concentration and dioxygen pressure. The Michaelis-Menten method was used to obtain the kinetic parameters. A mechanism 
also has been proposed according to kinetic data, production of a ternary complex involving catalyst, substrate, and dioxygen 
and the formation of the semiquinone anion radical (3,5-DBSQ.) which detected by ESR spectroscopy. The system 
investigated is a functional model of catecholase like activity, based on free-radical intermediates, a possibility recently 
demonstrated for certain oxidoreductases. 
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1. Introduction 
Transition metal-catalyzed autoxidation of phenols is 
important in both industry and biology 
(Punniyamurthy and Rout 2008). Only a few 
published articles have been published on the 
metalloporphyrin-catalyzed oxidations and photo-
oxidations of phenols. Catechol oxidase is a CuII-
containing enzyme that oxidises catechol to quinone 
preferentially ( Klabunde et al. 1998 ;Hakulinen et al. 
2013 ). Catecholase activities has been shown in 
many of  mononuclear and dinuclear copper (II) 
complexes as models to mimic the enzyme and 
illustrate its mechanism (Kumari et al. 2017; Emirik 
et al.2016; Anbu et al. 2015; Caglar et al. 2014; 
Sreenivasulu 2009; Banerjee et al. 2009; Gasque et 
al. 2008; Merkel et al 2005; Gottschaldt et al. 2004; 
Mukherjee and Mukherjee 2002; Belle et all 2002; 
Reim and Krebs 1997) and a number of functional 
model compounds of other metal ions  (Dey and 
Mukherjee 2016; Basak et al. 2018; Ghosh et al. 

2018; Posada et al. 2018 ;Suman and Arindam 2014; 
Majumder et al 2013; Banerjee et al 2013). Synthetic 
metalloporphyrins have been utilized to oxidase a 
variety of organic molecules as effective and 
selective catalysts (Meunier et al. 2004; Hassanein et 
al. 2005, 2007, 2013; Que and Tolman 2008; Ortiz de 
Montellano 2010; Che et al. 2011; Lu and Zhang 
2011; El-Khalafy and Hassanein 2012; Castro et al. 
2017). Metalloporphyrins are abundant in nature and 
serve an vital role in biological fields as cofactors in 
photosynthesis and respiration (Senge et al. 2015; 
Agam et al. 2020), where they contribute to the 
catalytic activity of numerous enzymes. Such 
compounds can be used in a broad spectrum of 
applications, encompassing photomedicine, sensing, 
and energy/electron-transfer systems as well as 
catalysis and photocatalysis. As a result, there are 
only a few studies on the catecholase activity of 
transition metal porphyrin complexes in the literature 
(Castro et al. 2016, 2019). 
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Castro et al., examined the catechol oxidase 
mimicking the performances of certain soluble 
copper porphyrin complexes including copper-
porphyrin based metal organic frameworks in the 
oxidation of 3,5-di-tert-butylcatechol and catechol to 
the relevant quinones. Catechol oxidase is a 
catecholase-active type III active site protein with a 
copper-containing active site. Catechol oxidase can 
oxidise a wide spectrum of catechols to quinones by 
reducing molecular oxygen to water by four electrons 
(Koval et al. 2006; Blaschek and Pesquet 2021). The 
enzyme's active site has a dinuclear copper(II) core 
that is strongly antiferromagnetically coupled in its 
natural state, with three histidine nitrogens and a 
bridge OH ion coordinating each copper(II). As a 
result, research on model compounds that imitate 
catecholase activity is extremely valuable and 
encouraging for the creation of new, highly efficiency 
bioinspired, environmentally conscious catalysts for 
oxidation processes (Costas Salgueiro 2008; Koval et 
al. 2008; Afewerki et al. 2020). Within the last thirty 
years, several mononuclear and binuclear copper (II) 
complexes' catecholase activity have been 
investigated. Owing to their capacity to bind 
dioxygen reversibly (Herrero Álvarez et al. 2021) and 
their catalytic activities for organic molecules 
oxidation ( Muthusami et al. 2021; Tazeev et al. 
2021), cobalt(II) porphyrin complexes are fascinating 
substances.  
According the literature studies on many copper (II) 
model compounds and the known crystal structure of 
catechol oxidase, the functional models would 
definitely have accessible coordination sites on the 
metal atoms wherein the substrates can interact 
(Bhardwaj et al. 2010; Castro et al. 2016). As a 
consequence, ligands bearing fewer donor atoms are 
significantly more effective. 

 
Hereby, the research work was designed to assess the 
catalytic activity of 5,10,15,20-tetraphenyl-
porphyrinatocobalt (II) complex (Co(II)TPP) during 
the oxidation of 3,5-di-tert.-butylcatechol (3,5-
DTBC) with molecular oxygen to the relevant 
quinone (catecholase like activity) .   
 
 
2. Experimental 

2.1. Materials and methods 
According to the published methods, 5,10,15,20-
tetraphenylporphyrinatocobalt(II) was synthesized 
and purified ( Alder et al. 1967; Smith 1975). 3, 5-di-
tert.-butylcatechol (3,5-DTBC) was purchased from 
Across Co. (Germany). Meanwhile, 
dimethylformamide (DMF) was obtained from 
Sigma-Aldrich Co. (USA). Taking into consideration 
that all utilized chemicals (analytical grade) were 
used as received without further modification. 

2.2. Instruments 

On a Varian Germany 200 NMR, 1H-NMR spectra 
were collected. The FT-IR spectra were acquired 
utilizing KBr Pellets on a Perkin-Elmer 1420 
spectrophotometer in the range 4000-400 cm-1. Spin 
resonance of electrons A JEOL-X-band 
spectrophotometer (500-5500) GAUSS JES-FE 2XG 
(It was equipped with an E 101 microwave bridge) in 
order to obtain ESR spectra. The internal standard 
was diphenyl-1-picryl-hydrazone (DPPH) (g = 
2.0023). 
 

2.3 Oxidation reactions 
The oxidation procedures of 3,5-DTBC were 
conducted as described earlier (Hassanein et al. 2005, 
2017), using via dissolving Co(II)TPP (1.0x 10-5 M) 
in 25 mL of DMF and magnetically stirred in  at 40 o 

C and a dioxygen pressure of 740 mmHg. To monitor 
response rates, a gas burette was employed. The 
reaction product was detected using 1H NMR and IR 
techniques after column chromatography on silica gel 
(60-100 mesh) with a combination of petroleum ether 
and ethyl acetate as the eluent. 1H NMR and IR 
techniques. 
 1H-NMR (DMSO, (CH3)4Si): δ 1.19 (s, 9H, tBu), 
1.22 (s, 9H, tBu), 6.138 (d, 1H, Ph-H), 6.97 (d, 1H, 
Ph-H) ppm; IR (KBr) vcm-1: 1656.55(vC=O), 2960.2 
(vCH alkyl protons). All kinetic experiments were 
repeated twice, yielding consistent findings. 
 
3. Results and discussion 
3.1. Catalytic oxidation of 3,5-DTBC with molecular 

oxygen . 
In DMF, Co (II)TPP's catecholase-like activities was 
evaluated utilizing 3,5-DTBC as a substrate (Scheme 
1). The amount of dioxygen consumed was measured 
that used a gas burette to calculate the rate of 3,5-
DTBC consumption. 3,5-DTBC was oxidised under 
conventional circumstances of 740 mmHg dioxygen 
pressure at 40 °C for 3 h, yielding 75% of 3,5-DTBQ 
and unreacted 3,5-DTBC. Using the same conditions 
of reaction but without Co (II)TPP, only 5% of 3,5-
DTBQ was synthesized. The oxidation reaction of 
3,5-DTBC catalyzed by Co(II)TPP is roughly four 
times faster than the oxidation of 3,5-DTBC if the 
catalyst isn't present, according to the initial rate 
constant kobs determined from plots of oxygen 
consumption versus time. 
 
 
 
 
 
 
 
Scheme 1: Catalytic oxidation of 3,5-DTBC with molecular   
                  oxygen 
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Castro et al., (Castro et al. 2016) reported previously 
that in a methanol/phosphate buffer, catalytic 
oxidation of 3,5-DTBC in the presence of soluble 
copper based porphyrins achieved conversions of 28 
to 31.4 % of 3,5-DTBC to 3,5-DTBQ. In comparison 
to reported earlier, soluble copper porphyrin 
complexes, the current investigation found that Co 
(II)TPP has high catalytic activity for oxidation of 
3,5-DTBC toward the relevant quinone. The 
dependence of the rate of 3,5-DTBC conversion to 
3,5-DTBQ on the various reaction factors, including 
such the concentration of  Co (II)TPP and the 
substrate as well as the temperature and oxygen 
pressure has been investigated. 
      
  3.2. Effect of concentrate on of Co (II)TPP on the 

oxidation of 3,5-DTBC. 

  As illustrated from Fig. 1 Varying concentration of 
Co(II)TPP from 1.0 x 10-5 mol/L to 4.0 x 10-5 
mol/Lwere used in the reaction while keeping other 
parameters constant 3,5- DTBC (1.0 x 10-3M) in 25 
ml of DMF at 40 ˚C, the initial rate constants kobs of 
the oxidation process of 3,5-DTBC rose linearly with 
increasing the concentration of Co(II)TPP . 

Figure 1: Effect of different concentration of Co(II) TPP  on the 
initial rate constant kobs .  All experimentals were carried out at 
dioxygen pressure of 740 mmHg. with magnetic stirring of 3,5- 
DTBC (1.0 x 10-3M) in 25 ml of DMF at 40 ˚C 
 

3.3. Effect of concentrate on of 3,5-DTBC on the 

oxidation reaction. 
Data illustrated in Fig. 2 show the effect of different 
concentration of 3,5-DTBC (0.5 x 10-3 mol/L to 3.0 x 
10-3 mol/L) on the initial rate constants kobs of 
oxidation reaction.  The rate constant kobs of 
oxidation reaction increased with increasing the 
concentration of 3, 5-DTBC up to 1.0 x 10-3 mol/L 
and then leveled off.  The data fit a Michaelis-Menten 
kinetic model for saturation of the catalyst site ( 
Johnson and Goody 2011), as seen in Fig. 2  and the 
double reciprocal Lineweaver-Burk plot (Fig. 3) 
(Lineweave and Burk 1934). It nonetheless suggests 
that in a pre-equilibrium phase, an intermediate metal 
complex-substrate adduct could develop. The 
obtained data was proved by Banerjee et al. who 
found similar results mostly on oxidation of 3,5-

DTBC mediated by Schiff-base Cobalt(II) complexes 
(Banerjee et al. 2013). The maximal response rate 
Vmax=5.5 x 10-6 M min-1, Michaelis constant KM = 
2.69 x 10-4 M, and kcat = 33 h-1 were estimated 
through using Lineweaver–Burk plot. 
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Figure 2: Dependence of initial rate constant kobs on the 
concentration of 3,5-DTBC . Experimentals were carried out under 
reaction conditions reported in Fig. 1, using 1.0 x 10-5 M of 
Co(II)TPP 
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 Figure 3: Lineweaver-Burk plot for the data in Figure 2 

 
 
 

3.4. Effect of the partial pressure of molecular oxygen 
on the oxidation of 3, 5-DTBC. 

 
The effect of dioxygen partial pressure on the 
oxidation of 3,5-DTBC was investigated using an 
oxygen/nitrogen combination to create a decreased 
partial pressure of 1 atm on the reaction mixture. As 
demonstrated from Fig. 4 and the double reciprocal 
plot (Fig. 5), the initial rate constants kobs are 
dependent on the partial pressure of dioxygen for 
catalyst site saturation. 
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Figure 4: The initial rate constant kobs versus by the partial 
pressure of dioxygen. The reactions were carried out according to 
the reaction conditions shown in Figure 2 
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Figure 5:  Lineweaver-Burk plot for the data in Figure 4 

 
3.5. Effect of reaction temperature on the oxidation 

of 3,5-DTBC. 

 
The Arrhenius activation energy (Ea) was 40 KJ/mol 
when the rate constant kobs was temperature 
dependent from 40 to 60 ºC (Fig. 6). 

 
 
 

 

 

 

 

 

 

 

 

Figure 6: The Arrhenius plot of rate data at 40-60ºC under the 
conditions in Fig. 1, using 1.0 x 10-5 M of Co(II)TPP. 

3.6 Proposed mechanism 
When 3,5-DTBC is catalytically oxidised, ESR 
spectra measurements revealed that, the ESR signal is 
depicted in Fig. 7, which corresponds to 3,5-DBSQ. 
(go = 2.09, aH = 3300 Gauss). 
 
 
 
 

 
 

Figure 7:  X-band ESR spectrum of 3,5-di-tert-butyl-1,2-
semiquinone anion radical detected during the progress of reaction. 
Reaction was carried out under experimental conditions reported in 
Figure 4 at 740 mmHg. 

 

 
The possible explanation for the oxidation of 3,5-
DTBC catalysed by Co(II)TPP is outlined in Scheme 
2. Based on the rate dependency on 3,5-DTBC 
concentration, dioxygen pressure, and the visible 
intermediate from ESR measurements, which 
revealed mostly by ESR signal matching to 3,5 di-
tert-butyl-1,2-semiquinone anion radical (3,5-DBSQ.) 
(Figure 7). In addition, Scheme 2 depicts a suggested 
process for the oxidation of 3,5-DTBC catalyzed by 
Co(II)TPP. In a reversible process, dioxygen binds to 
CoII porphyrin complex to create a superoxo cobalt 
prophyrine LCoIII O2

., which interacts with 3,5-
DTBC to generate the ternary catalyst-substrate-
dioxygen complex LCoIII 3,5-DTBC O2 intermediate 
(steps 1 and 2 in Scheme 2). Steps 1 and 2 are 
considered to be in a state of pre-equilibrium. 

 
Within the ternary complex, the abstraction of 
intramolecular hydrogen from the substrate reveals 
that the hydroperoxo cobalt porphyrin complex 
(LCoIIIO2H) and the semiquinone anion radical (3,5-
DBSQ.) (step 3) ( Simándi and Simándi  1998 ). The 
hydroperoxocobalt porphyrin complex LCoIIIO2H 
undergoes disproportionation, regenerating oxygen 

and producing the hydroxocobalt porphyrin complex 
LCoIII(OH) (step 4). The hydroxocobalt porphyrin 
complex reacts with semiquinone anion radical to 
produce 3,5-DTBQ. , in which oxygen was reduced to 
H2O (step 5). 
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Scheme 2: the steps for the oxidation of 3,5-DTBC that catalysed   
                  by Co(II)TPP 

 
 

4. Conclusion    
Cobalt (II)tetraphenylporphyrin complex has been 
found to be a selective catalyst for the oxidative 
dehydrogenation of 3,5-di-tert-butylcatechol to the 
corresponding 1,2-benzoquinone via molecular 
oxygen. The system investigated demonstrated 
catecholase-like activity, based on free-radical 
intermediates. The rate constant of the oxidation 
process was linearly related to catalyst concentration. 
Data fit a Michaelis-Menten kinetic model for 
saturation of the catalyst site with raising the 
concentration of both 3,5-di-tert-butylcatechol 
concentration and dioxygen pressure. Proposed 
mechanism have been investigated based on kinetic 
data, assuming the production of a ternary complex 
involving catalyst, substrate, and dioxygen followed 
by  the abstraction of intramolecular hydrogen  atom 
from the substrate reveals that the formation of 
hydroperoxo cobalt porphyrin complex (LCoIIIO2H) 
and the semiquinone anion radical (3,5-DBSQ.) 
which detected by ESR spectroscopy. 
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