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Abstract 

Two new imidazolium-based ionic liquids namely, 1-hexadecyl-3-(4-methylbenzyl)-1H-imidazol-3-ium chloride (IL-CH3), 
and 1-hexadecyl-3-(4-nitrobenzyl)-1H-imidazol-3-ium chloride (IL-NO2) were synthesized. The inhibitory activity of these 
compounds against the corrosion of low-carbon steel (LCS) in a 1 M HCl was examined by utilize multiple techniques such as 
polarization (PP) and electrochemical impedance spectroscopy (EIS). The outcome data displayed that the protection 
efficiency rises with improving the dose of IL’S (IL-CH3, IL-NO2). PP data confirm that they are mixed kind inhibitors. Best 
performances (i.e. 92.9% and 94.5%) were recorded at maximal IL-CH3 (100 ppm) and IL-NO2 (100 ppm) doses, 
respectively. These findings imply that the novel ionic liquids (IL-CH3, IL-NO2) are efficient corrosion inhibitors. 
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1- Introduction 

Carbon steel is the primary metal utilized in the oil and 
gas manufacturing sectors. Steel corrosion is thus a 
highly problematic risk factor for developing 
significant economic and ecological concerns [1-5]. As 
a result, acid de-scaling and pickling operations are 
commonly employed in manufacturing processes to 
eliminate corrosion scales from metal surfaces under 
harsh conditions, such as strong acidic solutions and 
high temperatures. In order to prevent corrosion of the 
steel surface, a special action is therefore required. 
Varieties of organic molecules were employed in this 
situation as effective corrosion protections and 
inhibitors. [6-10]. Regrettably, due to high doses 
utilized, which could have toxic effects on the 
surroundings, the utilization of that kind agents is 
restricted. For minimizing the corrosion of several 
metallic materials, ionic liquids (ILs) had already 

lately been recommended as endorsing compounds in 
a wide range of applications [11, 12-14]. As shown in 
a literature review, numerous synthesized ILs were 
often choose as efficient steel corrosion inhibitors in a 
variety of electrolyte solutions [15-19]. The main 
innovation of this work is the layout of two novel ionic 
liquid additives, 1-hexadecyl-3-(4-methylbenzyl)-1H-
imidazol-3-ium chloride and 1-hexadecyl-3-(4-
nitrobenzyl)-1H-imidazol-3-ium chloride (IL-CH3, IL-
NO2). 

 

2- Experimental   

 

2.1 Synthesis of IL-CH3, IL-NO2 

Synthesis of ILs (IL-CH3, IL-NO2) was carried out 
according to Scheme 1. 
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Scheme 1: Synthesis of (IL-CH3, IL-NO2). 

The purity of prepared IL-CH3, IL-NO2 is 99.8% 

2.2 Anticorrosion efficiency 

LCS has been cut into sizes of 1 cm x 1 cm for the 
electrochemical experiment. 

 Table 1 lists the LCS's chemical components 

chemic

al 

compon

ents 

Mn C Si P Fe 

(wt%) 0.349 0.209 0.0035 0.0242 remain
der 

Before each test, the LCS were abraded with a variety 
of emery papers ranging in grade from 200 to 1800, 
degreased with acetone, and cleaned with distilled 
water. A glass unit was used for electrochemical 
estimations using the Gamry G750 instrument, 
platinum (Pt), a saturated calomel electrode (SCE), 
and an LCS plate as the working anode (WE).   
Assessments of polarization (PP) were made by 
sweeping the potential at EOC from –(500) to + (500) 
mV at a rate of 1.0 mV s-1. 

Surface cover (θ) and the inhibition efficacy (%IE) 

were derived using the relation (1) 

%IE = ɵ ×100 = (icorr(0) - icorr / icorr(0)) ×100      (1( 

icorr(0)  = Corrosion current density for blank solution. 

icorr = Corrosion current density when ILs are present. 

The EIS assays were made out with a perturbation of 
10 mV and a frequency band of 0.2 Hz to 30 kHz. 

Surface coverage (θ) and the%IE were derived from 

relation (2) [21]: 

%IE = ɵ ×100 = [(1 – (R◦ct / Rct)] ×100      (2) 

In which R◦ct and Rct are, respectively, the resistance 
data prior to and after the addition of ILs. 
 

3. Results and discussion 

3.1 EIS Assessments 

The Nyquist shapes for the corrosion activity of LCS 
in 1.0 M HCl containing and not containing varying 
amounts of ILs (IL-CH3, IL-NO2) are shown in Figs. 
(1-2).  Impedance spectrum revealed a single time 
constant connected to only one capacitive semi-circles, 
showing that charge transfer was primarily controlling 
the corrosion activity [22]. The formation of an ILs 
(IL-CH3, IL-NO2) adsorbed barrier on the top layer of 
the LCS causes the diameter of Nyquist curves to 
increase as the ILs (IL-CH3, IL-NO2) dosages rises. 
Tables (2 and 3) show the EIS, and %IE data. Charge 
transfer resistance, or Rct, increases as the dose of ILs 
(IL-CH3, IL-NO2) is increased. As ILs (IL-CH3, IL-
NO2) molecules replace water and create an inhibitive 
shield at the LCS, the qualities of Cdl (double layer 
capacitance) decline [23]. 

 

 

Fig. 1. Nyquist plots for LCS at 25 °C in 1 M HCl 

without and including IL-CH3 
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Table 2: EIS parameters in 1 M HCl with and 

without IL-CH3 at 25 °C for LCS 

 

 

Fig. 2 Nyquist plots for LCS at 25 °C in 1 M HCl 

without and including IL-NO2  

Table 3 EIS parameters in 1 M HCl with and 

without IL-NO2 at 25 °C for LCS. 
IE 

% 

Cdl 

μF.cm-2 

Rct 

(Ω.cm2) 

Rs 

(Ω.cm2) 

IL-NO2 
Conc. 

(ppm) 

- 

78.5 

83.9 

112.5 

97.9 

78.9 

12.4 

56.3 

61.8 

0.89 

0.87 

0.87 

Blank 

20 

40 

86.2 

88.9 

92.9 

90.6 

72.8 

60.5 

54.8 

59.9 

72.2 

77.6 

152.2 

149.8 

0.83 

0.83 

0.89 

0.82 

60 

80 

100 

120 

 

The maximum efficiency (86.1% and 92.9 %) has been 
observed at optimum concentrations of IL-CH3 (100 
ppm) and IL-NO2 (100 ppm), respectively. 

3.2. PP Measurements 

Figs. (3,4) show the PP graphs of LCS in 1.0 M HCl 
solution before and after varied IL amounts (IL-CH3, 
IL-NO2) were added. After having to add ILs (IL-CH3, 
IL-NO2), respectively cathodic and anodic sections 
started moving to the relatively low icorr data, lowering 
the corrosion rate. The effects of IL concentration (IL-
CH3, IL-NO2) on polarization data and (% IE) for LCS 
corrosion in 1 M HCl at 25°C are shown in Tables 
(4,5). Corrosion potential (Ecorr) is shifted slightly 
toward less negative numbers when ILs (IL-CH3, IL-
NO2) are added to 1 M HCl, indicating that these ILs 
(IL-CH3, IL-NO2) could really be regarded as mixed-
type inhibitors [24]. Additionally, this adding doesn't 
really significantly alter (βa and βc), indicating that 

neither the mechanism for liberating hydrogen nor the 
method by which LCS dissolves are impacted [25]. 
The maximum efficiency (92.9% and 94.5%) has been 
observed at optimum concentrations of IL-CH3 (100 
ppm) and IL-NO2 (100 ppm), respectively. 

 

Fig. 3. PP curves for the corrosion of LCS in 1 M HCl 
solution without and with various concentrations of 
IL-CH3 at 25˚C. 

IE 

% 

Cdl 

μF. cm-2 

Rct 

(Ω.cm2) 

Rs 

(Ω.cm2) 

IL-CH3 
Conc. 

(ppm) 

- 

75.1 

78.7 

80.5 

83.4 

86.1 

84.4 

112.5 

100.4 

93.6 

76.4 

70.6 

56.9 

59.8 

12.4 

49.9 

58.3 

63.7 

74.8 

89.7 

79.4 

0.89 

0.85 

0.82 

0.82 

0.77 

0.78 

0.73 

Blank 

20 

40 

60 

80 

100 

120 
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Fig. 4. PP curves for the corrosion of LCS in 1 M HCl 
solution without and with various concentrations of 
IL-NO2 at 25˚C. 

Table 4 Polarization parameters for LCS in 1 M HCl 
without and with IL-CH3 at 25˚C 

IE 

% 

Icorr. 

µA cm-2 

βc 

(mV. 
dec-1) 

βa 

(mV. 
dec-1) 

Ecorr. 

mV 
(SCE) 

IL-CH3 
Conc. 

(ppm) 

- 

78.5 

83.9 

86.2 

88.9 

92.9 

90.6 

125.8 

27.0 

20.2 

17.3 

13.9 

8.9 

11.7 

108 

124 

114 

98 

102 

138 

122 

69 

77 

72 

62 

58 

88 

87 

-463 

-384 

-366 

-343 

-332 

-310 

-352 

Blank 

20 

40 

60 

80 

100 

120 

Table 5 Polarization parameters for LCS in 1 M HCl 
without and with IL-NO2 at 25˚C. 

IE 

% 

Icorr. 

µA cm-2 

βc 

(mV. 
dec-1) 

βa 

(mV. 
dec-1) 

Ecorr. 

mV 
(SCE) 

IL-NO2 
Conc. 

(ppm) 

- 

82.6 

87.3 

125.8 

21.8 

15.9 

108 

98 

99 

69 

63 

84 

-463 

-384 

-366 

Blank 

20 

40 

89.6 

93.9 

94.5 

91.5 

13.0 

7.6 

6.9 

10.6 

92 

112 

125 

120 

75 

83 

84 

85 

-343 

-332 

-310 

-352 

60 

80 

100 

120 

 

 

Consequently, the main role of ionic liquids is to 
create a barrier between the LCS surface and the acidic 
surroundings [26–31]. By stifling both the hydrogen 
evolving and LCS solubilization responses, ionic 
liquids could indeed stop LCS corrosion from 
occurring. IL-CH3 and IL-NO3 can remove a 
considerable number of H2O molecules from the LCS 
surface due to their significantly bigger molecular size 
and shapes. Adsorption of IL-CH3 and IL-NO3 by 
heteroatoms and π-electrons leading to the 
establishment of a barrier protection film. 

4. Conclusions: 

Two new imidazolium-based ionic liquids (IL-CH3 
and IL-NO3) were synthesized in the current work. 
The anti-corrosion characteristics of the two ionic 
liquids (IL-CH3 and IL-NO3) produced was practical 
investigated. The inhibition optimization obtained 
from all measured data was in good agreement. 
Potentiodynamic polarization evaluations revealed that 
the ionic liquids were mixed suppressors. The EIS 
study found that by adding the IL-CH3 and IL-NO3, 
the double-layer capacitances decrease particularly in 
comparison to the control sample, and the largest 
charge transfer resistance of IL-CH3 and IL-NO3 is a 
factor of the formation of a dense interfacial film. 
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