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Abstract 

Through heating processes, electrical conductivity plays a crucial role in the food industry. The effects of Joule 

heating and temperature-dependent electrical conductivity on the boundary layer flow of micropolar fluid were the 

main topics of this paper. Considerations include thermal radiation, activation energy, and microstructural/multiple 

slips effects. The resulting partial differential equations system (PDEs) is transformed into a nonlinear ordinary 

differential equations model using the proper similarity variables (ODEs). The shooting technique, a highly 

reliable/accurate technique, is used to obtain semi-analytical results. In Mathematica13.1.1, apply the generalised 

differential transform method (GDTM), Dawar 2021 newly published results are used to approve/confirm the 

accuracy of the acquired results. Findings demonstrate that the parameter of temperature-dependent electrical 

conductivity enhances fluid temperature and increases energy gain in the heating operation system, which is 

important for the design of Ohmic heaters (food industry processes).  

Keywords: Non-constant electrical conductivity; Microstructure/multiple slip; Activation energy; Micropolar 

fluid; Mathematica 13.1.1.  

Introduction 

     When materials are cooled to extremely low 

temperatures, a phenomenon known as electrical 

conductivity/specific conductance takes place, where 

superconductors allow electricity to travel through 

without experiencing any electrical resistance. For the 

initial definition of electrical conductivity [1]. 

Kamerlingh Onnes conducted tests in 1911 to 

determine whether the Metal resistance at low 

temperatures would continue to drop linearly with the 

reduction in temperature or would be fixed at a 

particular value. The causes of electrical conductivity 

and its many applications, such as in electrical 

operations like particle accelerators, digital electrical 

circuits, and magnetic resonance imaging devices, as 

well as in medical processes like magnetic resonance, 

cables superconductivity, were first studied by 

researchers, investigators, and modelers [2–6]. 

Obalalu et al. [7] modification of the conductivity of 

electricity influence on the flow of Casson nanofluid 

was introduced in the context of fluids. They proposed 

that the link between fluid temperature and electrical 

conductivity is inverse. The impact of Joule 

dissipation in peristaltic nanofluid flow was instead 

researched by Qasim et al. [8]. They suggested that 

there is a direct correlation between electrical 

conductivity and fluid temperature. This work 

introduces a novel theoretical perspective on the 

relationship between fluid temperature and electrical 

conductivity. We should investigate the experimental 

relationship between electrical conductivity and fluid 

temperature before making a judgement regarding this 

relationship. As a result, every experiment that has 

been done has demonstrated a connection between 

electrical conductivity and fluid temperature. 

    In applications like micro-pumps, hard disc 

drives, micro-valves, and nozzles, slip flows are 

regarded as the most important problem of 

microsystems. Dawar et al. [9] investigate the impact 

of first and second-order slip flow on the MHD 

micropolar boundary layer flow. They claimed that 

compared to a non-microstructural slip, a 

microstructural slip has a greater visible effect on the 

distribution of velocity due to high magnetic 

parameter values. Mabood and Shateyi [10] thought 

carefully about the effects of heat radiation and 

numerous slips on an unstable flow with sheets that are 

stretched. They discovered that the slip parameter's 

values result in a drop in fluid velocity close to the 
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boundary layer. Mahmoud and Waheed [11] discussed 

how magnetic fields affect micropolar fluid flow. 

Afzal and Aziz [12] investigated the impact of MHD 

slip and changing thermal conductivity on nanofluid 

flow with heat and mass transfer. Numerous 

researchers and modelers have explored the effects of 

slip on flow and its applications in this direction [13-

20]. 

     We selected a highly numerical methodology 

termed by shooting method combination with Runge-

Kutta method to produce the results/solutions of the 

MHD boundary layer flow of micropolar fluid that are 

provided in the current work (ODE45). The shooting 

method is typically thought of as a highly constructive 

method in numerical analysis that uses dropping the 

boundary value problem to an initial value problem to 

solve it. Up until a solution is found that also fulfils the 

boundary value problem's boundary conditions, it 

entails finding initial value problem solutions for a 

variety of initial conditions. Merle proposed the 

shooting method in 1988 [21], and it was he who found 

the solution to the nonlinear Dirac equations. The 

shooting technique was first used by Hasanuzzaman et 

al. [22] to solve the Problem with MHD boundary 

layer flow involving the influence of transpiration. 

MHD Casson Nanofluid Laminar Boundary Layer 

Flow was investigated by Lanjwani et al [23] using the 

shot method. The shooting approach is frequently used 

by authors and researchers to find answers to 

numerous boundary value problems [24–28].  

The primary goal of this investigation is to provide 

a novel theoretical framework for the impacts of 

temperature-dependent electrical conductivity, 

microstructure, and multiple slips on the MHD 

boundary layer flow of micropolar fluid by employing 

a very precise method known as the shot method. The 

proposed model's solution is presented in two separate 

scenarios, the first involving a viscous fluid (α=0), and 

the second using a micropolar fluid (α=1). Results for 

temperature gradients, velocity gradients, and 

distributions of the concentration of nanoparticles are 

provided in various mentioned instances. With the 

help of Mathematica 13.1.1 and advanced shooting 

method algorithms, the findings given were obtained.  

 

Experimental 

     Consideration is given to the flow of micropolar 

fluid within a stretching sheet. Conditions for a 

microstructure slide are taken into account. The 

velocity of the stretching sheet is supposed to 𝑢𝑠 =
 𝑎𝑥 where (a) the stretching rate. Applied magnetic 

field 𝐵0 strength in the y-axis of constant value. In 

view of the formulated problem, the governing 

equations can take the form [20]: 
𝜕𝑢′

𝜕𝑥′ +
𝜕𝑣′

𝜕𝑦′ = 0,                                                                 (1) 

𝑢′ 𝜕𝑢′

𝜕𝑥′ + 𝑣′ 𝜕𝑢′

𝜕𝑦′ =
𝜅

𝜌

𝜕𝑁′

𝜕𝑦′ +
𝜕2𝑢′

𝜕𝑦2′ −
𝜎(𝑇′,𝐶′)𝐵0

2

𝜌
𝑢′ +

𝑔{𝛽𝐶(𝐶′ − 𝐶′
∞) + 𝛽𝑇(𝑇′ − 𝑇′

∞)},                          (2) 

𝑢′ 𝜕𝑁′

𝜕𝑥′ + 𝑣′ 𝜕𝑁′

𝜕𝑦′ =
Ω

𝜌𝑗

𝜕2𝑁′

𝜕𝑦2′ −
𝜅

𝜌𝑗
(2𝑁′ +

𝜕𝑁′

𝜕𝑦′),         (3)       

𝑢′ 𝜕𝑇′

𝜕𝑥′ + 𝑣′ 𝜕𝑇′

𝜕𝑦′ =
𝑘

𝜌𝑐𝑝
(1 +

16

3

𝜎∗𝑇0
3

𝑘𝑘∗ )
𝜕2𝑇′

𝜕𝑦2′ +

𝜎(𝑇′,𝐶′)𝐵0
2

𝜌𝑐𝑝
𝑢2′ + 𝜏 [𝐷𝐵

𝜕𝑇′

𝜕𝑦′

𝜕𝐶′

𝜕𝑦′ +
𝐷𝐵

𝐷𝑇
(

𝜕𝑇′

𝜕𝑦′)
2

],                 (4) 

𝑢′ 𝜕𝐶′

𝜕𝑥′ + 𝑣′ 𝜕𝐶′

𝜕𝑦′ = 𝐷𝐵
𝜕2𝐶′

𝜕𝑦2′ + 𝐾𝑟
2(𝐶′ −

𝐶∞
′ ) (

𝑇′

𝑇∞
′ )

𝑛

𝑒
(

−𝐸𝑎
′

𝐾𝐵𝑇′)
.                                                     (5)             

 Where, the spin (Ω) gradient velocity which 

defined as the follows: 

Ω = μ (1 +
𝛼

2
) 𝑗,                                                              (6) 

Here, the micropolar (𝛼 =
𝜅

𝜇
) parameter.  

The chosen/appropriate boundary conditions are 

described as follows [9]: 

𝑢′ = 𝑢𝑠 + 𝑢𝑠𝑙𝑖𝑝 , 𝑣′  = 0, 𝑁′ − 𝑛
𝜕𝑢′

𝜕𝑦′ , 𝑇′ = 𝑇𝑠
′, 𝐶′ =

𝐶𝑠
′ at 𝑦 = 0,                                                               (7) 

𝑢′ → 0, 𝑁′ → 0, 𝑇′ → 𝑇∞
′ , and 𝐶′ → 𝐶∞

′  as 𝑦 → ∞              

(8) 

     Here, the micro-rotation (𝑛) parameter, the fluid 

(𝐶, 𝐶𝑠) nanoparticles concentration and nanoparticles 

concentration near the surface, the ambient fluid (𝐶∞) 

nanoparticles concentration, the coefficient of  (𝐷𝐵) 

Brownian diffusion, the coefficient of thermophoretic 

(𝐷𝑇) diffusion, the gravitational (𝑔) acceleration, the 

thermal (𝑘) conductivity, the coefficient of mean (𝑘∗) 

absorption, the Stefan-Boltzmann (𝜎∗) constant, the 

fluid (𝑇, 𝑇𝑠) temperature and temperature near to the 

surface, the nanoparticles concentration (𝛽𝐶) 

expansion, the thermal (𝛽𝑇) expansion, the vortex (𝜅) 

viscosity,  the dynamic (𝜇) viscosity. 𝜎(𝑇′, 𝐶′) is the 

variable electrical conductivity, which defined as: 

𝜎 = 𝜎0 [1 + 𝜖 (
𝑇′− 𝑇∞

′

𝑇s
′− 𝑇∞

′ ) + 𝛽 (
𝐶′− 𝐶∞

′

C′− 𝐶∞
′ )],            (9)                                        

Here, 𝜎0 is the constant electrical conductivity case, 

𝜖 is the temperature-dependent electrical conductivity 

parameter and 𝛽 is the nanoparticles concentration-

dependent electrical conductivity parameter.         

The appropriate transformations are proposed: 

𝜓 = √𝑎𝜈𝑥𝑓′(𝜂), 𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 =

𝜕𝜓

𝜕𝑥
, 𝑁 =  𝑎𝑥 √

𝑎

2𝜈
𝑔(𝜂), 

𝜂 = 𝑦 √
𝑎

𝜈
𝑦, 𝜃(𝜂) =

𝑇′− 𝑇∞
′

𝑇s
′− 𝑇∞

′     and 𝜙(𝜂)=
𝐶′− 𝐶∞

′

C′− 𝐶∞
′ .    (10)                                                     

Here 𝜂 is the similarity variable, 𝑓(𝜂) is the non-

dimensional stream function, 𝑓′(𝜂) axial velocity, 

𝜃(𝜂) is the temperature, 𝑔(𝜂) is the micropolar 

particles rotation, and 𝜙(𝜂) nanoparticles volume 

fraction, correspondingly. The governing system of 

differential equations are transformed/ non-

dimensional as follows. 

(1 + 𝛼)𝑓′′′ + 𝑓𝑓′′ − 𝑓′ 2 − 𝛼𝑔′ + 𝛾1𝜃 + 𝛾2𝜑 −
𝑀 (1 + 𝜖 𝜃 + 𝛽𝜑) 𝑓′ = 0,                                      (11) 

(1 +
𝛼

2
) 𝑔′′ + 𝑓𝑔′ − 𝑔𝑓′ − 𝛼(𝑓′′ + 2𝑔) = 0,       (12)                                        
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(1+𝑅𝑑)𝜃′′

𝑃𝑟  
+ 𝑁𝑏 𝜃′𝜙′ + 𝑁𝑡 𝜃′2

+ 𝑆 𝜃 + 𝐸𝑐  (1 +

𝛼)𝑓′′2
+ 𝑓𝜃′ + 𝑀 (1 + 𝜖 𝜃 + 𝛽𝜑) 𝐸𝑐  𝑓

′2
= 0,    (13) 

𝜑′′ +  𝑓𝜑′(𝜂) +
𝑁𝑡

𝑁𝑏
𝜃′′(𝜂) − 𝑃𝑟𝐿𝑒(1 +

𝛿 𝜃(𝜂))
𝑛

𝑒
(

−𝐸

1+𝛿 𝜃(𝜂)
)
𝜑(𝜂) = 0.                                 (14) 

With boundary conditions: 

𝑓(0) = 0, 𝑓′ (0) = 1 + 𝛾𝑓′′(0) + 𝛿1𝑓′′′(0) +
𝑅0 𝑔′(0), 𝑔(0) = −𝑚𝑓′′, 𝜃(0) = 1, 𝜙(0) = 1,   (15) 

 𝑓′(∞) = 0, 𝑔(∞) = 0, 𝜃(∞) = 0, 𝜙(∞) = 0. (16)                                 

Where, 𝑀 =  
2𝜎0 𝐵0

2

 𝜌 𝑎
 is the Hartmann number, 𝐾𝑝 =

2 𝜐

𝑎 𝐾 𝑝0
  is the porous parameter   𝑃𝑟 =

𝜐

𝛼
  is the Prandtl 

number,𝑅𝑑 =
16 𝜎∗  𝑇∞

3

3 𝑘 𝑘∗  is the radiation parameter 

   𝐸𝑐 =  
𝑢s

2

𝑐𝑝 (𝑇s−  𝑇∞)
 is the Eckert number, 𝑆 =

2𝚤𝑄0

𝑎𝜌𝐶𝑝
,is 

the heat source factor  𝑁𝑏 =
𝜏𝐷𝐵 (𝐶w−  𝐶∞)

𝜐
  is the 

Brownian motion parameter, 𝑁𝑡 =
𝜏𝐷𝑇 (𝑇s−  𝑇∞)

𝜐𝑇∞
 is the 

thermophoresis parameter,  𝜆 =
𝑣0

√𝑎𝑣
 is the 

transpiration parameter, species, 𝐿𝑒 =
𝜈

𝐷𝐵
 𝑖s the Lewis 

number, 𝛿 =
𝑇𝑠

′−𝑇∞
′

𝑇∞
′  is the temperature difference 

parameter and 𝐸 =
𝐸𝑎

𝐾𝐵𝑇′ is the Activation energy. 

     By using the proper similarity variables and 

boundary conditions, the ordinary differential 

equations system (11–14) is transformed into a 

nondimensional system (15-16). Utilizing the 

superposition technique, the Higher-order values are 

extracted using the GDTM technique after obtaining 

the initial conditions and first order of the differential 

equation. The answers of differential equations system 

can be obtained accurately and efficiently using this 

method [29–31].  

The general nth order ordinary differential equation can 

be written as:  

𝑦(𝑡, 𝑓, 𝑓′, . . . , 𝑓⁽ⁿ⁾) = 0.                            (17) 

This equation is subjected to the initial guess. 

𝑓(𝑘)(0) = 𝑑𝑘, 𝑘 = 0, . . . , 𝑛 − 1.                    (18) 

Let 𝑓(𝑡) be analytic in a domain 𝐷 and let 𝑡 = 𝑡₀ 

represent any point in 𝐷. The 𝑘𝑡ℎ derivative 

transformation of a function 𝑓(𝑡) can be defined as 

follows: 

𝐹(𝑘) = (
1

𝑘!
) [(

𝑑(𝑘)𝑓(𝑡)

𝑑𝑡(𝑘) )]
(𝑡=𝑡0)

, ∀𝑡 ∈ 𝐷.        (19) 

 

Results and discussion 

Here, the velocity, micro-rotation velocity, 

temperature, and nanoparticle concentration are 

numerically analysed for different values of the 

physical components involved in the problem to 

emphasise the implications of these parameters in 

more detail. The values listed below are also used as 

the benchmark for these parameters: 

     𝛼 = 0.1, 𝑁𝑏 = 0.2 , 𝑁𝑡 = 0.3 , 𝑆 = 0.2 , 𝛾1 =
1, 𝛾2 = 0.8, 𝐸𝑐  = 0.2 𝜖 = 0.2, 𝛽 = 0.2, 𝐸 =
2  , 𝛿 = 0.1 , 𝑅𝑑 = 1 , 𝛾 = 0.7 , 𝑚 = 0.4 , 𝛿1 =
−1, 𝑅0 = 0.1 , 𝑃𝑟 = 1 , 𝐿𝑒 = 0.2  

    The dimensionless viscosity ratio 𝛼 measures the 

relative strengths of the vortex viscosity coefficient 

to the viscosity coefficient. The coefficients listed 

here are higher than or equal to 0. For example, the 

blood, 𝛼 = 0.08. Figs. (1) and (2) show the change 

of the velocity 𝑓′ versus the dimensionless 

coordinate 𝜂 for different values of thermal Grashof 

number 𝛾1 and the dimensionless viscosity ratio 𝛼  in 

case of temperature and nanoparticles concentration 

depend on electrical conductivity, respectively. It is 

seen, from these figures that the velocity increases 

with the increase of 𝛾1, whereas it decreases as  𝛼 

increases, this is due to the fact that the effect of the 

viscosity coefficient on fluid flow creates a 

resistance force which may decreases the fluid 

motion. For large values of 𝛼, the velocity decreases 

with 𝜂 till a definite value 𝜂 = 𝜂0 (represents the 

minimum value of 𝑓′) and it increases afterwards. 

The effects of the slip velocity parameter 𝛾 on the 

velocity which is a function of 𝜂 are shown in Fig. 

(3). It is found that the velocity 𝑓′ distribution 

decreases by increasing 𝛾 in the interval 𝜂 ∈ [0, 2.4]; 

otherwise, it increases by increasing 𝜂. So, the 

behavior of g in the interval 𝜂 ∈ [0, 2.4], is an 

inversed manner of its behavior in the interval 𝜂 ∈ 

[2.4, 5] except that the curves are very close to each 

other than those obtained in the first interval. 

 

 
      

 
 

 

 
Fig.1 The velocity component is plotted against   for the 

variation value of 𝛾1. 

 

 
Fig. 2 The velocity component is plotted against    for the 

variation value of 𝛼. 
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     The effects of the dimensionless viscosity ratio 𝛼 

in case of temperature and nanoparticles concentration 

don’t depend on electrical conductivity on the 

microrotation g which is a function of 𝜂 are shown in 

Fig. (4). It is found that the microrotation distribution 

increases by increasing 𝛼. Moreover, for large values 

of 𝛼, the microrotation increases with 𝜂 till a definite 

value 𝜂 = 𝜂0 (represents the maximum value of g) and 

it decreases afterwards. Figs. (5) and (6) show the 

behavior of the microrotation g with the dimensionless 

coordinate 𝜂 for various values of the magnetic field 

parameter M and the thermophoresis parameter Nt, 

respectively. It has been noticed that the microrotation 

distribution increases by increasing M in the interval 𝜂 

∈ [0, 1.3]; otherwise, it decreases by increasing 𝜂. 

While the effect of Nt is to decrease g in the interval 𝜂 

∈ [0, 2.1], and it has an inversed manner in the interval 

𝜂 ∈ [2.1, 5] except that the curves are very close to 

each other than those obtained in the first interval. In 

this case, for large values of M, and small values of Nt 

there is a maximum value of g holds at 𝜂 ≅0.4. The 

effects of the other parameters are recorded to be 

similar to them; these figures are left out here to avoid 

repetition.  

       Figs. (7) and (8) show the behavior of the 

temperature 𝜃 with the dimensionless coordinate 𝜂 for 

various values of the thermophoresis parameter Nt and 

thermal Grashof number 𝛾1, respectively. It has been 

noticed that the temperature increases with the 

increases of Nt, while it decreases as 𝛾1 increases. It is 

also noted that for each value of both Nt and 𝛾1, 𝜃 

decrease as 𝜂 increases and the relation between 𝜃 and  

𝜂 seems as a hyperbolic.        

       The result in Fig. (7) is caused by the 

thermophoresis effect, which is a force caused by the 

temperature difference between the hot liquid and the 

cold wall that moves the particles towards the cold 

wall. 

 

 

 
 

 

 
 

 
Fig.3. the velocity component is plotted against   for the 

variation value of 𝛾. 

 
Fig. 4 The microrotation velocity is plotted against   

for the variation value of  𝛼. 

 

 
Fig. 5 The microrotation velocity is plotted against   for 

the variation value of M. 

 

 
Fig. 6 The microrotation velocity is plotted against   for 

the variation value of Nt. 

 

 
Fig. 7  The temperature is plotted against   for the 

variation value of Nt. 
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       The variations of the nanoparticle’s concentration 

distribution 𝜑 with the dimensionless coordinate 𝜂 for  

various values of activation energy parameter Ea and 

the reaction parameter 𝜎 are displayed in Figs. (9) and 

(10), respectively. The graphs in Figs. (9) and (10) 

show that as the parameter Ea is increased, the 

nanoparticle concentration distribution also increases. 

while it decreases by increasing the parameter 𝛼, 

respectively. It is also noted that for small  values of Ec 

and large values  of  𝜎,  the  relation  between  𝜑  and  

𝜂 is  a parabola, i.e. 𝜑  increases  with  𝜂 till  a  definite  

value 𝜂 = 𝜂0 (represents  the  maximum  value  of  𝜑 )  

and  it  decreases  afterwards. This maximum value of 

𝜑  increases by increasing Ea, while it decreases by 

increasing 𝜎. The results which are obtained in Fig. 

(10), are consistent with the findings of Eldabe et al. 

[32].  Other parameters have an effect on the 

temperature, but they are recorded to be similar to 

those obtained in Fig. (9) and (10). In order to preserve 

space, figures are not included here. Figure (11) 

displays the effect of magnetic field parameter M on 

the nanoparticle’s concentration distribution 𝜑 which 

is a function of 𝜂. It is found that the nanoparticles 

concentration decreases by increasing M in the interval 

𝜂∈ [0, 1.43]; otherwise, it increases by increasing 𝜂. 

So, the behavior of 𝜑 in the interval 𝜂∈ [0, 1.43], is an 

inversed manner of its behavior in the interval 𝜂∈ 

[1.43, 5], and in the first interval, there is a maximum 

value of 𝜑holds at 𝜂 =0.44. 

 

 
 

 
 

Conclusion 

       The activation energy effect as well as 

temperature and nanoparticle concentration-

dependent conductivity are both included in this 

problem, expanding upon the work of [20]. The 

velocity, temperature, and concentration extremely 

nonlinear partial differential equations are transformed 

into nonlinear ordinary differential equations using the 

appropriate transforms. By using DTM and a program 

from the MATHEMATICA package, we were able to 

numerically solve this set of equations. The current 

analysis can act as a model that could aid in 

understanding physiological flux mechanics [33–53]. 

Following is a summary of the results that were 

attained. 

1. By increasing both Nt and 𝛾1, the velocity 

increases while it decreases as 𝛼, M and 𝛽 increase. 

Moreover, it increases or decreases as 𝛾 increases. 

2. The microrotation velocity distribution increases 

or decreases as Nt, 𝛾1, 𝛼, M, 𝛾 and 𝛽  increase. 

3. The microrotation velocity becomes greater with 

increasing the dimensionless coordinate 𝜂 and 

reaches maximum value, after which, it decreases. 

4. The temperature distribution increases as Nt, 𝛼, 

M, 𝛾 and 𝛽   increase, while it decreases when 𝛾1 

increases. Furthermore, it increases or decreases as 

the problem's other physical parameters increase. 

5. The nanoparticles concentration behavior is 

contrary with respect to the temperature behavior 

except that it decreases as 𝛼 and 𝜎  increase. 

 
Fig. 8 The temperature is plotted against   for the 

variation value of 𝛾1. 

 

 
Fig. 9 The nanoparticles concentration is plotted against 

  for the variation value of Ea. 

 

 
Fig. 10 The nanoparticles concentration is plotted 

against   for the variation value of 𝜎. 

 

 
Fig. 11 The nanoparticles concentration is plotted against 

  for the variation value of M. 
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