
 

 

_________________________________________________________________________________________________ 

*Corresponding author e-mail: chemparadise17@yahoo.com.; (ELSAYED G. ZAKI). 

Received date 28 September 2022; revised date 11 November 2022; accepted date 20 November 2022 

DOI: 10.21608/ejchem.2022.165887.7043 

©2023 National Information and Documentation Center (NIDOC) 
 

 

Egypt. J. Chem. Vol. 66, No. 8. pp. 543 - 559 (2023) 

 

                                                                                                                      

 Theoretical and electrochemical studies of alkyl ammonium halide as impactful  

inhibitors for pipelines corrosion in oil well formation water  

Mohamed A. Moselhy1, Elsayed G. Zaki 2*, Samir A. Abd El-Maksoud3, Mohamed A. Migahed2 

 1Belayim Petroleum Company, 7074, Cairo, Egypt 

2Egyptian petroleum Research Institute, Nasr City, Cairo (11727), Egypt 

3Chemistry Department, Faculty of Science, Port Said University, Port Said 42522, Egypt 

Abstract 

To improve the resistance of carbon steel to corrosion in hostile settings, corrosion inhibitors are often applied to the steel. Both 

triethyl-hexyl-ammonium bromide (THAB) and dodecyl-triethyl-ammonium bromide (DTAB), which are cationic surfactants 

based on ammonium, were synthesized, described, and evaluated as potential corrosion inhibitors for API X-65 type steel in oil 

wells formation water under H2S conditions. Due to the fabrication of inhibitive film, the anti-corrosion properties of the carbon 

steel are significantly enhanced in the presence of organic corrosion inhibitors. In order to verify the THAB and DTAB chemical 

structures, a number of different spectroscopic methods such as FTIR and 1HNMR were utilized. Both potentiodynamic 

polarization and electrochemical impedance spectroscopy (EIS) measurements were utilized in this investigation to determine 

the effectiveness of the selected chemicals in inhibiting corrosion. The efficiency reached 81% for compound THAB and 82% 

for compound DTAB at 250 ppm It was revealed that the concentration of the inhibitor as well as the length of the spacer in 

their chemical structure both had an effect on the inhibition effect.  Quantum chemical calculations and Monte Carlo simulation 

techniques were used to support the obtained experimental results.  

Keywords: ammonium surfactants, EIS, Corrosion, Monte Carlo simulation, DFT  

1. Introduction 

The deterioration of metal is an inevitable process 

and is widely considered to be the biggest challenge 

that has a negative impact on the production rate since 

it directly affects industrial machinery across a variety 

of industrial contexts and applications, including the 

petroleum sector, power plants and cooling towers [1-

6]. In most cases, traditional corrosion inhibitors are 

compounds that contain electronegative heteroatoms 

such as nitrogen, oxygen, sulphur, or phosphorus, 

unsaturated double bonds and aryl rings [7-11]. 

Surfactant inhibitors have many advantages such as 

high inhibition efficiency, easy production, low price, 

and low toxicity [12-15]. These compounds can 

coordinate with the metal atoms to form adsorbed 

layers on metal surfaces, which have the effect of 

preventing corrosion on metals [16-18]. It is possible 

for the metal's ability to resist corrosion to undergo a 

dramatic transformation as a result of the adsorption of 

the surfactant on its surface.  Deep oil wells formation 

water that obviously occurs in the rocks before drilling 

contains a variety of dissolved inorganic and organic 

compounds. Formation water considers the most 

corrosive media in oil field procedures owing mainly 

to the presence of high amounts of the aggressive 

hydrogen sulfide, carbon dioxide and other corrosive 

salts such as sulfate and chloride [19]. In previous 

literatures, the mechanism of the corrosion process of 

carbon steel in various aqueous media containing H2S 

has been studied [20-25].The novelty is synthesis of 

novel amine compounds with high efficiency to 

corrosion mitigate 

 

The present work is aimed to synthesis of two 

novel cationic surfactants namely; (THAB and 

DTAB) and evaluation of their performance as 
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corrosion inhibitors for carbon steel in oil wells 

formation water under H2S environment by using 

different techniques. Adsorption isotherm was utilized 

to elucidate inhibitors interaction with metal surface. 

Theoretical studies were used to support the obtained 

experimental data. 

2. Experimental section 

2.1. Chemical composition of API 5L -X65 type 

carbon steel alloy 

Carbon steel specimens used in this investigation 

were cut from unused petroleum pipeline (Belayim 

Petroleum Company - Egypt). The chemical 

composition (weight %) of carbon steel was as 

follows:  C (0.09), Si (0.22), Mn (1.52), P (0.01), S 

(0.05), Ni (0.04), Cr (0.02), Mo (0.004), V (0.002), Cu 

(0.02), Al (0.04) and Fe (97.984). 

2.2. Synthesis of the inhibitors 

The cationic surfactant (DTAB and THAB) based 

on tri-n-ethyl amine was synthesized by quaternization 

reaction as outlined in Scheme 1. Tri-n-ethyl amine at 

a concentration of 50 mM and 1-bromododecane or 1-

bromohexane at the same level were each put into a 

round flask of 250 mL containing (CH3)2CO at a 

volume of 100 mL as a dissolvable solvent [26]. The 

final blend was brought down to room temperature 

after undergoing an 18-hour mixing process during 

which it was subjected to a reflux heating method. 

After being filtered via filter paper, the earthy colored 

suspension was rinsed well twice with diethyl ether 

and then recrystallized from (CH3)2CO in order to 

cover the expense of the white gem that the cationic 

surfactants produced. The outputs of the earthy 

colored precious stone items ranged anywhere from 

80–90% in terms of their total product value. 
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Scheme 1: Synthesis of cationic surfactant (THAB, DTAB) 
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2.3. Solution 

The corrosive solution utilized in this study is deep 

oil well produced water obtained from Belayiem 

Petroleum Company (Petrobel) – Egypt. Chemical 

composition and physical properties of deep oil well 

produced water used in this work were listed in Table 

1. The test solution for this study contains reaction of 

sodium sulfide (3.53 mg/L) with acetic acid (1.7 

mg/L) to produce H2S gas. 

Table 1: Chemical composition and physical properties of deep oil well formation water used in this investigation 

Physical properties 

Property Unit Value 

Density g/mL 1.06 

T.D.S mg/L 9650 

pH at 25 oC  6.8 

Specific gravity  1.06 

Salinity (as NaCl) ppm (mg/l) 95556   

Total alkalinity (as CaCO3) Ppm 320 

Total hardness (as CaCO3) Ppm 14455 

Resistivity Ohm-m @21.6 oC 0.0832 

Conductivity mhos/cm@21.6 °C 12.02 x 10-2   

Chemical properties 

Ionic species mg/L meq/L 

Lithium 48.9 7.056 

Sodium  30760.9 1337.485 

Potassium 945.24 24.179 

Calcium 4225.67 210.861 

Magnesium 947.95 78.007 

Barium 1.30 0.019 

Strontium 78.08 1.783 

Iron Nil Nil 

Copper Nil Nil 

Fluoride 76.71 4.038 

Chloride 57912.87 1631.405 

Bromide 252.62 3.163 

Ammonium 186.85 10.357 

Carbonate Nil Nil 

Bicarbonate 390.40 6.399 

Phosphate Nil Nil 

 Sulfate 640.54 13.342 

Sulfide  325 0.020 

Nitrite 1.84 0.040 

Nitrate 38.17 0.616 
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2.4. Corrosion  measurements 

Electrochemical studies (PDP and EIS) were 

performed by a three-electrode electrochemical glass 

cell using Volta lab 80 potentiostat (Tacussel-

Radiometer PGZ−402). Volta lab 80 was controlled by 

Tacussel corrosion analysis software model (Volta 

master 4). API 5L X65 carbon steel with an exposed 

surface area of 1 cm2 was used as the working 

electrode, platinum plate was served as the counter 

electrode, and saturated calomel electrode (SCE) was 

employed as reference electrode. Before starting the 

measurements, the working electrode was polished in 

series on 360-2500 silicon carbide papers, then rinsed 

with deionized water and acetone, and finally dried 

under warm air. PDP tests were performed at ± 300 

mV based on EOCP with a constant sweep rate of 1 

mV s−1 [27, 14]. The corrosion potential and the 

corrosion current density were collected by 

extrapolation at Tafel segments of the obtained anodic 

and cathodic polarization curves. EIS experiments 

were carried out at open circuit potential (EOCP) in a 

frequency range between 100 kHz and 0.02 Hz, with a 

signal (AC) amplitude perturbation of 10 mV [28, 29]. 

After the measurements, the EIS data obtained were 

interpreted by ZSimpwin software. EIS diagrams are 

given in both Nyquist and Bode plots. Each 

electrochemical test had been carried out at least twice 

to confirm the accuracy of the data. 

2.5.  Computational Calculations 

In the course of this research, the software known 

as Gaussian 09 W was utilized to do quantum chemical 

calculations. At the level of the DFT calculation, a 

neutral and cationic LP (LP, LPH+) +G(d, p) basis set 

is used. Following the acquisition of the corresponding 

quantum chemical parameters, a detailed discussion 

took place. To understand the metal's inhibitive 

performance, it is essential to conduct research on the 

adsorption mechanism of inhibitor molecules on the 

surface of the metal and the corresponding bonding 

strength of these molecules. Using the molecular 

mechanics method, which was implemented in the 

Forcite module, we were able to emphasize the contact 

that occurred between the inhibitor molecules and the 

steel surface. It was decided to construct a simulation 

box with dimensions of 24.3 17.2 67.1 A. This box 

would have 5 layers of Fe (110), 1 inhibitor molecule, 

500 H2O molecules, and a 40 A vacuum layer. In this 

particular system, the periodic boundary condition and 

the COMPASS force field were implemented. With a 

simulation period of 500 ps and a time step of 1 fs, 

employing the NVT canonical ensemble was 

successful in producing a simulation of high quality 

[30-33]. 

3. Results and discussion 

3.1. FTIR spectroscopic analysis  

FTIR spectrum (Figure  1 ) of the prepared 

inhibitors (DTAB, THAB) shows two peaks at 

3355 cm−1 and 3410 cm−1 are ascribed for N-H in 

both inhibitors, 2925 and 2856 cm−1 corresponding to 

(CH3 and CH2), in addition to peak at 1059 cm−1 and 

fingerprint peak at 724 cm−1 referred to the 

asymmetric and symmetric stretching quaternary 

nitrogen atom (N+─C) as shown in Scheme 1. 

 

 

  (a) 
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Figure 1(a, b): FTIR spectrum of the synthesized inhibitors: (a) DTAB and (b) HTAB. 

3.2. 1H NMR spectrum spectroscopic analysis 

Figure 2 (a, b) show the chemical shift at б (0.96) 

for 1H proton (a) –CH3, the chemical shift б (3.33), 

(1.73) for 1H protons attached to nitrogen atoms (b) 

and . All the above chemical shifts confirm that 

compound DTAB was successfully prepared. The 

above chemical shifts confirm that THAB were 

successfully prepared. The data of 1H NMR spectra 

confirmed the expected hydrogen proton distribution 

in the synthesized surfactant as shown in Figure 2(a, 

b).
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Figure 2: Chemical structure characterization of inhibitor, (a) 1H-NMR DTAB and (b) 1H-NMR HTAB 

 

3.3. Potentiodynamic polarization measurements  

The anodic and cathodic polarization curves for 

carbon steel in formation water without and with 

various concentrations of inhibitors are shown in 

Figure 3. Calculations were made to determine 

electrochemical parameters such as corrosion potential 

(Ecorr.), corrosion current density (icorr.), cathodic 

and anodic Tafel slopes (βc and βa), and polarization 

resistance (Rp). Complete data obtained from 

potentiodynamic polarization measurements are 

summarized and listed in Table 2. It is obvious from 

Table 2 that the corrosion current density significantly 

decreased in the presence of the investigated inhibitors 

compared to uninhibited solution, indicating that two 

compounds (THAB and DTAB) retarded the corrosion 

of carbon steel in formation water [34, 35]. 
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Figure 3: Polarization plots of steel electrode attained in formation water and containing various concentrations of  

(a) THAB and (b) DTAB inhibitors. 

 

The degree of surface coverage (θ) and the 

percentage inhibition efficiency (η %) were calculated 

using the following equations [36-38] : 

𝜂𝑃𝐷𝑃 = 𝜽 × 100 = [
𝑖𝑐𝑜𝑟𝑟

0 −𝑖𝑐𝑜𝑟𝑟

𝑖𝑐𝑜𝑟𝑟
0 ] × 100             (1) 

Where 𝑖𝑐𝑜𝑟𝑟
0  and 𝑖𝑐𝑜𝑟𝑟  are the corrosion current 

densities in the absence and presence of the inhibitor, 

respectively. A careful inspection of the polarization 

curves indicated that Tafel lines are shifted to more 

negative and more positive potentials for the anodic 

and cathodic processes, respectively relative to the 

blank curve. This means that the selected compounds 

acts as mixed type inhibitor and the corrosion current 

densities (icorr) are decreased with increasing 

concentration. The data in Table 2 revealed that the 

inhibition efficiency obtained using the Icorr values 

increase with the increasing of the inhibitor 

concentrations. The results indicate that the percentage 

inhibition efficiency (η %) of compound (DTAB) is 

greater than that of compound (THAB). This could be 

attributed to the long alkyl chain of the DTAB 

inhibitor, and this could be attributed to the increase 

which leads to an increase in the surface area of each 

molecule covering the surface of carbon steel and 

isolating it from the aggressive environment [39, 40]. 

 

Table 2: Corrosion parameters obtained from polarization curves for THAB and DTAB inhibitors. 

Inhibito

r 

Conc. 

(ppm) 

𝜷𝒂 

mV/dec 

−𝜷𝒄 

mV/dec 

−𝑬𝒄𝒐𝒓𝒓 

mV vs. SCE 

𝑰𝒄𝒐𝒓𝒓 

µA/cm2 

Ө Ƞ % 

Blank --- 193.7±2 150.9±3 825±4 9.312±0.1 ---- ---- 

THAB 

50 126.5±1 152.4±3 805±1 3.514±3 0.6108±0.5 61.08 

100 131.7±2 141.3±2 801±3 3.238±2 0.6421±0.2 64.21 

150 107.8±3 136.5±1 798±2 2.305±1 0.7534±0.3 75.34 

200 105.2±1 129.2±3 792±4 2.142±3 0.7812±0.1 78.12 

250 101.4±2 122.7±4 780±1 1.697±2 0.8105±0.4 81.05 

DTAB 

50 129.4±3 158.2±1 818±3 3.435±0.2 0.6313±0.0

5 

63.13 

(b) 
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100 133.8±1 145.3±1 833±2 3.092±0.1 0.6680±0.0

1 

66.8 

150 108.5±2 128.6±2 809±1 2.054±0.3 0.7795±0.0

4 

77.95 

200 106.1±1 123.8±4 803±2 1.939±0.4 0.7918±0.0

3 

79.18 

250 103.6±4 117.4±2 785±4 1.598±0.2 0.8284±0.0

2 

82.84 

 

3.4. Electrochemical impedance spectroscopy 

(EIS) studies  

The corrosion inhibition of carbon steel in oil wells 

formation water in the absence and presence of 

different doses of compounds (THAB and DTAB) was 

performed using EIS method. Figures 4, 5 show the 

Nyquist plots for THAB and DTAB inhibitors. It is 

clear from Nyquist plots that there is a depressed 

capacitive loop along the X-axis and the size of loop 

increased by increasing the inhibitor concentration, 

indicating the adsorption barrier layers of these 

compounds (THAB and DTAB) formed on carbon 

steel in corrosive solution, preventing the dissolution 

of iron in oil well formation water [41-44]. The 

concentration of the inhibitors does not change the 

shape of the EIS figure, indicating that these inhibitors 

control the corrosion reaction activity rather than alter 

the corrosion mechanism [45, 46]. The electrical 

equivalent circuit as shown in Figure 6 has been 

precisely proposed to fit the impedance measurements 

consisting of the solution resistance (Rs), the charge 

transfer resistance(Rct) and the double-layer capacity 

(Cdl). The impedance parameters were listed in Table 

3. The inhibition efficency (ƞ%) and surface coaverge 

(𝜃) of the surfactant inhibitors were listed in Table 3 

and  estimated by thefollowing expression [47, 48]: 

ƞ𝐸𝐼𝑆% = 𝜃 × 100 = (1 −
𝑅𝑐𝑡

𝑅𝑐𝑡(𝑖𝑛ℎ)
) ×

100                         (2) 

Where, Rct(inh) and Rct are the values of the charge 

transfer resistance in the absence and present of the 

inhibitors, respectively. 

 
 

Figure 4: Nyquist plots for carbon steel electrode in formation water with and without various concentrations of THAB     

inhibitor 
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Figure 5: Nyquist plots for carbon steel electrode in formation water with and without various concentrations DTAB 

inhibitors. 

 

 

Table 3: Impedance parameters obtained from EIS curves for THAB and DTAB inhibitors. 

Inhibitor 
Conc. 
(ppm) 

𝑹𝒇 

Ὠ 

𝑸𝒇 

µf/cm2 n1 
𝑸𝒅𝒍 

µf/cm2 
𝑹𝒄𝒕 

kὨ/cm2 
n2 Ө IE% 

Blank --- 48.3±2 132.1±1.1 0.87±0.02 538.1±7 1.659±0.1 0.83±0.05 ----- ---- 

THAB 50 111.7±3 71.3±0.9 0.87±0.03 237.2±6 4.187±0.2 0.87±0.04 0.6038 60.38 

100 173.2±5 52.8±0.8 0.88±0.01 184.3±5 4.534±0.3 0.90±0.03 0.6341 63.41 

150 215.6±4 41.3±0.7 0.89±0.01 135.9±4 6.002±0.4 0.91±0.02 0.7236 72.36 

200 287.3±6 35.7±0.6 0.90±0.02 113.7±3 7.071±0.5 0.91±0.03 0.7654 76.54 

250 305.2±5 22.1±0.5 0.91±0.01 109.8±2 8.690±0.6 0.92±0.01 0.8091 80.91 

DTAB 50 115.3±3 73.8±0.9 0.87±0.04 243.8±5 4.401±0.2 0.88±0.02 0.6231 62.31 

100 183.1±5 54.6±0.8 0.88±0.01 198.4±3 4.767±0.3 0.91±0.03 0.6527 65.27 

150 233.7±4 44.2±0.7 0.89±0.03 138.2±2 6.716±0.4 0.93±0.04 0.7528 75.28 

200 297.4±6 37.3±0.6 0.90±0.02 117.9±2 7.222±0.5 0.94±0.02 0.7703 77.03 

250 313.7±7 24.7±0.5 0.91±0.01 111.5±4 9.11±0.6 0.95±0.02 0.8180 81.80 

 

 
                              Figure 6: Equivalent circuit used to model impedance data of carbon steel in oil well  

                                               formation water under H2S environment. 
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It is obviously from Table 3 that the Rct value and 

ƞ𝑬𝑰𝑺% value increase with increasing concentration of 

THAB and DTAB inhibitors.  Moreover, both Cdl 

value and Cf value decrease with increasing 

concentration of THAB and DTAB inhibitors. This 

indicates that the increase in the thickness of the 

protective layer was formed on carbon steel in deep oil 

wells formation water solution. According to the next 

two equations [24]: 

𝐶dl= ∑0∑𝑆𝑒/𝑑                                    (3) 

𝐶𝑓 =F2Se/4RT                                    (4) 

Where d is the thickness of the adsorbed layer, Se 

is the electrode surface exposed to the aggressive 

solution, ∑0 is the permittivity of the vacuum, ∑ is the 

local dielectric constant and F is the Faradays constant. 

Cdl value was reduced upon raising the dose of 

inhibitors. This can be explained by replacing the 

water molecules with adsorption of the studied 

inhibitor molecules that create protective layers on the 

surface of carbon steel electrode and blocks corrosion 

reactions on carbon steel surface [49]. Bode plots 

revealed that the phase angle increased with increasing 

dose of these (THAB and DTAB) inhibitors for carbon 

steel in formation water compared to the blank 

solution. Also, the variation of log Z with log F 

revealed that the impedance values increase with 

increasing concentration. The higher inhibition 

efficacy could be due to the presence of N atoms and 

the use of a surfactant with a larger alkyl chain length 

that provides strong adsorption centres and increases 

the layer thickness [50].The inhibition efficiency  

gradually increases with increasing the alkyl chain 

length of the prepared compounds (as shown in Table 

4, and the order of inhibition efficiency was in the 

following order: DTAB ˃ THAB, which is in 

consistent with the obtained potentiodynamic 

polarization results. 

3.5.  Molecular modeling 

The produced surfactants have a high adsorption 

propensity over the Carbon steel surface. This is 

because the chemical structure of the surfactant has a 

high number of function groups that are rich in 

electrons. The DFT method can demonstrate how the 

electron density is distributed across the atomic and 

molecular structures of substances. The DFT output 

parameters are the major indices that are used in the 

calculation of the other parameters according to the 

equations. These indices are as follows: the energy of 

the highest full-field molecular orbital (EH), the energy 

of the lowest empty molecular orbital (EE), and the 

total energy of the molecular orbitals (EL) 

 

∆𝐸𝑔𝑎𝑝 = 𝐸𝐿 − 𝐸𝐻                                        (5) 

𝜂 =
∆𝐸𝑔𝑎𝑝

2
                                                   (6) 

𝜎 =
1

𝜂
                                                           (7) 

 

The work function of the 110th planar 

configuration of iron is 4.82 eV (Fe). It has been 

determined that the donor-acceptor interaction 

between THAB and DTAB, in addition to the 3-

dimensional orbital of iron, is responsible for 

promoting adsorption. The donation of electrons from 

THAB and DTAB into the empty 3-dimensional iron 

orbital is facilitated by an increase in the values of EH 

.DTAB and THAB are better equipped than EL to 

acquire electrons from full-field, three-dimensional 

iron orbitals. The electron cloud in the solution phase 

is distributed over imine-azo dye, hetero and aromatic 

moieties (pyridine, phenol), and halogenated groups 

[48, 51]. This is seen in Figure 7. The electron density 

for HOMO in the gas phase is distributed over 

quaternary nitrogen and halogen atoms. In both the 

gaseous and the solvated phases, LUMO electrons are 

found to be spread over the identical HOMO centers 

[52, 53]. It is believed that both Homos and Lumo are 

centers of interaction between donors and acceptors. 

An electrostatic potential map that illustrates the 

dispersion of electron clouds is used in Figure 7 to 

illustrate both alkyl chains and the alkyl chains. This 

reveals that both THAB and DTAB have tendency to 

generate an adsorption film more denser and more 

adhesive than other films. 
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 Gas phase DTAB  Gas phase THAB  

HOMO 

  

LUMO 

  

SIDE VIEW 

  

TOP VIEW 

 

 

Figure. 7. Optimized molecular structures, HOMO, LUMO, Top and side view of THAB and DTAB in the gas phase. 

 

THAB and DTAB are electron donors that 

transport electrons from one metal surface to another 

metal surface. The values for N in the gas phase are 

shown to be less than 3.6 in Table 4. The back-

donation energy, denoted by the symbol Eback-donat, 

may be found in Table 4. This energy shows that 

electrons from full-filled 3-d or 4S orbitals of Fe are 

donated to the LUMO of DTAB and THAB. The 

compound adsorption activity has been confirmed by 

both the donation and back-donation techniques. 

 

Table 4: Quantum chemical parameters of the investigated inhibitors 

Parameters EH (ev) EL (ev) ΔEgap A I Χ η ΔN 

THAB -7.989 -0.514 7.475 0.514 7.989 4.2515 3.7375 0.367692308 

DTAB -8.517 -0.113 8.404 0.113 8.517 4.315 4.202 0.319490719 
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3.6. Monte Carlo simulation (MCS)  

In these images (Figure. 7), the molecules of 

DTAB and THAB are arranged in a fashion that is 

most suited to the plan of the Fe crystals that is known 

to be the most stable (110). It is possible to simulate 

the adsorption properties of components DTAB and 

THAB on CS surface alloy by using the MCs 

procedure. The adsorption process (donor-acceptor 

interactions) is carried out effectively, as indicated in 

the side and top views of Figure. 7, as a result of the 

flat and planer orientation positions of the DTAB and 

THAB optimized structure in gas and solvent phases 

over Fe (110). DTAB and THAB have a substantial 

spontaneous adsorption affinity over the CS alloy 

surface, as shown by the data in Table 6, which results 

in large negative values of adsorption energy (Eads) in 

gas or solvated phases. It is important to take into 

consideration the fact that the value of Eads. In the 

solvent phase is higher than the comparable value in 

the gas phase. This is because of the creation of H-

bonds between the molecules of the water solvent and 

the nitrogen or/and oxygen atoms of DTAB and 

THAB. These H-bonds act in a synergistic manner to 

adsorb DTAB and THAB to the surface of the CS. 

This is because the. Value of Eads for (DTAB and 

THAB) is higher than its value for water, which 

explains why we have this result. It has been 

demonstrated that components DTAB and THAB are 

capable of producing a protective adsorption barrier 

film on the surface of component CS alloy. The 

interpretations of the DFT and MCs output indices are 

consistent with the gravimetric and electrochemical 

data obtained from the laboratory. 

DTAB and THAB exhibit a strong spontaneous 

adsorption affinity over the CS surface, as shown by 

the data in Table 5, which results in substantial 

negative values of adsorption energy (Eads) in gas or 

solvated phases. This is the case whether or not the CS 

is in a gas or solvated phase. It is important to take into 

consideration the fact that the value of Eads. in the 

solvent phase is higher than the comparable value in 

the gas phase. DTAB adsorption on the surface of the 

CS is made easier as a result of the H-bond that is 

created between the molecules of the water solvent and 

the nitrogen or/and oxygen atoms in the chemical [54-

61]. This reveals that chemicals are capable of 

substituting water molecules that are adsorbing onto 

the surface of the CS and producing a protective 

adsorption barrier coating. 

 

Table 5: The outputs energies calculated by Monte Carlo simulation for DTAB and THAB in gas phase on Fe (110) 

Parameters Total energy Adsorption energy Rigid adsorption energy Deformation energy 3D Atomistic 

DTAB -345.021705 -426.3217956 -238.7488623 -187.5729334 -426.32 

THAB -411.09547 -539.5453442 -277.6503083 -261.8950359 -539.55 

 

Comparison between the advantages and economics of the presented study and previous work are listed at table 6 

Table 6. Comparison between advantages and economics of the present study and previous works. 

 Efficiency % Type Media Compounds 

[62] 63 Surfactants 1 M H2SO4  TEAEMO 

triethanolamine ester of MO 

adduct 

[63] 74 aromatic rings 2M H2SO4 quinine, ephedrine, brucine, 

cinchonine, codeine, and 

harmaline 

Current 

work 

82  Surfactants  oil well formation water triethyl-hexyl-ammonium 

bromide (THAB) and 

dodecyl-triethyl-ammonium 

bromide (DTAB) 
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4. Conclusions  

The newly synthesized surfactants THAB and 

DTAB have the potential to be efficient inhibitors for 

the dissolving of carbon steel in the water found in 

deep oil well formations. FTIR and nuclear magnetic 

resonance (1HNMR) spectroscopy techniques were 

utilized so that the structure of the surfactants could be 

examined and validated. The polarization data that 

were collected provided conclusive evidence that the 

cationic surfactants of choice function as mixed-type 

inhibitors. The inhibition efficiency reaches 82 % for 

the optimum concentration of the THAB and DTAB 

inhibitors. In conclusion, the Monte Carlo simulation 

method served to validate the hypothesis that there is 

a correlation between the experimental and theoretical 

findings. 
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