

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Raman and Infrared Spectral Analysis, Normal Coordinate Analysis, DFT calculations of Novel Schiff Base Containing di-imine moieties

Ahmed. Nasser^{a, b*}, M. A. Migahed^b, N. M. EL Basiony^{b, c}, H. M. Abd-El-Bary^d,

Tarek A. Mohamed^{*d}

^aThe Higher Institute of Engineering, New Elmarg, El-Qalyubia, Egypt. ^bEgyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt. ^cSchool of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

^dDepartment of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University, Cairo, Egypt.

Abstract

The Raman (3500–100 cm⁻¹) and mid-infrared (4000–400 cm⁻¹) spectra in addition to the ¹H NMR chemical shifts (δ , ppm) of (($N^{1}Z$, $N^{4}E$)- N^{1} , N^{4} -bis (4 (dimethylamino) benzylidene) butane 1,4-diamine) Schiff base (Molecular formula, C₂₂H₃₀N₄) has been recorded. Moreover, we have carried out full geometry optimization followed by frequency calculations using the DFT-B3LYP method employing 6-31+G(d) basis set to include the polarization and diffusion functions. The Raman activities and infra intensities favour a slightly distorted symmetric molecule with an inversion center. Aided by the calculated wavenumbers assembled with Raman and infrared spectral observations, we have provided complete/reliable vibrational assignments for all fundamentals with the exception of those anticipated below 100 and 400 cm⁻¹, respectively, this is true regardless of whether or not any fundamentals were found either overlapped or coincident. Analyses of normal coordinates provide support for the prevailing spectral interpretations, that were based on the computed atomic displacements in x, y and z Cartesian coordinate (ADCC) from B3LYP/6-31+G(d). All results are reported herein and compared with similar molecules whenever appropriate.

Keywords: Schiff base; Infrared; Raman; Vibrational Assignment and DFT.

1. Introduction

Schiff bases are classified as a subclass of imines (R_1 >C=N- R'), R' \neq H, known as azomethines and could be considered as nitrogen analog of an aldehyde or ketone [1]. Otherwise, they are categorized as uni-, di-, tri-, and tetra-dentate ligands depending on the number of donor atoms in which the nature of the primary amine/diamine and the type of aldehyde/ketone determine the donor nature [2,3]. Schiff bases/imines are crucial synthetic intermediates [4], they are widely used in design of chemosensors/probes, detection of various toxic

analytes, agriculture, imaging of various analytes in biological systems and molecular recognition [5-7]. There are numerous uses for Schiff base complexes, including pharmaceutical [8], medical/antimicrobial fields (drug delivery, cancer, diagnosis, tissue regeneration, wound healing, tissue adhesives) [9-11], bioinorganic chemistry, water treatment, catalysis, material science, supramolecular chemistry, separation and/or encapsulation processes as well as in the development of substances with unique structural features [12, 13]. Moreover, Schiff bases have been proven to be efficient at preventing corrosion [14-16]. Therefore, the organic/inorganic framework of Schiff bases and their applications are brought to the attention of computational chemists

*Corresponding author e-mail: <u>Tarek A. Mohamed: tarek_ama@azhar.edu.eg; Ahmed.Nasser:Ahmednasser1992@outlook.com</u> EJCHEM use only: Received date 2022-11-02; revised date 2022-12-19; accepted 2022-12-22 DOI: 10.21608/EJCHEM.2022.172441.7143

^{©2023} National Information and Documentation Center (NIDOC)

DFT simulations, molecular through and modelling/docking approaches/procedures [8, 17-21] in addition to vibrational analysis [8, 22-27]. The $N^4 E$)- N^1 , N⁴-bis (4 $((N^{l}Z,$ (dimethylamino) benzylidene) butane 1,4-diamine) Schiff base is a promising corrosion inhibitor owing to the presence of two benzylidene rings and four nitrogen atoms. According to the literature survey and to the best of our knowledge neither vibrational nor computations were reported elsewhere for Schiff-B; MF C₂₂H₃₀N₄. Therefore, we have initiated the current vibrational (Raman and infrared) in addition to ¹H NMR spectral investigations. Further computations, using LCAO-MO-SCF quantum mechanical (QM) optimization followed by wavenumbers predictions were also carried out using DFT-B3LYP/6-31+G(d) basis set [28]. Aided by normal coordinate analysis using the atomic displacements of Cartesian produced coordinate (ADCC) in x, y and z directions, we can provide reliable and confident vibrational interpretations of the observed Raman and infrared bands. The results will be compared with similar molecules whenever appropriate.

2. Experimental

2.1. Chemicals

High purity grade used chemicals in this study were used purchased from alpha chemical company and have been used without further purification from various companies with as follow; 4-(Dimethyl amino) benzaldehyde, 1,4-Diaminobutane, Ethanol.

2.2. Synthesis of the Schiff Base

The Schiff-B was prepared using round flask water-cooled condenser. fitted with The 4-(Dimethylamino) benzaldehyde and 1,4-Diaminobutane (2:1 molar ratio in 25 mL of EtOH) were refluxed in a heating mantel with three droplets of HCl for 7h at 80°C with continuous stirring to yield (($N^{1}Z$, $N^{4}E$)- N^{1} , N^{4} -bis (4 (dimethyl amino)) benzylidene) butane 1,4-diamine), as shown in Scheme 1[29]. Adding HCl were kept to a minimum to avoid the protonation of imine nitrogen atom(s). After cooling, the product is filtered out and recrystallized from absolute ethanol, 82% percentage yield was obtained and m.p of 130 °C was reported

using Melting point apparatus (Stuart Scientific Co. Ltd).

2.3 Structural Characterization of Schiff-B

Structural characterizations of the synthesized " $((N^{1}Z, N^{4}E)-N^{1}, N^{4}-bis)$ (4 (dimethyl amino) benzylidene) butane 1,4-diamine), Molecular formula: C₂₂H₃₀N₄" have been emphasized by elemental analysis, infrared-, Raman- and NMRspectroscopic measurements, Figures 1A, 1B and Fig.2, respectively. CHNanalysis were obtained using a Vario Elementar Analyzer (Hanau, Germany) [30], the revealed (Calc/found) percentages were as follow; C: (75.39/75.30), H: (8.63/8.21) and N: (15.98/15.88). ¹HNMR, DMSO (Fig. 2): δ 2.9 (s, 12 H, 4 CH₃), 1.59 (m, 4H, 2CH₂), 3.48 (t, 4H, 2CH₂), 6.7 (d, 2H, J = 8.00 Hz, Ar-H), 7.5 (d, 2H, J = 7.33 Hz, Ar-H), 8.76 (s, 2H, CH enaminic). The vibrational spectra of the reactant's molecules have been already published; IR and Raman spectra of 4dimethylaminobenzaldehyde [31] in addition to the IR spectrum of butane-1,4-diamine [32]. The absence of the vibrational signatures of both the aldehyde and amino moieties confirms the formation of Schiff-B. The characteristic group frequencies of the carbonyl stretch were observed earlier [31] at 1666 (ms; R) is vanished herein. Whereas the sharp Raman bands at 1588 (vs) and 1552 (w) [31] were split herein at 1638 (vs) and 1607 (vs), considering C=N and C=C stretching modes. In addition to that, the IR extensive broadening from 2200-3500 cm⁻¹ owing to primary amine(s) hydrogen bonding (HB) interactions [31] were cleared-out in the IR spectrum of the investigated Schiff-B (Fig. 1A). Nevertheless, the observed Raman band above 3100 cm⁻¹ owing to intermolecular HB NH₂ for 1,4-diaminobutane [32] is absent in the Raman spectrum of Schiff-B (Fig. 1B). We will discuss in detail IR and Raman vibrational interpretations of our Schiff-B based on B3LYP/6-31+G(d) estimated frequencies, assisted by normal coordinate analysis based on atomic displacements in Cartesian coordinate (ADCC).

Fig (1): Experimental vibrational spectra of (Schiff-B); (A) IR spectrum given in black colour (4000–500 cm⁻¹) (B) Raman spectrum given in red colour (3500-55 cm⁻¹).

273

Fig (2): ¹HNMR spectrum of Schiff-B

2.4. Spectroscopic Measurements

The Fourier transform infrared (FTIR) spectrum of C₂₂H₃₀N₄ from 4000-400 cm⁻¹in the solid state was recorded on Shimadzu FTIR-8300. To acquire the FTIR spectrum (Fig. 1A), 32 accumulative scans were collected at 2 wavenumbers resolution using KBr disk technique. While, the Raman (4000-100 cm⁻¹) spectrum of the finely grinded powdered sample was recorded on Senterra dispersive Raman spectrophotometer (Fig. 1B), Bruker Optics. Laser wavelength of 532 nm, 300 mW, spot size of 1.0 µm, 4 cm⁻¹ resolution, 16 scans and 1 sec exposure time. Whereas the proton nuclear magnetic resonance spectrum (¹HNMR, Fig. 2) was obtained with the sample dissolved in DMSO-d₆ using 500 MHz Bruker Spectro spin instrument at Ultra Shield magnets, collecting 16 accumulative scans.

3. Computational Part

Due to the capabilities of computers two decades ago, it was difficult to accomplish full optimization for organic compounds with hetero atom(s) by standard *ab initio* calculations at higher levels than the Self-Consistent Field Hartree-Fock (SCF-HF) approach [33]. Recently, the hybrid Density Functional(s) Theory, DFT computations are considered effective and less costly particularly the Becke-Lee-Yang-Parr abbreviated as Becke3LYP functions [34,35] for small, medium and large molecular system [36-38]. On the other hand, the method of Moller Plesset perturbation method to second order (MP2) with and without full electron correlation [39] became less popular owing to high computational cost and incomplete optimizations particularly for large molecular systems [40-43], which is the case for our Schiff B. It worth to mention that, the current computations were limited to our PC specifications (intel Core i7, 10 Gen, 8GB Ram), therefore we could not perform MP2 computations since it fails with more efficient computers [44, 45]. We have performed LCAO-MO-SCF DFT calculations using GAUSSIAN 09 [46] molecular package implementing B3LYP parameters at 6-31+G(d) basis set. For geometry optimization, the energy minima with respect to the nuclear coordinates was obtained by simultaneous relaxation of all geometrical parameters using the gradient method of Pulay [47]. Structure optimization strategies were pursued up to the full convergence criteria in GAUSSIAN 09 (maximum force of 0.000450 mdyne and maximum displacement of 0.001800 Å). Then, the optimized geometry was used to estimate the vibrational frequencies in the harmonic approximation utilizing the same method and basis set. At the optimized local minimum of the potential energy surface (PES), no imaginary frequency was obtained. The results are compared

with earlier computational and vibrational outcomes [48-52] as well as X-ray structural parameters [53, 54] and Electron Diffraction [50].

3.1 Structural Parameters (SPs)

Aided with the published X-ray data [53] of N^4E)- N^1 , N^4 -bis (4 (dimethyl amino)) $(N^{l}Z,$ benzylidene) and the available electron diffraction data (ED) of butane 1,4-diamine [55] which contains quartet methylene groups, we were able to compare our theoretical SPs (Table 1) to those obtained experimentally [53], for atom numbering refer to Figure 3C. The estimated (1.091-1.102) and experimental (0.980) values in Å for the C-H_{Me} bond length were in good agreement with variations of 10–11%. Nevertheless, the predicted r(C—H's) of the methylene moiety were ranged from 1.099-1.093 within an average of 0.100±0.003 Å obtained from gas phase ED of n-butane [50, 56]. It is already known that the bond length follows the order: C-C_{sat.} > C $\sim C_{ar} > C = C_{ol}$. Nevertheless, the aromatic C=C bond length are expected to be conjugated, i.e., an average between pure double bond (1.339-1.340 Å, olefin) and the pure single bond (1.535 Å, Ethan) [57]. Resonance is clearly evidenced herein from the computed CC bond lengths ~ 1.386-1.415 Å. However, (E)-4-[(4-Methoxyphenyl) monomethyl] -N, N dimethyl aniline does not show a clear resonance nearby partial double bond, the r(CC) was found in excellent agreement with those reported earlier (1.531 Å; [50]; 1.533 Å; [52]; 1.547-1.550 Å;[58]; 1.54±0.02; [55]. Our computed values for $C_{10}C_1C_4 \equiv C_1C_4C_7$ were deviated by $0.6^{\circ}[50]$ and found within the experimental error [55].

The computed and experimental [53] CNC bond angles were deviated by less than 3%. Nevertheless, the HCH bend angle of methyl and methylene groups were not reported by X-ray and ED studies [50, 52, 55, 58]. Therefore, we have compared them with those obtained for NBenzyl-4-(3-benzyl carbamoyl propyl disulfanyl)- butyramide (BBCPB, $C_{22}H_{28}N_2O_2S_2$) which is a large sized molecules close to Schiff-B (Figure 3B). Since the BBCPB is divided to parts A and B, the reported HCH angle is 109.0(2) and 109.5(11), respectively where the CCH angles were averaged ~110.22±0.15° from ED of n-butane. Nevertheless, the CCCC

dihedral angles of benzene rings reveal twisted rings rather than planar, tilted angle ranges ~0.17-0.38° (inplane) and ~0.37-0.72° (out-of-plane). On the other hand, the τ CCCC of ~180, therefore favours *trans* skeletal rearrangements rather than *gauche*.

3.2 Normal coordinate analysis

We have faced technical problems using force constants program like that written by Schacht schneider [59] and modified by Guirgis et al [60] to convert force constants in Cartesian coordinate to that in chosen internal coordinates (F-Matrix). Owing to the relatively large size of the investigated Schiff base and the restrictions on the number of independent internal coordinates that should not exceed eighty, we could not also implement the traditional method suggested by Pulay [47] to calculate B-Matrix using Wilson G.F. method [61]. Therefore, we have used another alternative which have been effectively implemented to carry out NCA [62] using the atomic displacements in x, y and z Cartesian coordinates (ADCC) from B3LYP/6-31+G(d) log file. Selected wavenumbers and their corresponding displacements are illustrated in Figure 4. For simplicity, a conceptual approximation of ADCC were based on omitting 15% of the maximum values either in x, y and/or z directions.

4. Vibrational assignments

The observed infrared (Figure 1A) and Raman (Figure 1B) bands in addition to the computed B3LYP vibrational frequencies along with estimated infrared intensities (km/mol), and Raman scattering activities (Å⁴ /amu) utilizing 6-31+G(d) basis set (Table 2). Excluding wave numbers below 100 cm⁻¹, the investigated Schiff-B has around 150 active fundamentals in infrared and Raman. Aided by normal coordinate analysis using ADCC, we have provided comprehensive vibrational assignments for fundamentals of most regardless the expected/observed overlapping owing to the large size of the investigated molecule. Moreover, we have also used Gauss View program to visualize normal modes of vibrations whenever appropriate [63].

Egypt. J. Chem. 66 No. 9 (2023)

(B)

(C)

Fig (3): 3Dstructures of (A) X-Ray [53]; (B) X-Ray (BBCPB) [54]; (C) Optimized Schiff-B

4.1 The 3200-2800 cm⁻¹ region

Vibrational spectroscopic feature above 3000 cm⁻¹ are expected for C-H aromatic (C-H_{ar}) and olefinic (C-H_{ol}; sp²) stretches [48, 64, 65]. Therefor the weak IR and medium Raman band observed at 3130 and 3081cm⁻¹ is assigned to the overlapped symmetric/asymmetric C-H_{ar} (sp²) stretches (v₁₋₄). The illustrated displacements of hydrogen atoms numbered (H₂₅, H₂₇, H₂₈; v₃) and (H₂₅, H₂₈; v₅) is theoretical evidence (Fig. 4). Similar overlapped fundamentals at 3081 cm⁻¹ in the Raman spectrum fits the v_{as} CH_{ar} stretches (v₅₋₈) (Figure 1-B and Table 2). Similarly, v₉₋₁₂ are assigned to a sole IR band at 3042 cm⁻¹, however show splitting pattern at 3048,

3021, 2993 and 2970 cm⁻¹, respectively in the Raman spectrum. On the other hand, the C-H unsaturated olefinic bond length (1.105 Å) is predicated longer than those estimated for aromatic (1.088-1.084 Å) and saturated C-H (1.098 Å), thus the vCH_{olefine} is observed below 3000 cm⁻¹ rather than these commonly reported above 3100 cm⁻¹. A Schiff base with an inversion center is suggested by observing the computed IR intensity and Raman activity of v₁₈. 22, which reflect the mutual exclusion rule. Nevertheless, we have assumed IR intensities and Raman activities lower than 0.06 Km/mol and 0.4 Å⁴/amu, of being inactive in both IR and R spectra, respectively. Similarly, v₂₇ (IR_{int}. 222.3 and R_{act}. 0.1; R_{ia}) and v₂₈ (IR_{int}. 0.131; IR_{ia} and R_{act}. 212.3) in

addition

V31,32; V33,34; V37,38; V39,40; V43,44; V50,51; V53,54; V55,56; V57,58; V59,60; V61,62; V63,64; V66,67; V68,69; V70,71; V75,76; V77,78; V79,80; V88, V89; V91, 92; V93, 94; V95, 96; V97, 98; V99, 100; V103, 104; V105, 106; V 111,112;V113,114;V115,116;V117,118;V119,120;V121,122;V124,125;V12 6,127; V128,129; V130,131; V132,133; V137,138; V139,140; V141,142; V143, 144; v145, 146; v147, 148. The observed IR bands at 2921 (s) and 2826 (s) covers a range of \sim 226 cm⁻¹ therefore, assigned for overlapped fundamentals (v_{13-22} ; $\Delta v =$ ± 55 cm⁻¹) that fit the unresolved strong IR band at 2921 cm⁻¹, other saturated, olefin and aromatic CH stretches are given in Table 2. Identical wavenumbers (v_{9-26}) from 3150-2947 cm⁻¹ match vC-H_{alkane} (sp³; CH₃ and CH₂) while the vC-H_{olefinic} (sp^2) were estimated at 2970 cm⁻¹. It is worth mentioning that unscaled wavenumber ~3229-3200 cm⁻¹ was scaled herein ~3132-3104 cm⁻¹.

4.2 The 1700–1000 cm⁻¹ region

According to earlier spectral observations [17, 22, 48], the reported C=N and/or C=C stretches are favoured to the very strong IR band at 1610 cm⁻¹ and the split Raman bands at 1638 and 1607 $\rm cm^{-1}$, respectively. The symmetric (v₃₁; IR_{ia}& R_a) and antisymmetric (v₃₂; IR_a& R_{ia}) C=N stretches are assigned to very strong bands observed at 1638 (R) and 1610 (IR) cm⁻¹, respectively. While the Raman band 1607 cm⁻¹ (vs) favors C=C quadrant aromatic stretch as suggested by Colthup et al [48] in agreement with split Raman bands at 1588 and 1563 cm⁻¹[66]and ~1563-1612 cm⁻¹ [22]. The C=N stretch was ranged from 1649-1599 cm⁻¹in IR and matrix isolated infrared spectra of 2-(Nphenyliminomethyl)-phenol,2-

(Nmethyliminomethyl)-phenol, 2-(N-methyl-αiminoethyl)-phenol, 2-(N-methyl-α-iminoethyl)-4chlor-6-nitrophenol and 2-(N-methyl-a-iminoethyl)-4, 6-dichlorophenol Schiff bases [17]. The v_{33-36} were unscaled/scaled at 1626/1660 cm⁻¹, thus assigned to C=C_{ar} stretches in which v_{33} , v_{35} is Raman active (R_a) and almost IR inactive (IRia), therefore observed at 1607 cm^{-1} (vs) in the Raman spectrum [67]. On the other hand, the observed IR band at 1523 cm⁻¹ (vs) fits v37,38 fundamentals without Raman analogs, Moreover, v34, v36 is presumably Raman inactive (calc. Raman activity of ~ 03 Å⁴ /amu) but infrared active (894 Km/mol), it is observed herein at 1523 cm^{-1} (vs). It is worth to mention that v_{31} and v_{33}

fundamentals have the highest Raman scattering activities of 3307 and 3210 units $Å^4$ /amu, respectively whereas v_{32} and v_{34} have the highest IR activities of 363- and 894-units km/mol, respectively.

The δCH_{ar} , $\delta_{Sciss}CH_2$ and δCH_3 (v₃₇₋₄₆) are unscaled from 1570-1516 cm⁻¹ ($\Delta v = 50$ cm⁻¹) theoretically separated by 4 cm⁻¹ (Table 2), hence assigned for the observed IR and R bands at 1463 cm⁻ ¹. However, the combined weak Raman bands at 1438 and 1421 cm⁻¹ and the strong/shoulder IR bands at 1463 cm⁻¹ and 1438 cm⁻¹ agree with v₃₉₋₄₆ and v₄₇₋₅₂, respectively. As the matter of fact, the other δ_{as} CH₃ $(\nu_{41},\,\nu_{42})$ and $\delta_{sciss.}CH_2(\nu_{43,44,47,50})$ were separated by 35 cm⁻¹, assigned to the weak Raman band at 1421 cm^{-1} , however v_{47} has the highest Raman activity (58.6 Å⁴/amu) among v_{41} - v_{52} (Table 2). Likewise, the counterpart IR band observed at 1438 cm⁻¹ has the highest IR_{int}. (85.5 Km/mole) among v₄₁-v₅₂ fundamentals. Noticeably, the CH₂/CH₃ bending modes including scissors, umbrella, antisymmetric (v_{47-52}) are theoretically separated by 4 cm⁻¹(Table 2), thus the measured in IR/R bands at 1438/1421 cm⁻¹ are within ~ 1544-1504 cm⁻¹[17], hence fit v_{47-52} fundamentals. The observed IR band at 1354 cm⁻¹ (vs) fits the v CC ar (v_{53} , v_{54}), δ_{um} CH₃ (v_{55} , v_{56}), δ_{ip} C- $H_{ol}(v_{57}, v_{58})$, and $\delta_{wag} CH_2(v_{59}, v_{60})$ in agreement with calculated infrared intensities (645.3 km/mol) and were unscaled/scaled around (1479-1400)/(1419-1400) cm⁻¹, where Δv is 19 cm⁻¹. While the weak resolved Raman bands at 1409, 1379, 1353 and 1340 cm^{-1} were interpreted CC_{ar} stretches (Table 2). Nevertheless, the vCC_{ar} observed at 1409 cm⁻¹ named as semi-circle stretch [48] is well compared to those reported earlier at 1418 cm⁻¹[66] and 1410 cm⁻¹[68]. Hence, the conjugated C=C stretches ($v_{53,54,63,64}$) is red shifted and observed from 1409-1311 cm⁻¹ regardless of their mixing/overlapping (Table 2).

The vC=N, v C=C_{ar}, δ CH₂ (wag, twist) and δ_{ip} CH_{ar} (v₆₁₋₇₀) fundamentals differs only by 28 cm⁻¹; hence, could match 1300/1311 cm⁻¹ (IR/R). Nevertheless, the Raman counterpart is accompanied with a shoulder at low frequency side ~ 1286 cm⁻¹ (Table 2). $\delta CH_{(ip)}(v_{66}, v_{67}, v_{75}), vC-N_{Me}(v_{71}, v_{72}), \delta_{wag}$ CH₂ (v_{73} , v_{74}) and δ_{twist} CH₂ (v_{68} , v_{69} , v_{70}) modes were separated by $\Delta v \pm 80$ cm⁻¹ thus fundamentals (v_{66,67}) are assigned for IR/Raman bands at 1300/1311 cm⁻¹ while v71,72,75 match those recorded at 1234(s)/1241(m) cm⁻¹, in agreement with the predicted IR_{int.} and R_{act.} (Table 2). The methyl and

methylene bending modes were found in close vicinity to those reported earlier for organic molecules [48, 49, 64, 69], with emphasis on δ CH₂~1419/1464 (δ _{Scissor}),~1280/1276 (γ), ~1300/1302 (δ _{twist}) for di-n-butyl ether which contains quartet CH₂ moieties [64].

Nevertheless, ρ CH₃ was reported at ~1093/1093 cm⁻¹ (R/IR) for dimethylformamide nearby those given by Durig et al for n-butane [51]. While the observed δ_{ip} CH bending modes ~1523-1117 and ~809-1088 cm⁻¹ were in good match within ±50 cm⁻¹ compared to References [17, 70]~1490-1159 cm⁻¹ and ~895-1003 cm⁻¹, respectively.

The following fundamentals between (1200-895 cm⁻¹) are characterized by extensive overlapping and mixing. Because of ± 17 cm⁻¹ separation (v_{76} - $_{80}$), the observed Raman/IR band at 1180(s)1172(vs) cm⁻¹ fit $\delta_{(ip)}$ CH_{ar}, δ_t CH₂ and ρ CH₃ modes.

Similarly, v_{81-87} were overlapped which fit wavenumbers at 1117sh (IR)/1088s(R) cm⁻¹ and found dominated by ρ CH₂ (rocking), δ_{ip} CH aromatic and ρ CH₃ modes. Following the same consent, v_{88-93} were assigned to ρ CH₃ ($v_{89,90}$), ν C-N (v_{93}) and ν CC (v_{92}) fit an IR a shoulder at 1058 cm⁻¹within ~1022-1012 cm⁻¹ given by Smith et al [22].

Indeed, v_{92} and v_{93} normal modes were identical at 1064/1058 cm⁻¹ (calculated/observed). It is worth mentioning that the CH_{ar} and CH_{ol} were expected within 980-1025 cm⁻¹ ($\Delta v \pm 45$ cm⁻¹) as per B3LYP theoretical predictions, therefore the IR_a/R_a fundamentals ($v_{94,95,98,99}/v_{96,97,100}$) were assigned to IR/R bands at 1003/1000 cm⁻¹, in agreement with the estimated IR_{int} and R_{act} (Table 2).

The observed band at 943 cm⁻¹ in both IR and Raman spectra is assigned to CN stretches ($v_{101,102}$) [38, 39]. The ($v_{103,105}$) are R_{ia}, but v_{104} is R_a with low R_{act} (5.0 Å⁴/amu), therefore barely observed at 914 cm⁻¹. These overlapped fundamentals $v_{103-105}$ were estimated to be weak (IR_{int}; 2.9 Km/mol), observed at 900/914, 895cm⁻¹ (IR/R); (Figure 1-A, B and Table 2). It is noted that the dominant γ CH_{ar} (v₁₀₅; H_{23,27,35,38}) is mixed with both γ CH_{ol} (H_{16,18}) and ρ CH₂ (H_{2,3,5,6}) owing to the large ADCC (Fig4C) of the involved atoms (Fig. 3C for atom numbering).

4.3 The 900–75 cm⁻¹ region

The ring breathing (v_{106} ; R_a / v_{107} ; IR_a) was adjusted straightforward to the observed bands at 863 (w, sh) and 868 cm⁻¹ (m) in the Raman and IR spectra, respectively. The band at 809 cm⁻¹ were assigned to the *out-of-plane* ring deformation (δ_{oop} ; v_{108} - v_{111}).

While the IR_a modes, v_{113} (ρ CH₂) and v_{115} (δ_{oop} ring twist) fit an IR shoulder at 733 cm⁻¹ (m). Moreover, v_{114} and v_{117} fit the strong Raman band at 736 cm⁻¹ (m) which is dominated by ring bending modes.

The spilt Raman band centered at 634 cm⁻¹ (m) favours v_{119} (~605-635 cm⁻¹). On the other hand, the IR band at 594 cm⁻¹ was adjusted to v_{120} . v_{122} , v_{124} and v_{126} fundamentals and that recorded at 516 cm⁻¹ (m) is dominated by δ_{ring} CCC plus minor ρ CH₃. Mixed *in-plann*ing (v_{120}) and outer ring (CrNC_{Me}) bending modes (v_{125}) is observed at 476 cm⁻¹ (R, sh), overlapped with C₂₂C₂₆N_{Me}; unscaled at 486 cm⁻¹ which is verified by the large ADCC of the assigned atoms, C₄₁, N₃₉, C₄₅ and C₂₆ and nearby atoms. Another mixing is found in δ C-C-N, δ C-N=C and δ C-C-C_{al} that recorded/calculated at 432 cm⁻¹ for n-butane.

The observed vw Raman features at 247 and 266 cm⁻¹ were assigned to overlapped Me torsions while those recorded at 222 cm⁻¹ reflects both γ C=N-C and γ N=C-C *out-of-plane* mixed with minor methyl torsion. Approximate description of selected fundamentals was given below (Fig. 4A-C).

Fig (4A): Cartesian coordinate displacements of the normal vibrations of the prepared Schiff-B.

Fig (4B): Cartesian coordinate displacements of the normal vibrations of the prepared Schiff-B.

Fig (4C): Cartesian coordinate displacements of the normal vibrations of the prepared Schiff-B.

Structural Parameters ^a	X-ray ^[53]	X-ray ^[54]	Electron diffraction ^[50]	<i>B3LYP/</i> 6-31+G(d)					
Bond length (r)									
r (C45—H47) Me	0.9800	-	-	1.102					
r (C45—H48) Me	0.9800	-	-	1.096					
r (С45—Н46) ме	0.9800	-	-	1.091					
r (С41—Н43) ме	0.9800	-	-	1.091					
r (C _{41s} —H ₄₄) _{Me}	0.9800	-	-	1.096					
r (C ₄₁ —H ₄₂) _{Me}	0.9800	-	-	1.102					
r (С45—N39) ме	1.4502	-	-	1.454					
r (C ₄₁ —N ₃₉) _{Me}	1.4455	-	-	1.455					
r (C ₂₆ —N ₃₉) _{Me}	1.3826	-	-	1.386					
r (C15-C19)	1.4534	1.52(3)	-	1.466					
$r(C_{21}=C_{19}) \equiv (C_{29}=C_{30})$	1.3899	1.38(2)	-	1.406					
$r(C_{19}=C_{20})\equiv(C_{29}=C_{31})$	1.4028	1.40(2)	-	1.402					
$r(C_{20}=C_{22})\equiv(C_{31}=C_{34})$	1.3721	1.42(2)	-	1.391					
$r(C_{22}=C_{26})\equiv(C_{34}=C_{36})$	1.4112	1.44(3)	-	1.415					
$r(C_{26}=C_{24})\equiv(C_{36}=C_{32})$	1.4048	1.37(2)	-	1.420					
$r(C_{24}=C_{21})\equiv(C_{31}=C_{30})$	1.3790	1.34(2)	-	1.386					
r (C ₁₅ —H ₁₆)	0.9500	-	-	1.105					
r (C ₂₀ —H ₂₃)	0.9500	-	-	1.088					
r (C ₂₂ —H ₂₇)	0.9500	-	-	1.083					
r (C ₂₄ —H ₂₈)	0.9500	-	-	1.083					
r (C ₂₁ —H ₂₅)	0.9500	-	-	1.086					
r (N ₁₃ =C ₁₅)	1.272	-	-	1.27					
r (N ₁₃ —C ₁₀)	1.412	1.40(2)	-	1.452					
r (C ₁ —C ₄)	-	1.47(2)	1.531	1.533					
r (C ₁ C ₁₀)	-	1.57(2)	1.531	1.535					
r (C ₄ —C ₇)	-	1.49(2)	1.531	1.535					
r (С—Н) сн2	-	-	1.119	1.099-1.093					

 Table 1: Calculated structural parameters^a for the investigated Schiff-B inhibitor ^b

Bond (\angle) and dihedral angles (τ)

$\angle (C_{15}N_{13}C_{10}) \equiv (C_{17}N_{14}C_{7})$	121.70	-	-	118.3
$\angle (C_{45}N_{39}C_{26}) \equiv (C_{49}N_{40}C_{36})$	119.93	-	-	119.5
$\angle (C_{45}N_{39}C_{41}) \equiv (C_{53}N_{40}C_{49})$	115.71	-	-	118.1
$\angle (C_{41}N_{39}C_{26}) \equiv (C_{53}N_{40}C_{36})$	119.71	-	-	119.6
∠ (H ₃ C ₁ H ₂) _{CH2}	-		-	106.5
∠ (H ₅ C ₄ H ₆) _{CH2}	-	109.5(11)/	-	106.5
∠ (H ₉ C ₇ H ₈) _{CH2}	-	109.0(2)	-	107.3
∠ (H ₁₂ C ₁₀ H ₁₁) _{CH2}	-	_	-	107.3

Table 1: Continued.

Structural Parameters ^a	X-ray ^[53]	X-ray ^[54]	Electron diffraction ^[50]	B3LYP/ 6-31+G(d)
∠ (H ₄₇ C ₄₅ H ₄₆) _{Me}	110.00	-	-	108.3
\angle (C ₁₀ C ₁ C ₄)=(C ₁ C ₄ C ₇) _{CH2}	-	119.0(2)	113.3	112.7
\angle (N ₃₉ C ₄₅ H ₄₈)	109.00	-	-	111.0
∠ (N ₃₉ C ₄₅ H ₄₇)	109.00	-	-	112.6
∠ (N ₃₉ C ₄₅ H ₄₆)	109.00	-	-	109.1
\angle (H ₄₈ C ₄₅ H ₄₇)	109.00	-	-	108.2
\angle (C ₁₉ C ₁₅ N ₁₃)	122.55	117.0(2)	-	124.0
$\angle (C_{20}C_{19}C_{15})$	122.50	-	-	120.2
\angle (C ₂₁ C ₁₉ C ₁₅)	120.38	122.0(2)	-	122.3
\angle (C ₂₁ C ₁₉ C ₂₀)	117.09	-	-	117.5
\angle (C ₁₉ C ₂₀ C ₂₂)	121.81	121.0(2)	-	121.9
$\angle (\mathbf{C}_{20}\mathbf{C}_{22}\mathbf{C}_{26})$	120.98	123.0(2)	-	120.8
\angle (C ₂₄ C ₂₆ N ₃₉)	121.46	-	-	121.3
$\angle (C_{22}C_{26}C_{24})$	117.17	115.0(2)	-	117.2
$\angle (C_{22}C_{26}N_{39})$	121.35	-	-	121.5
\angle (C ₂₆ C ₂₄ C ₂₁)	120.97	121.0(2)	-	121.2
$\angle (C_{24}C_{21}C_{19})$	121.97	124.0(2)	-	121.4
\angle (C ₁₉ C ₁₅ C ₁₆)	119.00	-	-	115.1
\angle (H ₁₆ C ₁₅ N ₁₃)	119.00	-	-	120.9
\angle (H ₂₃ C ₂₀ H ₁₉)	119.00	-	-	119.4
\angle (C ₂₂ C ₂₀ H ₂₃)	119.00	120.0(2)	-	118.8
\angle (C ₂₆ C ₂₂ H ₂₇)	119.00	116.0(2)	-	120.6
$\angle (C_{20}C_{22}H_{27})$	120.00	-	-	118.7
\angle (C ₂₁ C ₂₄ H ₂₈)	119.00	120.0(2)	-	118.5
\angle (C ₂₆ C ₂₄ H ₂₈)	120.00	-	-	120.3
\angle (C ₁₉ C ₂₁ H ₂₅)	119.00	118.0(2)	-	118.6
$\angle (C_{24}C_{21}H_{25})$	119.00	-	-	119.9
\angle (H ₄₃ C ₄₁ N ₃₉)	109.00	-	-	109.0
\angle (H ₄₂ C ₄₁ H ₄₄)	109.00	-	-	108.2
$\angle (\mathbf{H}_{42}\mathbf{C}_{41}\mathbf{H}_{43})$	109.00	-	-	108.3
\angle (H ₄₂ C ₄₁ N ₃₉)	109.00	-	-	112.6
∠ (H44C41N39)	109.00	-	-	111.1
\angle (H ₄₃ C ₄₁ H ₄₄)	109.00	-	-	107.5
∠ (H48C45H46)	110.00	-	-	107.5
$\tau (C_{10}N_{13}C_{15}C_{19})$	-177.55		-	-179.9
$\tau (C_{21}C_{19}C_{20}C_{22})$	-0.17		-	-0.22

Egypt. J. Chem. 66, No. 9. (2023)

Table 1: Continued.

Structural Parameters ^a	X-ray ^[53]	X-ray ^[54]	Electron diffraction ^[50]	<i>B3LYP/</i> 6-31+G(d)
τ (C ₁₉ C ₂₀ C ₂₂ C ₂₆)	-0.38	3.0(2)/ -1.0(2)	-	-0.44
$\tau (C_{20}C_{22}C_{26}C_{24})$	0.72	-4.0(2)/ 0.0(3)	-	1.09
$\tau (C_{21}C_{24}C_{26}N_{39})$	179.19	-	-	178.4
$\tau (C_{15}C_{19}C_{20}C_{22})$	-177.57	178.0(3)	-	-179.9
τ (N ₃₉ C ₂₆ C ₂₂ C ₂₀)	-179.00	-	-	-178.4
τ (C45N39C26C24)	175.35	-	-	171.1
τ (C ₄₁ N ₃₉ C ₂₆ C ₂₂)	-161.06	-	-	-170.03
τ (C ₄₅ N ₃₉ C ₂₆ C ₂₂)	-6.25	-	-	-9.37
τ (C ₄₁ N ₃₉ C ₂₆ C ₂₄)	20.54	-	-	10.44
$\tau (N_{13}C_{15}C_{19}C_{21})$	-1.15	-	-	0.33
τ (N ₁₃ C ₁₅ C ₁₉ C ₂₀)	176.68	161.0(3)	-	180
τ (C ₁₅ C ₁₉ C ₂₁ C ₂₄)	177.73	-179.0(4)	-	179.9
$\tau (C_{22}C_{26}C_{24}C_{21})$	-0.52	-1.0(3)	-	-1.10
$\tau (C_{26}C_{22}C_{20}C_{19})$	-0.02	-1.0(2)	-	-0.44

^a Bond distances (r) in angstroms, bond (\angle) and dihedral angles (τ) in degrees.

^b The X-ray structure of (N1Z, N4E)-N1, N4-bis (4-(dimethyl amino) benzylidene) butane-1,4-diamine (Schiff-B).

		B3LYP/6-31+G(d)		Obs. (this study) ^{d}				
v _i	Fundamental ^a	Unscaled	Fixed Scal.	IR Int. ^b	Raman act. ^c	IR _{solid}	Raman	
v_1				6.02	285			
v_2	u/u CU	2220	2127	24.2	72.1	(2120)		
V3	Vs/ Vas Charomatic	3228	5152	20.3	30.4	(3130W)	-	
v_4				16.5	37.1			
v_5	CII	2200	2104	1.7	36.7		(20.91m)	
V6	Vas CHar.	5200	5104	2.1	30.3			
V 7	CII	21.60	2074	26.1	26.2		(508111)	
V8	Vas CHar.	3109	3074	6.2	110			
V9	(CII.)	21.40	2054	40.4	296		3048w	
V10	$V_{s}(CH_{3})$	3149	3054	61.2	195	(20.42)	3021w	
V 11	(OU)	2127	20.42	2.1	2.9	(3042vw)	2993vw	
V 12	v_{as} (CH ₃)	3137	3043	2.1	3.0		2970vw	
V13	$v_{as}(CH_2)$	3083	2987	81.5	Ia	(2921s)		
V 14				48.9	96.6		2938sh,vw	
V15				50.4	94.5	(2921s)	(2914w)	
V16	v_{as} (CH ₃)	3072	2979	30.9	121			
V17				31.1	120			
V18	vas (CH ₂)	3060	2968	ia	60.7	-	2914w	
U19				97.1	Ia	(2921s)	-	
U20	v_{s}/v_{as} (CH ₂)	3035	2944	ia	301	-	2866sh,vw	
1021					17.5	0.01	(2921s)	-
022	v_s (CH ₂)	3025	2934	ia	383	-	2866sh.vw	
U23				80.5	403		200001,00	
074	(077.)	3000-2991		160	203	(000.0.)	(2000)	
U25	v _s (CH ₃)		2910 -	91.4	125	(2826s)	(2830w)	
1726				86.1	132			
1227	Vas (CHolefine) N=C-H		ana an	222	0.1	2826s	-	
1728	Vs (CHol) N=C-H	- 2970	2881	0.131	212		2830w	
1720		K. 1979 (1974)		103.9	63.8	2826s		
1720	v_{s} (CH ₂)	2947	2858	31.4	211	-		
1721	v_{s} (C=N)	1720	1685	ia	3307	-	1638vs	
1722	v_{as} (C=N)	1718	1683	362.7	0.01	(1610vs)		
1722	(C 11)	1,10	1005	0.01	3210	(101010)		
1)24	v C=Car	v C=C _{ar.} 1660		894	0.02	(1610vs)	(1607vs)	
1725	v C Cal.		1626	2.1	155		1577w	
1)24				69	4.8			
1727				13	152			
1720	$\delta_{ip} \operatorname{CH}_{ar}$	1570	ip CH _{ar.} 1570	CH _{ar.} 1570 1507 -	373	0.5	1523vs	(1528w)
1720				0.05	80.0			
1740				96.3	 			
1241	$\delta_{as} CH_3$	1540	1478	3.5	6.6	(1463sh,w)	(1463m)	
12/2				4.2	5.6			
042				4.4	5.0			

 Table 2: Observed and calculated (B3LYP) frequencies (cm⁻¹) for the investigated Schiff-B inhibitor.

Egypt. J. Chem. 66, No. 9. (2023)

		B3LYP/6-31+G(d)		Obs. $(this study)^d$			
v_i	Fundamental ^a	Unscaled	Fixed Scal.	IR Int. ^b	Raman act. ^c	IR solid	Raman
V 43	S Saina CII	1524	1462	15.2	Ia	- - (1463sh,w)	
v 44	o Sciss CH ₂	1524	1403	ia	38.1		(1462m)
V 45	S CH	1516	1455	13.9	32.3		(1405111)
V46	Oas CI13	1510	1455	15.5	28.9		
V 47	δ Sciss CH ₂	1509	1448	ia	58.6	_	
V 48	8 CH	1508	1447	4.1	3.8	_	
V 49	Oas CII3	1508	1447	1.7	9.1	-(1/38s)	(1421w)
v 50	δ Sciss CH ₂	1506	1445	9.6	Ia	_ (14303)	(1421W)
V 51	δ CH ₂ (umbrella)	1505	1444	0.3	20.9	_	
V 52	os CH3 (uniorena)	1505	1444	85.5	0.07		
v 53	v CC	1479	1419	1.3	64.3	_	(1409sh w)
v 54	V CCar.ring	1475	1417	31.7	2.7	_	(1379w)
v 55	δ CH ₂ (umbrella)	1463	1404	0.2	83.8	_	
<i>v</i> 56	os erra (uniorena)	1405	1404	16.3	1.2	- (1354ys)	
v 57	δ. C-H .	1426	1369	0.1	118	- (155475)	1353w
V 58		1420	1507	13.4	0.8	_	-
V 59	$\delta wag(\gamma) CH_{2}$	1400	1400	ia	79.9		1340w
V60	0 wag (7) CH2	1400	1400	23.7	Ia		-
V 61	v C-N	1390	1362	3.0	135	-	(1311w) 1286sh,w
V 62	- VC-N	1370		645	0.6		
<i>v</i> ₆₃	vCC	1372	372 1344	2.6	5.5		
V 64	v CCar.r	1572	1577	32.8	0.4		
V 65	δ wag (γ) CH ₂	1362	1362	ia	14.0	-(1300 sh s)	
V 66	δ _{in} CH	1350	1296	130	Ia	_	
v_{67}	olperrar.	1550	1270	ia	212	_	
V 68				2.1	Ia		
V69	$\delta_t CH_2$	1318	1265	ia	64.5	_	
V70				ia	171		
V 71	v (C-N)Ma	1277	1226	63.8	3.8	_	
V 72	V (C IV)Me	1277	1220	3.4	74.1	_	
<i>v</i> ₇₃	$\delta wag(\gamma) CH_2$	1272	1227	9.9	0.2	_ (1234s)	(1241m)
V 74	0 wag (7) enz	1272	1227	33.8	0.01	_	
V 75	$\delta_{ip}CH_{ar.}$	1271	1220	ia	296		
V76	$\delta_t CH_2$	1219	1170	225	0.01	_	
v 77	$\delta_{ip}CH_{ar.}$	1217	1168	ia	616.5	_	
V 78	$\delta_t CH_2$	1211	1162	46.5	Ia	(1172vs)	(1180s)
V 79	o CH ₃ (rocking)	1202	1145	0.1	17.4	_	
<i>v</i> ₈₀	P 211, (100mmB)			69.1	0.04		
V 81	ρ CH ₂ (rocking)	1171	1124	ia	1.2	_	
V 82	δinCHar	1160	1113	0.7	1.4	(1117sh,w)	(1088w)
v_{83}	o _{ip} CH _{ar.}	1100	1115	0.7	1.5		

Table 2: Continued.

Egypt. J. Chem. 66 No. 9 (2023)

			B3LYP/6-3	H+G(d)		Obs. (this	study) ^d
v_i	Fundamental ^a	Unscaled	Fixed Scal.	IR Int. ^b	Raman act. ^c	IR solid	Raman
V 84				12.0	55.3	- (1117ah w)	
v_{85}	- a CH. (rocking)	1150	1104	107.5	5.7		(1088m)
V 86	- p C113 (TOCKING)	1150	1104	0.8	1.7	(1117511,w)	(1000w)
V 87				0.8	1.7		
V 88	v CC _{aliphatic}	1102	1058	ia	30.0	_	-
V 89	- o CH. (rocking)	1088	1044	45.5	0.03	_	
V 90		1000	1044	2.0	0.6		
V 91	ν C-N + ν CC _{al.}	1064	_	64.2	Ia	(1058sh,m)	
V 92	$\nu CC_{al.}$	1062	_ 1011-1042	ia	52.0	_	
V 93	ν C-N + ν CC _{al.}	1032		ia	106.1		
V 94		1025	984	18.8	Ia	_	
V 95	- 8 C-H	1022	981	1.4	ia	- (1003w)	(1000w)
V 96		1022	201	ia	21.6	_ (1005W)	
V 97		999	959	ia	21.0		
V 98	_			13.6	ia	_	(1000w)
V 99	$\delta_{oop}CH_{ar.}$	995-980	955-940	1.1	ia	(1003w)	
V 100				ia	9.4		
V 101	ν C-N _{Me} + δ_{ip} ring	066	046	19.2	18.8	-(0.13m)	0421000
v_{102}	def	900	940	40.0	9.0	(94311)	943VVW
V 103	$ ho CH_2 (rocking) + \\ \delta_{oop}CH_{ar.}$	953	914	1.7	ia		914vvw 895vvw
<i>v</i> ₁₀₄	δ. CH	946-939	908-901	ia	5.0		
V 105	O _{oop} CII _{ar.}	940-939	908-901	2.9	ia		
v 106	$\nu_{\rm s}$ C=C ring	870-860	851-844	ia	30.5	– 868sh w	962m
v 107	breathing	879-809	031-044	4.9	ia	000511,W	805111
v 108	- 8 СН			52.4	0.4	_	
V 109	UoopCIIar.	922 910	700 777	45.0	0.4	- 800g	(900m)
v_{110}	$\rho CH_2 + v_s C = C$	855-810	199-111	ia	4.1	- 0095	(809W)
<i>v</i> ₁₁₁	ring breathing			18.6	ia		
V 112	- CH. (rocking)			ia	6.7	_	
V 113	p CH2 (locking)			5.3	ia	_	
V 114	_	753 731	732 704	ia	59.7	- (733sh m)	$(736_{\rm S})$
V 115	- S ring dof	755-754	/32-/04	6.0	ia	_ (755511,111)	(7308)
V 116	O _{oop} mig dei			1.2 <i>ia</i>	ia	_	
v 117				ia	5.0		
v_{118}	_			2.2	ia	_	
V 119	- S. ring daf	605 652	580 626	ia	12.6	- 504m	621m
v_{120}	o _{ip} ring der	005-055	300-020	25.9	ia		634m
<i>v</i> ₁₂₁				ia	0.5		
v ₁₂₂				3.0	ia		
V 123	δ_{oop} ring def	534-547	512-525	ia	0.4	(516m)	540w
<i>v</i> ₁₂₄				37.0	Ia		

Table 2: Continued.

Egypt. J. Chem. 66, No. 9. (2023)

			B3LYP/6	31+G(d)		Obs. (t	his study) ^d
v_i	Fundamental ^a	Unscaled	Fixed Scal.	IR Int. ^b	Raman act. ^c	IR solid	Raman
V 125	δ_{ip} ring def. +			Ia	4.2	_	
v_{126}	$\delta C_r N C_{Me}$	480-506	460-485	11.5	ia	_ (516m)	476sh,w
v_{127}	$\delta C_{22}C_{26}N_{39}$			Ia	5.1		
V 128	δ CCN + δ C- N=C+ δ CCC _{alchain}	448	448	Ia	3.6	_	451sh,vw
V129	$\frac{\delta C_{Me} N C_{Me}}{+\delta C_r N C_{Me}}$	445	445	1.8	ia		-
v ₁₃₀	\$ 666			Ia	0.4		
v ₁₃₁	$-\delta_{oop}CCC_{ring}$			2.7	ia	_	
v ₁₃₂		381-435	365-417	Ia	8.1	_	398w
V 133	δ_{000} ring def			9.6	ia	_	
V 134			9.7	9.7	ia	_	
<i>v</i> ₁₃₅	$\delta_{ip} C_1 C_4 C_7$	375	375	Ia	2.6		(330w)
V 136	S ON	332	318	Ia	1.4		(330w)
V 137	$-\delta_{oop}$ C-N			16.7	ia		-
<i>v</i> ₁₃₈				Ia	3.5		266vvw
V 139	- tansian CII			1.4	ia		
V 140	τ torsion CH ₃	200 100	200 100	3.4	0.06	_	-
v_{141}	-	296-166	298-188	0.01	11.9		247vvw
v_{142}				Ia	2.4		
V 143	$\gamma C = N - C + \gamma N = C - C + \tau C H_{1}$			5.0	ia		(222vvw)
v_{144}			Ia	5.1			
v_{145}	_		13.8	ia			
V 146	_			3.8	Ia		
V 147	_			Ia	5.0	_	
v_{148}	$\delta_{\rm r}$ twist + γ C-C-N	182-101	182-146	Ia	8.5	_	(124w)
V 149	-			6.9	Ia	_	
V 150	_			7.6	0.3		
v_{151}				1.0	1.3		

Table 2: Continued.

^a Notations for fundamentals: s, symmetric; as, antisymmetric; ip, in-plane, oop, out-of-plane, v, stretch, δ , bending; ρ , rocking; γ , wagging and τ , torsion,

^b Calculated infrared intensities in km/mol from B3LYP/6-31+G(d).

^c Calculated Raman activities in $Å^4$ /amu. from B3LYP/6-31+G(d).

^d Current study (vs; very strong, s; strong, m; medium, w; weak, vw; very weak, and sh; shoulder; r, ring; Me, methyl; ol, olefinic; ar, aromatic; a, active; ia, inactive; al, aliphatic; alchain, aliphatic chain. 11 fundamentals below 100 cm⁻¹ were not included, it is beyond our Raman & spectrophotometer limits.

4. Conclusion

- IR and Raman spectral measurements of the synthesized Schiff-B were found consistent with the computed harmonic vibrational frequencies using DFT B3LYP/6-31+G(d).
- Aided by Normal coordinate analysis employing the atomic displacements in Cartesian coordinates, the proposed

vibrational assignments herein are nearly comprehensive, confident, and trustworthy.

• A slightly distorted symmetric molecule with an inversion center is preferred by the estimated Raman activity, infrared intensities, and IR/Raman spectral observations. • Spectroscopic analysis and calculated structural characteristics pronounce that both aromatic rings retain their aromaticity.

5. Conflicts of interest

"There are no conflicts to declare".

6. Formatting of funding sources

"There are no funding sources".

Acknowledgments

The authors gratefully thank the Egyptian Petroleum Research Institute and Al-Azhar University for their supports.

7. References

[1] E. Raczuk, B. Dmochowska, J. Samaszko-Fiertek, J. Madaj, Different Schiff Bases—Structure, Importance and Classification, Molecules 27(3) (2022) 787.

[2] Taha, R. H., Gaber, G. A., Mohamed, L. Z., & Ghanem, W. A. Corrosion inhibition of two schiff base complexes on the mild steel in 1M HCL solution. Egyptian Journal of Chemistry, *62* (2019) 381.

[3] Ghosh, P., Dey, S. K., Ara, M. H., Karim, K., & Islam, A. B. M. A review on synthesis and versatile applications of some selected Schiff bases with their transition metal complexes. Egyptian Journal of Chemistry, 62 (2019) 547.

[4] M. Smith, J. March, Aliphatic nucleophilic substitution, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 5 (2001) 389-674.

[5] D. Udhayakumari, V. Inbaraj, A review on Schiff Base fluorescent Chemosensors for cell imaging applications, Journal of Fluorescence 30(5) (2020) 1203-1223.

[6] Y. Wu, H. Cheng, Y. Chen, L. Chen, Z. Fang, L. Liang, Formation of a multiligand complex of bovine serum albumin with retinol, resveratrol, and (–)-epigallocatechin-3-gallate for the protection of bioactive components, Journal of agricultural and food chemistry 65(14) (2017) 3019-3030.

[7] H.F.G. Barbosa, M. Attjioui, A.P.G. Ferreira, E.R. Dockal, N.E. El Gueddari, B.M. Moerschbacher, É.T.G. Cavalheiro, Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicylaldehydes and their Pd (II) and Pt (II) complexes, Molecules 22(11) (2017) 1987.

[8] O. Berkesi, T. Körtvélyesi, C. Hetényi, T. Németh, I. Pálinkó, Hydrogen bonding interactions of benzylidene type Schiff bases studied by vibrational spectroscopic and computational methods, Physical Chemistry Chemical Physics 5(10) (2003) 2009-2014.

[9] J. Xu, Y. Liu, S.-h. Hsu, Hydrogels based on Schiff base linkages for biomedical applications, Molecules 24(16) (2019) 3005.

[10] N. Raman, S.F.S. Ali, D.J. Raja, Designing, synthesis and spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies, Journal of the Serbian Chemical Society 73(11) (2008) 1063-1071.

[11] M.T. Kaczmarek, M. Zabiszak, M. Nowak, R. Jastrzab, Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity, Coordination Chemistry Reviews 370 (2018) 42-54.

[12] A.M. Channa, A.N. Siyal, S.Q. Memon, S. Parveen, Design of experiment for treatment of arsenic-contaminated water using Schiff's base metal complex modified Amberlite XAD-2, Desalination and Water Treatment 57(8) (2016) 3664-3673.

[13] M. Lashanizadegan, H.A. Ashari, M. Sarkheil, M. Anafcheh, S. Jahangiry, New Cu (II), Co (II) and Ni (II) azo-Schiff base complexes: Synthesis, characterization, catalytic oxidation of alkenes and DFT study, Polyhedron 200 (2021) 115148.

[14] X.-L. Li, B. Xie, J.-S. Feng, C. Lai, X.-X. Bai, T. Li, D.-L. Zhang, W.-Y. Mou, L. Wen, Y.-T. Gu, 2-Pyridinecarboxaldehyde-based Schiff base as an effective corrosion inhibitor for mild steel in HCl medium: Experimental and computational studies, Journal of Molecular Liquids 345 (2022) 117032.

[15] M. Lashgari, M.-R. Arshadi, S. Miandari, The enhancing power of iodide on corrosion prevention of mild steel in the presence of a synthetic-soluble Schiff-base: electrochemical and surface analyses, Electrochimica Acta 55(20) (2010) 6058-6063.

[16] Hosny, Rania & Gaber, Ghalia & Mohamed, Lamiaa & Ghanem, Wafaa. Corrosion inhibition of two Schiff base complexes on the mild steel in 1M HCl solution. Egyptian Journal of Chemistry. 10.21608/ejchem. (2019).1722.

[17] E.M. Zayed, G. Mohamed, Synthesis, spectroscopic, DFT and docking studies, molecular

Egypt. J. Chem. 66, No. 9. (2023)

structure of new Schiff base metal complexes, Egyptian Journal of Chemistry 65(1) (2022) 1-2.

[18] M. Meenukutty, A.P. Mohan, V. Vidya, V.V. Kumar, Synthesis, characterization, DFT analysis and docking studies OFA novel schiff base using 5bromo salicylaldehyde and β -alanine, Heliyon (2022) e09600.

[19] G. Kotan, S. Manap, H. Yüksek, Synthesis, Characterization, Antioxidant and DFT Studies of Some Novel Schiff Base Compounds, Journal of Computational Biophysics and Chemistry 21(1) (2022) 47-63.

[20] J. Anacona, J. Santaella, R.K.R. Al-Shemary, J. Amenta, A. Otero, C. Ramos, F. Celis, Ceftriaxonebased Schiff base transition metal (II) complexes. Synthesis, characterization, bacterial toxicity, and DFT calculations. Enhanced antibacterial activity of a novel Zn (II) complex against S. aureus and E. coli, Journal of Inorganic Biochemistry 223 (2021) 111519.

[21] C. Arunagiri, A. Subashini, M. Saranya, P.T. Muthiah, K. Thanigaimani, I.A. Razak, Synthesis, crystal structure and theoretical studies of a Schiff base 2-[4-hydroxy benzylidene]-amino naphthalene, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135 (2015) 307-316.

[22] S.O. Smith, A.B. Myers, R.A. Mathies, J.A. Pardoen, C. Winkel, E. van Den Berg, J. Lugtenburg, Vibrational analysis of the all-trans retinal protonated Schiff base, Biophysical journal 47(5) (1985) 653-664.

[23] A. Filarowski, A. Koll, L. Sobczyk, Vibrational spectra of o-hydroxyphenyl Schiff bases and related compounds, Current Organic Chemistry 13(3) (2009) 287-298.

[24] S.I. Touw, H.J. de Groot, F. Buda, Ab initio modeling of the spatial, electronic, and vibrational structure of Schiff base models for visual photoreceptors, The Journal of Physical Chemistry B 108(35) (2004) 13560-13572.

[25] J. Antunes, L. Silva, R. Bento, A. Teixeira, P. Freire, J. Faria, R. Ramos, C. Silva, J. Lima Jr, Vibrational spectra and DFT calculations of the vibrational modes of Schiff base C18H17N3O2, Journal of Molecular Structure 1013 (2012) 126-133.
[26] L. Guo, T. Ji, C. Liu, Y. Li, Y. Huang, Y. Mo, J. Zhao, The Raman vibrational characteristics and assignments of three Schiff bases, Guang pu xue yu Guang pu fen xi= Guang pu 21(3) (2001) 317-319.

[27] S. Masuda, H. Torii, M. Tasumi, Vibrational Analysis of a Schiff Base Based on ab Initio Molecular Orbital Calculations: Effect of Electron Correlation on the CN Stretching Force Constant and the Origin of the Shift of the CN Stretching Frequency upon Protonation and Hydrogen-Bond Formation, The Journal of Physical Chemistry 100(38) (1996) 15328-15334.

[28] A.D. Becke, Density-functional exchangeenergy approximation with correct asymptotic behavior, Physical Review A 38(6) (1988) 3098-3100.

[29] Abdu, A. N., & Migahed, M. A. Experimental and theoretical insights into synthesized Gemini corrosion inhibitor for X65-steel in 1M HCl. Egyptian Journal of Chemistry (2022).

[30] Migahed, M. A., Nasser, A., Elfeky, H., & El-Rabiei, M. M. The synthesis and characterization of benzotriazole-based cationic surfactants and the evaluation of their corrosion inhibition efficiency on copper in seawater. RSC advances, 9(46) (2019) 27082.

[31] Jebin, R. P., T. Suthan, N. P. Rajesh, G. Vinitha, and U. Madhusoodhanan. "Growth and characterization of organic material 4dimethylaminobenzaldehyde single crystal." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135 (2015): 959-964

[32] Campetella, M., Cappelluti, F., Fasolato, C., Conte, D., Palumbo, O., Paolone, A., ... & Gontrani, L. Physical-chemical studies on putrescine (butane-1, 4-diamine) and its solutions: Experimental and computational investigations. Journal of Molecular Liquids, 322, (2021), 114568.

[33] W. Hehre, L. Radom, P. v R. Schleyer, and JA Pople. Ab initio molecular orbital theory, 1986.

[34] A.D. Becke, Density-functional exchangeenergy approximation with correct asymptotic behavior, Physical review A 38(6) (1988) 3098.

[35] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B 37(2) (1988) 785.

[36] A. Ambrosetti, D. Alfè, R.A. DiStasio Jr, A. Tkatchenko, Hard numbers for large molecules: Toward exact energetics for supramolecular systems, The Journal of Physical Chemistry Letters 5(5) (2014) 849-855.

[37] S. Grimme, A simplified Tamm-Dancoff density functional approach for the electronic excitation

spectra of very large molecules, The Journal of chemical physics 138(24) (2013) 244104.

[38] R.K. Roy, S. Saha, Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors, Annual Reports Section" C"(Physical Chemistry) 106 (2010) 118-162.

[39] C. Møller, M.S. Plesset, Note on an approximation treatment for many-electron systems, Physical review 46(7) (1934) 618.

[40] K. Kristensen, I.-M. Høyvik, B. Jansik, P. Jørgensen, T. Kjærgaard, S. Reine, J. Jakowski, MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme, Physical Chemistry Chemical Physics 14(45) (2012) 15706-15714.

[41] Y. Nakao, K. Hirao, A local second-order Møller–Plesset method with localized orbitals: A parallelized efficient electron correlation method, The Journal of chemical physics 120(14) (2004) 6375-6380.

[42] P. Maslen, M. Head-Gordon, Non-iterative local second order Møller–Plesset theory, Chemical physics letters 283(1-2) (1998) 102-108.

[43] S. Saebø, P. Pulay, A low-scaling method for second order Møller–Plesset calculations, The Journal of Chemical Physics 115(9) (2001) 3975-3983.

[44] L. Ravichandran, S. Banik, Investigation of the Failure of the MP2 Method to Describe the Out-of-Plane Bending Motions of Carbon–Carbon Double-Bonded Molecules: The Role of Atomic Orbitals, The Journal of Physical Chemistry A 125(42) (2021) 9298-9317.

[45] E. Soydas, U. Bozkaya, Assessment of orbitaloptimized MP2. 5 for thermochemistry and kinetics: dramatic failures of standard perturbation theory approaches for aromatic bond dissociation energies and barrier heights of radical reactions, Journal of Chemical Theory and Computation 11(4) (2015) 1564-1573.

[46] M. Frisch, F. Clemente, Gaussian 09, revision a. 01, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g, Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe (2009) 20-44.

[47] P. Pulay, Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules: I. Theory, Molecular Physics 17(2) (1969) 197-204. [48] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier2012.

[49] L. Bellamy, The infra-red spectra of complex molecules, Springer Science & Business Media2013.

[50] R.K. Heenan, L.S. Bartell, Electron diffraction studies of supersonic jets. IV. Conformational cooling of n-butane, The Journal of Chemical Physics 78(3) (1983) 1270-1274.

[51] J. Durig, A. Wang, W. Beshir, T. Little, Barrier to asymmetric internal rotation, conformational stability, vibrational spectra and assignments, and Ab Initio calculations of n-butane-d0, d5 and d10, Journal of Raman spectroscopy 22(11) (1991) 683-704.

[52] R. Bonham, L. Bartell, The Molecular Structure and Rotational Isomerization of n-Butane1, 2, Journal of the American Chemical Society 81(14) (1959) 3491-3496.

[53] L. Sundararaman, H. Ramu, R. Kandaswamy, H.
Stoeckli-Evans, (E)-4-[(4-Methoxyphenyl) iminomethyl]-N, N-dimethylaniline, Acta Crystallographica Section E: Structure Reports Online 65(3) (2009) 0477-0477.

[54] J.a.K. Jawad, T.A. Mohamed, U.A. Soliman, L.D. Wilson, A.M. Abuelela, Raman and infrared spectra, crystal structure and DFT calculations of novel N-benzyl-4-(3-benzylcarbamoyl-

propyldisulfanyl)-butyramide:[C6H5CH2NHC

(O)(CH2) 4S] 2, Research on Chemical Intermediates 41(7) (2015) 4761-4784.

[55] K. Kuchitsu, Electron diffraction investigation on the molecular structure of n-butane, Bulletin of the Chemical Society of Japan 32(7) (1959) 748-769.

[56] W. Bradford, S. Fitzwater, L.S. Bartell, Molecular structure of n-butane: calculation of vibrational shrinkages and an electron diffraction reinvestigation, Journal of Molecular Structure 38 (1977) 185-194.

[57] J. Rumble, CRC handbook of chemistry and physics. 102nd edition 2021–2022, CRC Press, Boca Raton, London, New York, 2021.

[58] A. Habenschuss, A. Narten, X-ray diffraction study of liquid n-butane at 140 and 267 K, The Journal of chemical physics 91(7) (1989) 4299-4306.

[59] J. Schachtschneider, Vibrational Analysis of Polyatomic Molecules, VI: FORTRAN IV Programs for Solving the Vibrational Secular Equation and for the Least-Squares Refinement of Force Constants, Shell Development Company1965. [60] G.A. Guirgis, Y.D. Hsu, A.C. Vlaservich, H.D. Stidham, J.R. Durig, Vibrational spectrum, ab initio calculations, assignments of fundamentals, barriers to internal rotation and stabilities of conformers of 1, 2-dichloropropane, Journal of molecular structure 378(2) (1996) 83-102.

[61] E.B. Wilson, JC Decius, and PC Cross, Molecular Vibrations, The Theory of Infrared and Raman Vibrational Spectra. McGraw-Hill, New York (1955).

[62] A.M. Abuelela, T.A. Mohamed, O.V. Prezhdo, DFT simulation and vibrational analysis of the IR and Raman spectra of a CdSe quantum dot capped by methylamine and trimethylphosphine oxide ligands, The Journal of Physical Chemistry C 116(27) (2012) 14674-14681.

[63] R. Dennington, T. Keith, J.G. Millam, Version 5, Semichem Inc.: Shawnee Mission, KS, USA (2009).

[64] P. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation, Elsevier2017.

[65] A. Burrill, P. Johnson, Torsional analyses of trans-2-butene and propene cations: A comparative investigation of two prototypical ions with different degrees of symmetry, The Journal of chemical physics 115(1) (2001) 133-138.

[66] S. Dash, R.K. Singh, P. Alapati, A. Verma, A comparative laser Raman study on TB4A, TB7A and TB10A, Liquid crystals 25(4) (1998) 459-465.

[67] N.C. Handy, P.E. Maslen, R.D. Amos, J.S. Andrews, C.W. Murray, G.J. Laming, The harmonic frequencies of benzene, Chemical physics letters 197(4-5) (1992) 506-515.

[68] U.A. Soliman, A.M. Hassan, T.A. Mohamed, Conformational stability, vibrational assignmenents, barriers to internal rotations and ab initio calculations of 2-aminophenol (d0 and d3), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 68(3) (2007) 688-700.

[69] T.A. Mohamed, G.A. Guirgis, Y.E. Nashed, J.R. Durig, Spectra and Structure of Silicon-Containing Compounds. XXV. Raman and Infrared Spectra, r 0 Structural Parameters, Vibrational Assignment, and Ab Initio Calculations of Ethyl Chlorosilane-Si-d2, Structural Chemistry 10(5) (1999) 333-348.

[70] A.M. Abuelela, U.A. Soliman, G.A. El-hagali, W.M. Zoghaib, T.A. Mohamed, Synthetic routes and vibrational analysis of 5-(4-Chlorophenyl)-3H-pyrazol-3-one molecule: Raman, Infrared and DFT calculations, Journal of Molecular Structure 1245 (2021) 131036.