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Abstract 

Many new peptide therapeutics are increasingly making their way to rapid and successful clinical application. In fact, some 

naturally derived peptide chains have been very successful drugs for many years. With the emergence of very large libraries 

of peptides with high biological properties, it is expected that many promising candidates can soon be added to the list of 

peptides under development. Already recently, these advances have introduced novel strategies for the administration of drugs 

derived from polypeptide chains and improvements in the purification half-life in vivo. Despite remaining potential hurdles, 

peptide therapies are poised to play an important role in treating diseases ranging from Alzheimer's disease to cancer. 
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1. Peptide as drugs and their drawbacks 

The first treatment of a child with diabetes with 

insulin purified from bovine pancreas during the 

early 1920s discovers the concept that human 

diseases can be treated by endogenously occurring 

peptides [1]. 

Peptides are important biological molecules 

having various physiological processes peptides are 

crucial for many physiological functions through 

their interaction with the various receptors. There are 

a great number of natural and modified peptides 

which are used in therapy and they are increases 

every moment. Novel therapies of bioactive peptides 

are discovered and developed daily as biologically 

active peptides during the last quarter-century. They 

control and affect the living cell physiological 

functions via the interaction with their various 

receptors. There is still proportional increase in the 

developments that have led to the discovery of novel 

therapies and in the use of natural and modified 

peptides as therapeutics. 

Peptide-based drug discovery may help bring 

about the development of useful medicines that are 

highly safe and show potent pharmacological effects 

in small doses  

(Fig. 1). The different conformations of peptides and their interactions. 
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 peptides as therapeutics had several drawbacks, 

such as low metabolic stability toward proteases and 

unfavorable activity, which resulting from 

interactions of flexible  peptide structures with 

several receptors simultaneously (fig .1) [2, 3]. 

 

1.1. Why the peptides have different 

conformations? 

The inherent polypeptides flexibility caused by 

each residue in the peptide chain,   promotes variable 

and multiple conformations. It is resulted from 

freedom of conformational on two level of by N–Cα, 

Cα–CO, N–CO and Cα–R rotational bonds, which 

are described by φ, ψ, x, and ω dihedral angles, 

respectively in the following (fig.2). 

 

(Fig. 2). Dihedral angles that are correlated to conformational flexibility in peptides. 

2. Drawbacks of the peptides as therapeutics 

or as drugs: 

1- Low stability in both gastrointestinal trac as 

well as in serum against proteolysis decreases the half 

life time in the order of minutes. 

2- Low transport and absorption properties. 

Since the fairly high molecular weight of peptide 

oftencause a rapid excretion by both liver and 

kidneys. 

3 - Certain peptide molecules interact with many 

targets, producing low selectivity and bad side 

actions. This is because of the intrinsic flexibility of 

the amide bonds of each residue. 

4- Unpredictable interaction of the peptide chains 

with binding sites of antibodies in the competent host 

induces antigenicity and an immune response [4]. So 

there is a great need for peptide modification through 

peptide surrogates or peptidomimetic formation. 

3. Peptide surrogates or Peptidomimetics:   

They are a small peptide chains act like protein 

and usually have built to replace native analogs to 

obtain targeted pharmacological effects [5-7]. 

Peptide surrogates are ‘molecules possessed a 

pharmacophore or mimic a native peptide or protein 

effects. They should give the same activity [8]. 

It involves the surrogating of the amide nitrogen 

(Nα- atom substitution, Nα-atom derivatization), Cα 

substitution, α-carbonyl group, amino group, amide 

bond extension,  changing side chain of amino acid 

residues,  changing the amino acid residue itself,  

pepide chain or backbone modification, cyclization 

....etc., to obtain peptide surrogates or 

peptidomimetics ( both expressions are equivalent in 

meaning). 

3.1. Approches for Peptidomimetics or peptide 

surrogates synthesis: [9-11] 

 Generally, they have been obtained from coupling 

of suitable non-natural amino acids and/or cyclization 

of linear peptide chains (site of surrogates in the 

peptide chain) [5-7, 12]. 

The unnatural amino acids can be obtained from 

the modifications of [1] native analogs by variable 

chemical synthetic steps such as amine alkylation [2, 

13-17], structural bond extension [3, 18-23] 

cyclization [4, 24, 25] side chain substitution [5, 26-

29] and isosteric substitution [7, 30, 31] within the 

residue or within a peptide chain, the isosteric 

replacements produce the surrogate molecule possess 

a variable electrostatic properties with concomitant 

new secondary conformations that improve its final 

pharmaco-kinetic properties. 

3.2. Biological importance of peptide 

surrogates (The biological mean)   

Peptide surrogating: is a process of overcoming 

the previous mentioned limitations, as they modify 

the peptide chain to give new molecule acquiring 

good bioavailability, metabolic stability, selectivity 

and high receptor affinity. The lead peptide structure 

is potentiated by carrying out  or doing functional 

modifications  which capable of treating the bad 
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receipting  of  that peptides, but  keeping their  

structural features needed for  activity (fig. 3, right) 

[32]. Over the last three decades, the field of peptide 

surrogates has changed largely. It developed from 

backbone local modifications of bioactive peptides, 

to the usage of ad hoc rational design. 

Somatostatin analogue is an example of a peptide 

surrogating compound, where the beta-D-glucose 

shows the four sites of side branches of the binding 

interactions exist intact as in the parent peptide chain 

(fig. 3) [33]. 

Also, thyrotropin-releasing hormone (TRH) 

mimetic as in (fig. 3, down) follow the same way of 

somatostatin. [34]. 

 

 

(Fig. 3). Advantages of peptidesurrogates over peptides 

 

3.2. Peptide surrogates classification 

Over the years both the progress and the 

classification of Peptide surrogates has evolved. 

Historically, Peptide surrogates were arranged into 

three categories according to the structure and their 

function properties [35, 36] while recently, a wider 

new one consider the high molecular weight is 

suggested [37] 

Table 1; Comparison between ancient and recent peptide surrogates categorization [38-42] 

Ancient Peptide surrogates categorization Recent Peptide surrogates categorization 

These three types according to structure and function 

features and Categorizes the Peptide surrogates their 

This recent approaches based categorizes the Peptide 

surrogates   according to their degree of peptide 
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similarity relative to the  native peptide: their classes 

are: 

nature:, their classes are: 

 

Class I surrogates, 

 They are structural surrogates that possess  

The functional groups that lead to the exact spatial  

arrangements   

Class A surrogates: 

They are the most closer to the main peptide, with a 

small local substitutions that stabilize the conformation 

and minimize the proteolysis. 

Class II surrogates, 

They have not enough structural similarity with the 

native peptide, but have the ability to do its activity by 

the interaction in a similar way with the target enzyme 

or receptor. 

Class B surrogates: 

This class are, still possess great number of peptide-

like character. The modifications comprise the using of 

variable unnatural aminoacidsl residues.  

 

Class III surrogates, 

They are functional as well as structural surrogates, 

that markedly different from the native substrate but, 

assembling the active positions and the interacting 

elements towards the same conformation.  

Class C surrogates 

They have a non-peptide unnatural framework and 

characterized by increase in small molecule character, 

which completely substitute the peptide chain.  

The active sites are directed toward the same 

conformation existed in the bioactive parent peptide 

conformation.  

 Class D mimics 

They are hardly resemble to the main peptide. But 

similar only in the way of effect of a biologically active 

peptide and there in no direct bonding to their side 

chain functions.  

 

Any compound that is able to imitate or acquire 

the structural properties and/or biological activities of 

a peptide is referred to as a peptidomimetic or 

Peptide surrogates.  

3.3. The rational design approaches for 

synthetic strategy of peptide surrogates 

Some important features we need to rationally 

design a peptidomimetic compounds. We must know 

all the characteristics of the targeted protein such as 

their structure, sequence, function, as well as their 

sites of binding. 

From the primary structure of active peptide, a 

hierarchical approach used to develop the surrogates 

(fig. 4a).Different approaches of synthesis 

(mentioned above both old and recent ones) enable to 

optimize of hit peptide surrogates, thus leading to 

orally available drug candidates. An example is ACE 

inhibitors as in (fig 4b). 

In the early Eighties using these steps, the drug 

Captopril was developed as to be the highly effective 

ACE inhibitors. Advanced developments of ACE 

inhibitors were performed by substituting the thiol 

instead of carboxylate group to reduce side effects of 

Captopril and incerting hydrophobic part organizing 

the S1 part of the catalytic site, to obtain Lisinopril 

and Enalaprilat [43-45]. 

Knowing the three-dimensional pharmacophoric 

model may help in skipping the above mentioned 

steps, using rationally designing peptidomimetic 

compounds according to the interacting elements 

responsible for the molecular recognition 

If there is no information about the bioactive 

peptide or  about the pharmacophoric model 

structure, the random screening peptide surrogates 

libraries is the only possible way that can be solve 

such problem as shown by (fig. 4a). 
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(Fig. 4). (a) Hierarchical approach to peptide surrogates design; (b) history of the development of peptide surrogates ACE 

inhibitors;  (c)  Smac peptidomimetic inhibitor of the X-linked inhibitor of apoptosis protein (XIAP) developed by rational 

design. 

4. Novel uses of peptides 

It has been observed during recent references that 

synthetic organic chemistry has a distinct biological 

activity in all different applied directions [46-87]. 

4.1.  Cancer: vaccination and drug 

targeting 

Cancer along with cardiovascular disease are the 

main causes of death in the industrialised countries 

around the World. Conventional cancer treatments 

are losing their therapeutic uses due to drug 

resistance, lack of tumour selectivity and solubility 

and as such there is a need to develop new 

therapeutic agents. Therapeutic peptides are a 

promising and a novel approach to treat many 

diseases including cancer. They have several 

advantages over proteins or antibodies: as they are (a) 

easy to synthesise, (b) have a high target specificity 

and selectivity and (c) have low toxicity. Therapeutic 

peptides do have some significant drawbacks related 

to their stability and short half-life. In this review, 

strategies used to overcome peptide limitations and to 

enhance their therapeutic effect will be compared. 

The use of short cell permeable peptides that interfere 

and inhibit protein-protein interactions will also be 

evaluated [88, 89]. 

 

An exciting potential use of peptides is in the 

treatment of cancer. Most of the anticancer treatments 

used currently lack specificity and cause significant 

side-effects. Peptides are being used to generate 
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therapeutics for enhancing cellular uptake [90], drug 

targeting [91-95] and vaccination [96, 97]. 

Vaccination is an attractive potential mechanism for 

peptide therapeutics because patients should develop 

an active immunity to the cognate cancer, thereby 

preventing further recurrence. Synthetic peptide 

vaccines are based on the idea that cancerous cells 

display epitopes on their surface that are not present 

on normal cells [98]. Several clinical trials have 

already been performed using synthetic peptide 

vaccines to various tumor antigens, with no major 

toxicity observed [99, 100]. Unfortunately, 

significant efficacy has also not yet been observed in 

these clinical trials. 

Although contributing to the lack of toxicity, the low 

immunogenicity of peptides unfortunately translates 

to inefficient priming of the immune system. One 

strategy for overcoming this problem is to include 

several peptide epitopes in the vaccine, either as 

discrete peptides or in the context of a larger peptide 

that will be processed in vivo. In the larger peptide 

approach, one complication is the potential 

generation of cryptic epitopes that lead to an immune 

response but do not represent epitopes expressed on 

the surface of target proteins (or cells). In one recent 

study, although natural epitopes to the tumor antigen 

NY-ESO-1 were used, proteolytic processing in 

vivo resulted in the generation of a cryptic epitope 

with improved binding to the MHC molecule 

compared with the natural epitope [97]. Owing to 

preferential binding of the cryptic epitope, the 

cytotoxic T cell (Tc) response to the cryptic epitope – 

rather than a surface epitope – dominated the immune 

response. 

By contrast, studies in mice showed, in some cases, 

complete eradication of established tumors 

expressing human papilloma viral epitopes when the 

mice were treated with a long peptide containing both 

helper T cell (Th) and Tc epitopes, but not when the 

Tc epitope was administered alone [88]. Lack of 

reproducibility in humans of results from animal 

studies could originate from several causes. Several 

studies have shown that the immune response of 

humans and mice is affected not only by the host 

physiology but also by the method of vaccine 

delivery and type of adjuvant used [101]. Thus, a 

better understanding of the adaptive immune 

response is needed for peptide vaccines to become 

viable. 

Another role for peptides in cancer therapy is in drug 

targeting. For example, the angiogenic vasculature 

displays molecular markers at either higher levels or 

different to those found in quiescent endothelial cells. 

Proliferating endothelial cells can be targeted by 

peptides isolated by in vivo panning of combinatorial 

phage libraries in mice [92, 94, 95, 102]. Some of 

these peptides serve the dual purposes of targeting 

angiogenic (tumor) tissue while blocking αV integrins 

from binding to their ligands, or inhibiting matrix 

metalloproteases [94]. The result of either of these 

actions is apoptosis of the endothelial cells in the 

newly formed blood vessels, thereby halting or 

reversing tumor progression in mouse models. In 

other studies, tumor-targeting peptides were 

conjugated to cytotoxic reagents such as 

doxorubicin [92] or tumor necrosis factor α [90]. In 

these studies, peptide-mediated targeting of the drug 

to the tumor resulted in increased drug efficacy and 

lower systemic toxicity. 

For successful tumor targeting, peptides must home 

specifically to human tumor epitopes rather than to 

normal human tissue. As the expression patterns of 

some genes have been shown to be different in 

humans and mice [103-105], in vivo panning of a 

phage library was recently undertaken in a human 

cancer patient [106]. Sequences specific for certain 

organs were detected; some appeared within known 

human proteins, suggesting that the peptides isolated 

might mimic known ligands. Further work is needed 

to substantiate this hypothesis and to determine the 

extent to which variability between individuals 

influenced the result of this initial experiment. 

 

4.1.1. Some examples of peptide anti-cancer derivatives [107-108] 
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Actinomycin D Moroidin 

(Fig. 5). Structure of Actinomycin D and Moroidin 

 

 

4.2. Antimicrobials 

The evolutionary success of the innate immune 

system suggests that peptides could potentially be 

used as antimicrobial therapeutics because all higher 

organisms naturally produce a large number of 

antimicrobial peptides (e.g. defensins and 

cathelicidins [109]). Although there is little sequence 

conservation between them, many of these peptides 

are short, cationically charged, and able to form 

amphipathic structures in non-polar solvents. They 

are thought to act by disrupting negatively charged 

bacterial cell membranes to which they are 

electrostatically attracted, rather than mammalian cell 

membranes, which are usually neutral. Upon binding, 

the hydrophobic face of the amphipathic structure 

disrupts the lipid bilayer by unknown mechanisms. 

Antimicrobial peptides have been produced from de 

novo designs [110] or based on naturally occurring 

products [111]. For example, in a Phase I clinical trial 

for oral mucositis, the synthetic protegrin analog IB-

367 showed a rapid and broad-spectrum activity, lack 

of systemic toxicity, and a relative lack of resistance 

development [111]. Antimicrobial peptides have also 

been used for the induction of apoptosis in cancer 

cells. Linking of these peptides to sequences isolated 

from in vivo phage panning enabled targeting of the 

peptides to angiogenic vasculature in mice with 

breast [102] and prostate carcinomas [92]. These 

peptides are internalized by the proliferating 

endothelium, resulting in the disruption of the 

mitochondrial membrane (resembling that of 

bacteria) and, hence, cell death. The selectivity of 

antimicrobial peptides and the lack of resistance to 

them make these peptides highly attractive as 

potential therapeutics. 

 

 

 

4.3. Some examples of peptide antimicrobials derivatives [112-114] 
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Bacitracin 

 

Boceprevir 

(Fig. 6). Structure of Bacitracin and  Boceprevir 

4.4. Alzheimer's disease and prion-associated disease 

Peptides sometimes occur naturally as by-products of 

a disease condition or even as the cause of disease. 

Several neural disorders are associated with distinct 

alterations in protein conformation. Alzheimer's 

disease and Creutzfeld-Jakob disease are associated 

with the proteins β-amyloid and prion protein, 

respectively, proteins that are mainly α-helical. A 

change in β-sheet conformation promotes the 

formation of fibrils that are correlated with disease 

progression. Interestingly, mice suffering from 

amyloid deposition and cerebral damage showed 

reduced deposition compared with controls when 

treated with a five-residue β-sheet-breaking peptide, 

iAβ5p [115]. This peptide was able to cross the 

blood–brain barrier (a difficult task for larger 

molecules) and disrupt amyloid fibrils through 

binding to the β-amyloid protein and inhibiting β-

sheet formation [116, 117]. Encouragingly for this 

therapeutic approach (compared with the approach 

described earlier), the mice did not develop 

antibodies to the peptides during a two-month 

treatment, even though relatively high doses were 

used [115]. A similar approach has been taken with 

the prion protein [118, 119]. Treatment of protease-

resistant forms of the protein with a 13-residue 

peptide, iPrP13, resulted in conversion of some of the 

protein back to a protease-sensitive conformation. 

Co-injection of this peptide and infectious prion 

protein into mice resulted in delayed onset of 

symptoms compared with prion injection alone [118]. 

Although these results are promising, further in 

vivo investigations are needed. There is evidence to 

suggest that soluble oligomers of β-amyloid are 

neurotoxic [120]; inhibition of fibrillogenesis might 

therefore be insufficient to guarantee therapeutic 

results. Furthermore, as the effects of these peptides 

are species-dependent [118, 119], promising results 

in mice cannot be directly extrapolated to humans. 

 

4.4.1. Some examples of peptide Alzheimer derivatives [121, 122] 
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(Fig. 7). Structure of ferrocenoyl pentapeptide Fc-KLVFF and pentapeptide KLVFF

4.5.  Malaria 

Malaria is one of the most prevalent infections in 

tropical areas throughout the world. In humans, 

induction of immunity by vaccination with 

appropriate parasitic epitopes has not yet been 

particularly successful [91]. However, preventing 

transmission of the pathogen by mosquitoes can also 

control the incidence of malaria. In vivo panning of 

phage libraries was used to isolate a 12-residue 

peptide (termed SM1) that specifically bound to the 

salivary gland and midgut epithelia of Anopheles 

gambiae [123]. These sites are crossed by the parasite 

at different stages in its life cycle. Upon feeding, 

transgenic Anopheles stephensi mosquitoes 

expressing an SM1 tetramer in the midgut showed 

reduced maturation of Plasmodium (oocyst formation 

was inhibited 68.7–94.9% compared with control 

mosquitoes). Furthermore, transgenic mosquitoes 

were unable to transmit the parasite to na  ve mice in 

two of three experiments, and transmission was more 

than halved in the third experiment [124]. 

lThese results show promise as one component of a 

multi-tiered strategy to control malaria. To achieve 

the greatest chance of success, preventative 

treatments need to be developed for other stages of 

the parasite life-cycle, for example, invasion of host 

erythrocytes [125, 126]. Significant hurdles that 

remain are reproduction of these results in humans, 

the difficulty of displacing native mosquito 

populations with transgenic versions, and the 

possibility of resistance development. 

 

4.5.1 Some examples of peptide Malaria derivatives [127, 128] 

 

(Fig. 8). Structures of Efrapeptin F is a type of Efrapeptin 



 Gaber O. Moustafa  et.al. 

_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 66, No. 8 (2023) 
 

 

260 

5. Conclusion: 

It is clear that, despite the remaining obstacles, 

peptides will comprise a large part of future 

therapeutics, owing to the ease with which 

combinatorial peptide libraries can be produced and 

screened, their (potentially) low immunogenicity, 

their potential for delivery by less-invasive methods 

than intravenous injection, and their chemical 

manipulability. Already, promising lead candidates 

are being discovered by modification of natural 

products, phage display and combinatorial chemistry, 

and several of these are in clinical trials. To optimize 

the efficacy of these new drugs, new strategies for 

administration are also being developed. In this case, 

the progress is slower, and the optimal delivery 

method for each peptide will probably be influenced 

by its physicochemical characteristics. Furthermore, 

it takes time to assess the long-term immunogenicity 

or other effects of administration of the peptide via 

various routes. However, with the extensive peptide 

discovery, characterization and clinical investigation 

that is underway, the future of new peptide 

therapeutics seems very promising. 
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