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Abstract 

     The current investigation described the influences of Cattaneo – Christov heat flux, Soret and Dufour, Hall current. The 

vertical alternating current produces an electric field is applied on the peristaltic flow of non - Newtonian micropolar 

nanofluid. The fluid flows inside a tapered stenosed artery. The non – Newtonian fluid obeys the tangent hyperbolic model. 

The effects of heat generation absorption, joule heating, thermal radiation, chemical reaction, and the permeability of the 

porous medium are imposed. The slip velocity and thermal slip conditions are assumed. The convective conditions for 

nanoparticles concentration as well as concentration are constructed. The coupled differential systems of equations yield Soret 

and Dufour feature. The assumption of the long wavelength with low Reynolds number is employed to simplify the governing 

equations of fluid motion to be ordinary differential equations. Furthermore, the obtained analytical solutions of these 

equations are based mainly on applying regular perturbation method together with homotopy perturbation method (HPM).  

The impacts of the various physical parameters on the axial velocity, spin velocity, temperature, nanoparticles concentration 

and concentration are illustrated and drawn graphically via a set of graphs. It is noticed that the velocity dwindled with an 

enriching in the magnitudes of both Hartman number, and electromagnetic parameter. Whereas, the axial velocity elevates 

with an enlargement in Darcy number, tapering angle, and Hall parameter. Moreover, the spin velocity declines with the 

increment in the microrotation parameter.  Also, it is found that the escalating in thermal relaxation time causes a decaying 

impact on the temperature.  Furthermore, enhancement in the nano Biot number leads to a declination in the magnitude of 

nanoparticles concentration. The current analytical study is very significant in several medical implementations, like the 

gastric juice motion in the small intestine when an endoscope is inserted through it.  

Keywords: Cattaneo – Christov heat flux; Hall current; Electrohydrodynamics; Stenosis; Micropolar; Nanofluid. 

  

1. Introduction 
           Micropolar fluids theorem is first represented 

by Eringen [1]. He recognized that every volume of 

material element that can rotate independently of the 

motion of microvolume. These kinds of fluids are 

deemed as a popularization corresponding to the 

Navier–Stokes equation. In the physical visualization, 

these fluids could symbolize to the fluids which 

containing rigid, randomly amended elements 

roaming in a viscous medium. Also, the deviation of 

fluid particles is ignored. The numerical model, that 

elucidates the whole angular velocity field of the 

particles rotation, is primary depend on the inserting 

of a new vector field named as the micro-rotation. 

Therefore, a new additive equation that displays the 

law of angular momentum (spin velocity) is 

appeared. This theory has been felicitously discussed 

by several researchers in various theoretical studies 

of fluid dynamics see Refs. [2-7]. 

     Heat and mass transfer is deemed a joint 

phenomenon that plays a primary important role in 

several engineering as well as industrial processes, 

such as heat exchangers, equipment power collectors, 

food processing and so.  Also, temperature gradients 

are responsible for occurring heat flux. It has many 

different applications like in cooling processes, 

thermal regulation in electronic devices, and nuclear 

reactors. Many researchers employed the theories of 

convectional transfer in their theoretical studies. 

Nevertheless, these convectional theories are 
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considered to be insufficient because of wave 

propagation's infinite speed.  The law related to heat 

conduction in addition to the several properties of 

heat transfer is firstly introduced by Fourier [8]. 

Thus, Cattaneo [9] modulate a conventional law of 

Fourier to involve thermal relaxation time (known as 

non - Fourier law). This added term elucidates the 

time needed of the medium to transport heat to its 

frontier particles. Fourier’s heat idiom is deemed to 

be a parabolic energy equation. Meanwhile, 

Cattaneo’s equation causes hyperbolic type energy 

equation. The model of Cattaneo is amended by 

Christov [10]. Similarly, Fick’s law for diffusion 

plays an eloquent role for analysing mass transport. 

For more realistic modelling, this law was modulated 

with the CC model (also called non-Fick model) [11]. 

In recent years, there are several essential analysis 

studies which scrutinized theoretically the CC model 

are cited in [12-17]. 

     Lately, several essential studies concerned in 

displaying and analysing the fluid flow in the case of 

low fluid density and strong magnetic field. The 

conductivity is decreased because of utilizing a 

strong magnetic field together with low density This 

indicates to an induced current, which is named as the 

Hall current. This electromagnetic phenomenon (Hall 

currents) has an essential significant role in 

engineering, mechanics, and biomechanics 

implementations. These implementations are, Hall 

impact sensors, coils refrigeration, Hall accelerators, 

magneto-meters, electric processors, Hall actuators, 

spacecraft propulsion, etc. [18-20]. Studying the 

interactions between an electric field and a flow field 

is defined as electro-hydrodynamics (EHD). Also, it 

is known as electro - kinetics or electro-fluid-

dynamics (EFD). EHD has many various significant 

applications in the fields of engineering, 

biomechanics, microfluidic devices, plasma 

actuators, enrichment of drying rates, drag reduction, 

gas pumps, micro-electro-mechanical systems 

(MEMS), biomedical diagnostic instruments, 

biochemical analysis, chemical devices and 

biomedical devices. The constitutive equations of 

motion elated to electrohydrodynamic can be divided 

into two combinations. The first one is the equations 

of hydrodynamic, the second one is the electric field 

equations. EHD has been investigated through 

several theoretical studies see [21-24]. 

     Blood is deemed as the most significant biological 

fluid. According to its elastic quaff it may regarded as 

a non-Newtonian fluid. Deformable saturation of red 

blood cells is responsible for this elastic nature. 

Stenosis is regarded as one of the most rife arterial 

diseases.  it is denoted as narrowing of anybody 

passage. The existence of a stenosis in the artery 

caused a changing in the nature of the blood flow. 

Therefore, the state of the blood is converted from 

normal state to troubled one.  Several diseases like 

heart failure by reducing or occluding the blood 

supply, myocardial infarction, cardiovascular are 

caused by the existence of arterial stenosis. There are 

many biological studies that displayed the mechanism 

of blood flow in the existence of stenosed tapered 

artery, see [25-30]. It is very intricate to treat the 

equations govern the motion in the existence of 

nonlinear terms. These terms manifest in the 

equations of motion as a reason of the flow 

demeanour of non-Newtonian nanofluids flow 

together with Cattaneo-Christov heat and mass 

fluxes. Thus, the exact solutions of this kind of 

problems are virtually impossible. Therefore, 

numerical solutions for this sort of problems have 

been obtained through several theoretical studies [31-

33]. The main target is turned to obtain a semi 

analytical (approximate) solution with the help of 

conventional perturbation technique in addition to 

homotopy perturbation method (HPM). After 

utilizing these approximate methods, the resultant 

nonlinear differential equations and their 

corresponding boundary conditions are transformed 

into another simple system of equations which can be 

treated easily. 

     In accordance with above aforesaid, it is noticed 

that the study of the impacts of Cattaneo-Christov 

heat flux and mass fluxes inside a tapered stenosed 

artery on the peristaltic motion in the existence of 

nonfluid phenomenon has not been discussed yet.  

Consequently, the essential significant of this article 

is to study of peristaltic motion of hyperbolic tangent 

micropolar nanofluid. The influences of Cattaneo-

Christov double diffusion through stenosed porous 

artery are taken into our consideration. In addition, 

the impacts of Hall currents as well as ohmic 

dissipation in the existence of electric field are 

imposed.  The influences of thermal radiation, Soret 

and Dufour impacts, heat generation and chemical 

reaction are also included. The slip condition for 

temperature distribution and convective conditions 

for both distributions of concentration as well as nano 

phenomenon are presupposed. The mathematical 

intricacy of our study can be alleviating by applying 

the long wavelength and low Reynolds number 

presumptions. These non-linear equations are 

analytically disbanded by applying the conventional 

perturbation method together with homotopy 

perturbation method up to the first order. The 

influences of diverse physical parameters on the 

various distributions are analysed numerically and 

displayed through a set of graphs. 

 

     The temple of this theoretical study can be 

implemented as follows: Sec.2 clarifies the 
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mathematical formulation of the problem. The 

equations govern the motion of the considered system 

are introduced through Sec.3. Sec.4 displays the 

methodology of solutions. The numerical results of 

the diverse physical parameters on the various 

distributions are debated though Sec.5. Sec. 6 

encompasses the discussion of the trapping 

phenomenon. Finally, summarized results of the 

present study are displayed in Sec. 7. 

 

2. Mathematical formulation of the problem 

     Consider two-dimensional peristaltic flow of an 

incompressible tangent hyperbolic micropolar 

nanofluid stream inside a horizontal co–axial tubes. 

The outer tube is tapered and has a sinusoidal wave 

traveling down its wall in the presence of mild 

stenosis. Whilst the inner one is rigid, uniform, and 

moving with a constant speed (see Fig. 1).  The 

system is stressed by strong magnetic field of 

uniform strength. Nevertheless, radial alternating 

current electric field is also presupposed. The outer 

tube is grounded, and the inner one is kept at the 

electric potential. Whereas the influence of Hall 

current is introduced. The cylindrical polar 

coordinate system   in the fixed frame of refence is 

employed, with the axis coincides with the axis of the 

tubes. Hall current generates a force in   direction 

because of the impact of strong magnetic field. 

Therefore, the flow becomes in three dimensions. 

The convective mass as well as convective 

nanoparticles conditions are influenced. Moreover, it 

is presupposed that the inner tube at   is maintained at 

constant temperatures   nanoparticles concentration 

and concentration. Meanwhile, the outer one at   is 

heated by a temperature   nanoparticles concentration   

and concentration. Influences chemical reaction, 

Soret and Dufour are also presumed. The magnetic 

Reynolds number is chosen to be very small. Thus, 

the induced magnetic field is modicum when 

compared with the applied magnetic field. Therefore, 

the induced magnetic field is ignored. The thermal 

slip condition is also imposed.  

 

    The effective radius of the tapered artery ( )sR z , 

can be written as follows: 

                                                   

( )

( )

( )

( )

0 0 0 0 0 0

0
0 0 0 0 0 0

0

0 0 0 0 0 0

1 cos
2

s

s s

s

R m Z L d L Z z

H
R z R m Z L d Z z Z z

Z

R m Z L d z Z d

δ

πδ

δ

− + + − ≤ ≤


  = − + + − + − ≤ ≤    
  

 − + + ≤ ≤

                        

                                                                    (1) 

                                                  

where, 
0

cos
s

H h ω=  is named as the height of the 

stenosis inside the tapered outer tube, 
0

tanm ω= is 

defined as the slope of the tapered artery, 
s

h is 

denoted as the maximum height of the stenosis,ω is 

known as the tapering angle. In this analytical study, 

we analyze and discuss all the conceivable cases for 

diverse tube shapes: the case when ω  take a negative 

value  ( )0ω <  is denoted as converging tapering 

case, when setting ( )0ω =  one  can obtain the case 

which named non-tapered artery, at the end , 

diverging tapering case can be caused for positive 

values of ω i.e. ( )0ω > [24].  

 

 
Fig. 1. Diagram of fluid influx 

 

The geometry of the peristaltic wall’s surface may be 

represented by the following expressions [30]: 

( )
0

,
1 1

2
, cos tH Z t a Z

k

R

π
λ

= −
 
 
 

                           

(2) 

The equations of the radii can be represented by the 

following expressions [11, 20, and 27]:    

( )
1 0

2 1

.
s

s s

R a

R R z H

= 
= + 

                                                               

(3) 

      The constitutive equation of Cauchy stress tensor 
hτ  for tangent hyperbolic fluid model can be 

presented as follows: 
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 = - P  I + ,
h

He
Sτ                                                  

(4) 

                                       

( )
.

10 tanh ,

n

hH h h hS Aµ µ µ ϖ ξ∞ ∞

  
= + +  
   

v

 (5)

1
,

2
hξ

⋅
= Θ

v

 ( )2

1 ,hh tr AΘ =                                        

(6) 

                                                                                    

( ) ( )T

1h = V + V .A ∇ ∇                                                   

(7) 

     Consider the case when 0hµ∞ = ,  and 1.ϖ ξ
⋅
v



Therefore, the element of extra stress tensor may be 

inscribed as follows: 

                                               

.

10 1 1 .hH h hS n Aµ ϖ ξ
  

= + −  
  

v

                        

(8) 

The velocity components, temperature, electric 

potential, nanoparticles concentration and 

concentration may be written as follows: 

 ( ) ( )( ), , ; , , , ; ,0 ,V U R Z t W R Z tθ θ=      

( ) ( ), , ; , , , ; ,T T R Z t R Z tθ ϕ ϕ θ= =  

( ), , ; ,f f R Z tθ=  and ( ), , ; .C C R Z tθ=  

(9)
  

 

     Postulate that the tube length is an integral 

multiple of wavelength 
0λ . Also, the pressure 

difference through the ends of the outer tube is 

constant. So, the unsteady flow in fixed frame 

( ), ,R Zθ transformed to steady flow in the wave 

frame ( ), , ,r zθ  which moves with velocity 

( ) 1

0 .
e

c k R
−=   

The transformation between these two frames of 

reference can be represented as:     

     

( ) ( ), , , , ; ,
e e

c cz Z t r R w r z W R Z t= − = = −

 and  ( ) ( ), , ; .u r z U R Z t=                              (10) 

The body forces of electrical origin per unit volume 

ef  may be represented as [21] 

                   

2 21 1
,

2 2
fel el f s f

s

f E E E
ερ ε ρ
ρ

  ∂= − ∇ + ∇   ∂  
 

                                                                               (11) 

where, the first term in Eq. (11) is the ordinary 

electrostatic volume force (the Coulomb force or the 

force due to the free charge elρ ). In this study, we 

assume that there are no volume charges present 

( )0
el

ρ = . Thus, .in this case, the term fel
Eρ  can 

be disregarded. The second term 
21

2
fE ε∇  

represents the dielectric force, which depends on the 

gradient of ε . The last term 
21

2
s f

s

E
ερ
ρ

  ∂∇    ∂  
is 

called the electrostriction term which term can be 

involved in the pressure term. 

 

Since there is no free charge, the Maxwell’s 

equations are [22]: 

                           ( ) 0,fEε∇⋅ =                        (12) 

              0,fE∇ ∧ =  or    .f e
E ϕ= −∇         (13) 

It is presupposed that the dielectric constant ε  is a 

function of the temperature [22], and it can be 

expressed as: 

                                           

( )0 0 11 ,e Tε ε ϑ= − −                                   (14) 

where, 0e  is denoted as the thermal expansion 

coefficient of dielectric constant and is assumed to be 

small and positive, 
0ε  is indicated as the permittivity 

at vacuum. 
 

The modified pressure may be expressed as: 

                                      

21
.

2
m e s f

s

P P E
ερ
ρ

  ∂= −    ∂  
                            (15) 

The current density  cJ  can be expressed as [3, and 

18],  

( )1
.fc s

e

J E V B J B
en

σ
 

= + ∧ − ∧ 
   

       (16) 

Energy equation can be inscribed as: 
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( ) ( ) ( ) ( )

( ) ( )
2

2

2

1
.

T
Ns nH

H
Gr

ne s

DdT
c q c D T f T T

dt

DK
q R T C J J

C

ρ ρ
ϑ

ϑ
σ

 
= −∇ ⋅ + ∇ ⋅∇ + ∇ ⋅∇ 

 

−∇⋅ + − + ∇ + ⋅

 

                                                                               (17) 

Nanoparticles concentration equation can be 

expressed as: 

                                          

2

2

.T

N

Ddf
q T

dt ϑ
= −∇ ⋅ + ∇                                         

(18) 

 

Cattaneo – Christov double diffusion model: 

  
Cattaneo – Christov heat flux may be introduced as 

follows [11]: 

                      

( ) .H
H EH H H H

q
q V q q V V q K T

t
λ

∂ 
+ + ⋅∇ − ⋅∇ + ∇ ⋅ = − ∇ ∂ 

                    

                                                                  (19) 

Cattaneo-Christov nano flux may be defined as 

follows [11]: 

                        

( ) ,N

N NN N N N

q
q V q q V V q D f

t
λ

∂ 
+ + ⋅∇ − ⋅∇ + ∇ ⋅ = − ∇ ∂ 

                    

                                                                         (20) 

     which are the modulated Fourier’s and Fick’s 

laws. One setting ( )0
H

λ =  and ( )0
N

λ = , it can 

reduce to the original Fourier’s and Fick’s laws.  

Since the fluid is incompressible ( )0V∇⋅ = , Eqs. 

(14 and 15) may be rewritten as follows: 

                     

( ) ,H EH H H
q V q q V K T

t
λ  ∂  + + ⋅∇ − ⋅∇ = − ∇  ∂  

                                            

                                                                               (21) 

( ) .N NN N N
q V q q V D f

t
λ  ∂  + + ⋅∇ − ⋅∇ = − ∇  ∂  

                                   

                                                                         (22) 

     By employment of the Rosseland diffusion flux 

model, the differential equation for radiative transfer 

may be converted to a Fourier-kind diffusion 

equation. It is major to reveal that the Rosseland 

model is quite delicate in case of thermal radiation 

(scattering or absorption). The refractive index of the 

fluid-particle suspension is presumed to be constant. 

Thus, the nonlinear radiative heat flux may be 

imposed effectively as [3]: 

                            

4

0
4

.
3r

r

T
q

K r

σ ∂= −
∂

                    

(23) 

      The temperature differences are assumed to be 

adequately small. Thus, 
4T can be represented as a 

linear function of temperature. By using Taylor series 

expansion for 
4T about the mean fluid temperature 

mT and neglecting the higher-order terms, the 

nonlinear radiative heat flux is reduced to following 

linear form: 

                      
4 3 44 3 .

m m
T T T T≈ −                              

(24) 

3. The governing equations of fluid motion: 

 

      The governing continuity, r −  component 

momentum, z −  component momentum, spin 

velocity, temperature, nanoparticles concentration, 

concentration and electric potential equations may be 

written as follows applying Eq. (10):   

 0,
u u w

r r z

∂ ∂+ + =
∂ ∂

                                                                    

(25)                                       

0 0

2

22

0
0 02

0

2

0 0
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1 2

1
,

2

m rr rz
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m h s e e
a e

p e

s e

e

e
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P S Su u
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r z r r r r z

S N B
K u

r z K r z

B k T
u w e

R r r

T
e

r z

θθ

ρ

µ σ ϕ ϕβ
β

σ ϕβ ε
β

ϕε

∂ ∂ ∂∂ ∂ ∂    = − + +   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ − − − − − ∂ + ∂ ∂ 

   ∂∂   − + + +      + ∂ ∂    

∂∂   
  ∂ ∂  

  

                                                                                       (26) 
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0

0
02
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2 2

0 0

u +w 

1

1 1

2

m h
s
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s e e

e e

e

e e rz
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w
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B u w
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ST
e r

z r z r r r

N NS
K

z r r

µρ

σ ϕ ϕβ β
β

ϕ ϕε

 ∂∂ ∂  = − − + +  ∂ ∂ ∂   

   ∂ ∂ − + + − +       + ∂ ∂     

 ∂ ∂ ∂∂ ∂      + + +       ∂ ∂ ∂ ∂ ∂        

∂∂ + + +∂ ∂
,




  

                                                                                        (27)    

2 2

2 2 2

2

1
,

m m
s m a m a

m m m m
a

N N u w
j u K N K

r z z r

N N N N

r r r z r

ρ

γ

∂ ∂ ∂ ∂   + = − + −  ∂ ∂ ∂ ∂  

 ∂ ∂ ∂+ + + − ∂ ∂ ∂ 
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                                                                               (28) 
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                                                                                        (29) 
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2
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2 2

1
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1
,

N

N N N

Df f T T T

r z r r r z

f f f
D

r r r z

ϑ

λ

 ∂ ∂ ∂ ∂ ∂− + + ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂+ Σ = + + ∂ ∂ ∂ 

 

                                                                                (30) 

( )

2 2

2 2

2 2

02 2

1
u +w 

1
,H

r

m

C C C C C
D

r z r r r z

DK T T T
L C C

T r r r z

 ∂ ∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂+ + + − − ∂ ∂ ∂ 

    

(31)      

( )( )
2 2

0 0 1 2 2

0 0 0 0

1
1

0,

e e e

e e

e T
r r r z

T T
e e

r r z z

ϕ ϕ ϕε ϑ

ϕ ϕε ε

 ∂ ∂ ∂− − + + ∂ ∂ ∂ 

∂ ∂∂ ∂− − =
∂ ∂ ∂ ∂

  (32) 

where,   

( )

( )

( )

( )
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2 2
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2 2 2 2
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2H G s
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Nn
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R u w c u uw w
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r z r r z z

f T T f f T T f
c D u

r r r r r z z r z z

f T
c D w

r z

ρ

ρ

ρ

ρ

 ∂ ∂ ∂ ∂ ∂ Σ =− + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂ ∂ ∂    + + + + −     ∂ ∂ ∂ ∂ ∂ ∂     

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∂ ∂
∂ ∂

( )

2 2 2

2 2

2 2 2 2

2 2

2

3 3 2 2 3 3

3 2 2 2 2 3

2 T

n

H

ne

T f f T T f

r r z r z z z z

D T T T T T T T T
c u w

r r z r z r r z z z

DK C C u C u C w C C C
u w u w

C r r z r r r r r r z r z z

ρ
ϑ

  ∂ ∂ ∂ ∂ ∂ ∂+ + + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

 ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + − + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2
20 0

2 2

0 0

2 2 2 2

2 2 2 2

3
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2 2 2 2
1 1

2 2
1 1

16

3

s s

e e

s e e e e s e e e e

e e

m

r

B Bu k w u k w
u w w uw u w

r R z z R r

u w
r r z r z r r z z z

T

K

σ σ
β β

σ ϕ ϕ ϕ ϕ σ ϕ ϕ ϕ ϕ
β β

σ


 
 

      ∂ ∂ ∂ ∂− + + − + +         + ∂ ∂ + ∂ ∂      

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − +      + ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂      

−
33 3 2 3

0

3 2 2 2 2

3 23 2

0 0 0

3 2 2 2

0

2

0

2

0

16

3

16 2 2

3 1 1

2

1

m

r

m s e s e

r e e

s e e

e

TT T u T T u T
u w u

r r z r r K r z r r

T B BT w T w k
w u u w

K z r r z r r R r

B k w
w w w

R r z r

σ

σ σ ϕ σ ϕ
β β

σ ϕ ϕ
β

   ∂ ∂ ∂ ∂ ∂+ + − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

    ∂ ∂∂ ∂ ∂+ − − + −     ∂ ∂ ∂ + ∂ ∂ + ∂    

 ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

2
20

2

2

0

2 2

2

1

2
,

1

e s e

e

s e e

e

Bu
w u

z z z r z

B u
u uw

r z z

ϕ σ ϕ
β

σ ϕ ϕ
β

 ∂ ∂∂+ +  ∂ ∂ + ∂ ∂ 

 ∂ ∂∂+ + + ∂ ∂ ∂ 

     

(33) 
2 2 2

2 2

2 2

3 2 3

3 2 2 2

2

3 2 3

3 2

2

2

1 1

1
.

N

T

T

f f f
u uw w

r r z z

u u f w w f
u w u w

r z r r z z

D T T T T
u

r r r r r r z

D T T T
w

z r r z z r

ϑ

ϑ

∂ ∂ ∂Σ = + + +
∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂    + + +    ∂ ∂ ∂ ∂ ∂ ∂    

 ∂ ∂ ∂ ∂− + − + ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂− + + ∂ ∂ ∂ ∂ ∂ 

  (34) 

     It is compatible to rewrite the preceding governing 

system of Eqs. (25) - (34) in a suitable non- 

dimensional format. This can be done in various 

techniques relying essentially on the choice of the 

characteristic length, mass, and time. Presume the 

following non - dimensional forms depending on the 

characteristic length 0R= , the characteristic mass 

3

0f
Rρ= and the characteristic time 

2 1

0R k
−= . The 



IMPACTS OF CHEMICAL REACTION AND ELECTRIC FIELD.. 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 66, No. 7 (2023)  

 

69

other dimensionless variables are illustrated as 

follows:   

( )
( )

0 0 0 1

0 0 0 0

2 3
*0 0 0
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1* * 2
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D P R E B

R k k c R

δ ε
δ λ λ

ρρ µτ
µ λ µ ρ ρ
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µ
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∗ ∗ ∗ ∗
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= = = = = =

= = = = =

− −−= = = = =

= = = = =
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0 0 0 0
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0 0

* * * * *0 0 0
1 0 0 0

0 0 0 0 0 0
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f
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0 0 0 0 0* 0 0 0

1 *

0 1

**

1 01

0 0 2

2 2
* 0 01
1

0 0 0

, , ,

16
, , , ,

3

, , ,

cos 2 , , ,

s

e t

h

f t m H t
e d R
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B
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R s R s RH
H z s s s

R k k

σβ
µ

ε β σ βξ ξ
µ

τ τ β
µ β ϑ

ε π
µ µ

⋅ ⋅

= =

= = = =
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v v

2

0

0

2

0

0

,

.

zz

h

h

s

k

R s
s

k

θθ
θθ

µ

µ
=

                                                                                                                                                                   

                                                                               (35)  

     Utilizing the assumption of the long-wavelength 

approach ( )1
s

δ <<  with low Reynold’s number 

( )1
e

R   and substituting by Eq. (35) into Eqs. (25-

34), then drooping the star marks for simplicity. 

Therefore, the governing system of dimensionless 

differential equations can be expressed as follows:        

( )

( ) ( )

2

3 1

2

2
2

2

2

1
1

1

,

rrs e E
e s s

e

rzs e E
F s

e a

M

rS Lu u T
R u w

r z r r L r r

SH S
E w u

r z D r

P

r

θθ

δ ϕδ δ

δ β ϕ δ
β

  ∂ ∂∂ ∂ ∂   + = −    ∂ ∂ ∂ ∂ ∂       

∂  ∂  + + + − −   + ∂ ∂    

∂−
∂

   

                                                                               (36)    
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β

ϕδ β

∂ ∂∂ ∂ ∂   + = − − +  ∂ ∂ ∂ + ∂ ∂   

∂
+ − + − + + +  + ∂

 ∂ ∂ ∂∂    + + +     ∂ ∂ ∂ ∂    

            

                                                                               (37) 
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                                                                               (38) 
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                                                                               (39) 
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 ∂ ∂ ∂ ∂ ∂+ + + = + ∂ ∂ ∂ ∂ ∂ 
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                                                                               (40) 
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                                                                              (41)  
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                                                                               (42) 
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( )2 1 ,rr s i

u
S n nW
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                        (43) 

( )2 1 ,zz s i

w
S n nW
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    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Π = + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 ∂ ∂ ∂ ∂ ∂ ∂ + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂ ∂+ + − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
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 ∂ ∂ ∂+ − + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂∂+ + + + + ∂ ∂ ∂ ∂ ∂ 

∂∂ ∂ ∂ + + + + + + ∂ ∂ + ∂ ∂ 

 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ ∂ 
 

                                                                                (48) 

The convenient boundary conditions may be 

presented as [3, and 18]: 

0, 0, 0, 0, 0,
M

w T F C
N

r r r r

∂ ∂ ∂ ∂= = = = =
∂ ∂ ∂ ∂

     

1,E Eϕ ϕ=  and  0u =   at 1sr r= ,                               

(49)        

 

1, 0, 1, 0,
M t ip

T F
w N T N F

r r
β ∂ ∂= − = + = + =

∂ ∂

0, 0,
ic E

C
M C

r
ϕ∂ + = =

∂
 2 sin 2u zπε π=                                                    

  at            ( )2 1s s
r r R z H= = +                          

(50) 

The non- dimensional effective radius of the tube 

( )s
R z can be expressed as follows: 

( )

( )

( )

( )

0 0 0 0 0

0 0 0 0 0

0

0 0 0 0 0

1

cos
1 1 cos

2

1

s
s

m z L d L z z

h z
R z m z L d z z z

L

m z L d z z d

ω π

− + + − ≤ ≤


  = − + + − + − ≤ ≤    
  

 − + + ≤ ≤
        

                                                                                        (51) 

4. Methodology of solution and analysis of 

convergence: 

      After using the long wavelength ( )1
s

δ  with 

low Reynold’s number ( )1
e

R   supposition. it is 

recognized that the governing boundary value 

equations are very tangled to solve analytically. 

Therefore, we tackle our system of equations (36) – 

(48) with the appropriate boundary conditions (49) – 

(50) using a combination between regular 

perturbation method together with HPM.   

   

4.1. Conventional perturbation method: 

     By employing the presumption of Verma and 

Parihar [35], we will presume that the radial velocity 

u  is very teeny when compared with the axial one 

w . Likewise, the variation in the z −  direction is 

minimal than that in the r −  direction. Therefore, 

one can postulate that u w  and 
w w

z r

∂ ∂
∂ ∂

 . 

Moreover, it follows that the terms 
2

2
, ,

u u w

r z r

∂ ∂ ∂
∂ ∂ ∂

may be disregarded [35]. Over and above, the 

functions 0w , 0,MN  0,T  0 ,F  0C , and 0ϕ   will be 

relied only on r . This case is denoted as the initial 

state (no peristaltic wave). This takes place only for 

the system of zero-order of equations (no peristaltic 

motion). Whilst, in the first – ordered system of 

equations all terms will be regarded (peristaltic 

motion).  

 



IMPACTS OF CHEMICAL REACTION AND ELECTRIC FIELD.. 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 66, No. 7 (2023)  

 

71

     According to the regular perturbation procedure, 

we expand our solutions in terms of a small wave 

number sδ  as follows: 

2

0 1 2 = + +  
s s

χ χ δ χ δ χ + ⋅⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅                              

(52) 

where, χ  indicates to any function of the following 

distributions w, ,MN  ,T  ,F  C, and Eϕ .  Also, 

0χ  refers to the zero order of sδ  and 
1χ  refers to 

the first order of 
sδ .  

 

     By substituting from Eq. (52) into the prior system 

of Eqs. (36) – (48) and collecting the terms of like 

powers of sδ  produces zero-ordered and first-

ordered systems of nonlinear differential equations 

with the boundary conditions (49) and (50). Due to 

the complexity in treating these orders, we will make 

another approximation for these equations by 

applying homotopy perturbation method. Through the 

following subsections, we shall introduce these 

orders. 

 

4.1.1. Zero– order system for sδ : 

0,MP

r

∂ =
∂

                                                                                    

(53)    

( )

( )

2 2

0 0 0
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22

0
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1
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1
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h
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A

w w P H E
n

r r r z r

n W wH
w r

D r r r

N N

r r

ϕ
β

β

β

 ∂ ∂ ∂∂− + − − ∂ ∂ ∂ + ∂ 

   ∂∂  − + + +      + ∂ ∂    

∂ + + = ∂ 
                                                                                             

(54)   

2

0 0 0
02 2

0

1
2

0,

M M M
A A M

A

N N N
N

r r r r

w

r

γ β

β

 ∂ ∂+ − − ∂ ∂ 

∂− =
∂

 (55)

                 

 

( ) ( )

( )

2 2
20 0

0 02 2

22 2 2

0 0
02 2

22

0 0 0 0 0

2

1
1 1

1

2
1

1 1

1
,

r
d r H

e

E Er F r F

e e

u r B T

T T H B
R P T w
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H B E H B E
w

r r

C C F T T
D P N N

r r r r r r

β
β

ϕ ϕ
β β

 ∂ ∂+ + = − − + ∂ ∂ + 

∂ ∂   − − +   + ∂ + ∂   

  ∂ ∂ ∂ ∂ ∂ − + + +     ∂ ∂ ∂ ∂ ∂   
                                                                                             

(56) 

2 2

0 0 0 0

2 2

1 1T

B

F F T TN

r r r N r r r

 ∂ ∂ ∂ ∂+ = − + ∂ ∂ ∂ ∂ 
         (57) 

2 2

0 0 0 0

2 2

0

1 1

0,

R M

cr M

C C T T
S L

r r r r r r

R L C

∂  ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

− =

       (58) 

  
2 2

0 0 0 0
1 2 02 2

0 0
2

1 1

0.

E E E E
e e

E
e

L L T
r r r r r r

T
L

r r

ϕ ϕ ϕ ϕ

ϕ

   ∂ ∂ ∂ ∂+ − +   ∂ ∂ ∂ ∂   

∂ ∂− =
∂ ∂

                       

                                                                               (59) 

 

The non-dimensional boundary conditions may be 

written as: 

0 0 0 0
0 0 10, 0, 0, 0, 0, ,

M E E

w T F C
N

r r r r
ϕ ϕ∂ ∂ ∂ ∂= = = = = =

∂ ∂ ∂ ∂
    and  0 0u =    at 1sr r=                                          

(60)        

 

0 0
0 0 0 1 01, 0, 1, 0,M ic

T F
w N T M F

r r
β ∂ ∂= − = + = + =

∂ ∂

 0
0 0,ip

C
N C

r

∂ + =
∂

and      0 0Eϕ =                             

at ( )2 1s s
r r R z H= = +                                          

(61) 

 

4.1.2. First – order system for sδ  : 

( )

2 2

1 0 0 0

2

2

2

02

2 1

1 0,
1

e E e F E

e e

e

e

L T E H

L r r r

H
w

ϕ β ϕ
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β
β

 ∂ ∂ ∂   −    ∂ ∂ + ∂     

− + =
+

      (62)    
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                                                                               (63) 
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                                                                               (64) 
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                                                                               (65) 
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                                                                               (68) 
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                                                                                (69) 

 

The non-dimensional boundary conditions may be 

written as: 

1 1 1 1
10, 0, 0, 0, 0,M

w T F C
N

r r r r

∂ ∂ ∂ ∂= = = = =
∂ ∂ ∂ ∂

    

1 0,Eϕ =  and  1 0u =         at 1r r=                      

(70)        



IMPACTS OF CHEMICAL REACTION AND ELECTRIC FIELD.. 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 66, No. 7 (2023)  

 

73

 

1 1
1 1 1 1 10, 0, 0, 0,M ic

T F
w N T M F

r r
β ∂ ∂= = + = + =

∂ ∂

 1
1 0,ip

C
N C

r

∂ + =
∂

 and      1 0Eϕ =                                            

                                                                                           

at            ( )2 1s
r r R z H= = +                              

(71) 

 

4.2. Homotopy perturbation method (HPM): 

 

     The HPM is a substantial semi-analytical method 

is applied for getting an approximate solution of any 

complicated system of differential equations in 

diverse domains. It combines between the advantages 

of the homotopy analysis method as well as the 

conventional perturbation technique.  The HPM is 

clarified for the first time by He [36]. The homotopy 

procedure is relying on an artificial small parameter 

[ ]P 0,1
H

∈ denoted as the homotopy parameter. So, 

this small parameter can be set as a coefficient of any 

term of the problem. The differential equation 

become in a simple form when P 0H =  . The case 

when HP  is boosted and arrives to unity, the 

equation improves to the coveted formularization. At 

this stage, the foreseed solution will be oncoming to 

the desired formula.  

 

     In accordance with HPM, we postulate that Eqs. 

(53)-(59) with the suitable boundary conditions (60) 

and (61) have the solution which may be expressed 

as: 

0 00 01= + P  +HΩ Ω Ω ⋅⋅⋅⋅ ⋅ ⋅ ⋅⋅ ⋅                            (72)  

where Ω  points to any function of the following 

distributions 0w ,  0 ,MN  0 ,T  0 ,F  0 ,C  and E0ϕ . 

The linear operators are postulated as follows:  

                                        

( )1

1
L w = ,MdPw

r
r r r dz

∂ ∂  − ∂ ∂ 
                                

(73)   

                                         

( )2 2

N N1
L N = ,M M

AM A
r

r r r r
γ β ∂ ∂   − −  ∂ ∂  

                                                        

                                                                                        (74)   

                                        

( ) ( )3

1
L T = 1 ,

d H

T
R r

r r r
β ∂ ∂  + −  ∂ ∂  

           

(75)   

                                         

( )4

1
L F = ,T

B

NF
r

r r r N

∂ ∂  + ∂ ∂ 
                            

(76)   

                                        

( )5

1
L C = ,

R M

C
r S L

r r r

∂ ∂  + ∂ ∂ 
                            

(77)   

                                       

( )6 1 2

1
L =L - L .E

E e e
r

r r r

ϕϕ  ∂ ∂  
  ∂ ∂  

                 

(78)   

Therefore, the initial guesses solutions can be 

presumed as follows: 

( )00 1 2

1
 lnr + R  ,

4 1

M

h

dP
w R

dz n

 
= − +  − 

                                               

                                                                                        (79) 

2

00 3 4r +R  lnr + R  ,
3

A
M

A

N
β
γ

=                           

(80) 

( )
2

00 5 6r +R  lnr + R  ,
4 1

H

d

T
R

β=
+

                   (81) 

2

00 7 8

1
R  lnr +R  ,

4

T

B

N
F r

N
= − +                              

(82) 

2

00 9 10

1
R  lnr + R  ,

4
R MC S L r= − +                (83) 

22
00 11 12

1

1
R  lnr + R  .

4

e
E

e

L
r

L
ϕ = +                          

(84) 

     As before the first order system is also very 

intricated to solve it. Thus, we will apply the HPM 

again for solving this system. According to HPM, we 

presume that Eqs. (62) - (69) with the convenient 

boundary conditions (70) and (71) have the solution 

of the formula:  

      1 10 11= + P  + ,Hα α α ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅                           (85) 

where α  indicates to any function of the following 

distributions: 1w ,  1,MN  1,T  1,F  1,C  and 1Eϕ . 

     By regarding the same preceding steps and 

applying HPM as well as the linear operators’ 

definitions, the initial guesses solutions may be 

presupposed as follows: 

10 25 26 lnr + R  ,w R=                                               

(86) 
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10 27 28R  lnr + R  ,MN =                                          

(87) 

 
10 29 30R  lnr + R  ,T =                                              

(88) 

 10 31 32
R  lnr + R  ,F =                                             

(89) 

 10 33 34
R  lnr + R  ,C =                                            

(90) 

 10 35 36
R  lnr + R  ,

E
ϕ =                                          

(91) 

     On employing the preceding power series solution 

into Eqs. (53)-(59) with (60) and (61) in addition 

(62)-(69) with (70) and (71), then equate the 

coefficients of like powers of HP  on all of them. At 

the end, solve the resultant linear system of 

equations. One gets the semi-analytic solutions of the 

various stages of 
n

HP . The entire solution is gained 

by setting 1HP = . The solutions are calculated up to 

the first order. Thus, all complete solutions for the 

former distributions in terms of sδ  may be expressed 

as follows: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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+ + + +
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( ) ( ) ( )

( ) ( )
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142 143

,

r ln

r ln ln r ln

r ln ln

N r

N r N r N r

N r N r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + 
 + + 
  + + 

                                                                                             

(94) 



IMPACTS OF CHEMICAL REACTION AND ELECTRIC FIELD.. 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 66, No. 7 (2023)  

 

75
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( ) ( )

( )
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B
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157 158 160

2
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N N N N N

N N N r r N r
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N r N r N r
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+ + + +

+ + + + +

+ + + + +

+ + + +
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2

,
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 
 
 
 
 
 
 
 
  
 

                                                                                             

(95) 

( ) ( )
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2
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4
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R R ln R R

r r r r r
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7
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 
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(96) 

( ) ( )

( ) ( ) ( )( )

2e2
11 23 12 24

e1

2 3 4 2
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2

191 192 35 47 36 48

1
 =   r + R R ln R R

4

r r r r ln

ln R R ln R R ,

E

L
r

L

N r N N N N r

N r N r

ϕ

δ

+ + +

+ + + + + +

+ + + + +
                                                                                             

(97) 

where, the arbitrary constants ( )1 48R R−  and the 

coefficients ( )1 192N N−
 
that appeared in the above 

equations from (92) to (97) are not included in the 

manuscript to save the length. They are obtainable 

under the request of the referees. 

 

     As a special case of our analytical study, in the 

absence of nanoparticles concertation, spin velocity, 

electric potential, mild stenosis, and chemical 

reaction. On the other hand, when we set the 

parameters 

d i 10, 0, 0, 0, , 0,

0, 0, 0, 0, 0, 0,

T e a

AH e A cr

R W N L D h

H Rβ β γ β
= = = = →∞ = 

  = = = = = = 

 and 0NΓ = , one can return to the work of Hayat 

et al. [12] 

 

5. Numerical results and discussions 

      By employing the Mathematica software to 

display the impacts of the varied physical variables 

which encompassed in our analytic investigation on 

the resultant distributions. the utilized ranges of the 

assorted parameters are presenting in diverse works 

apropos our study [3, 11, 29, and 30]. These ranges 

may be expressed as  

( 2.0,rP = 0.02, 3, 0.2,H zε = = =

0.5,BN = 0.5,RS = 0.3,ML = 0.5,Aγ =
0.5,Hβ = 0.5,NL = 0.4,ipN = 0.4,icN =
0.02,aD = 0 0.2,a = 0 0.2,z = 1.5,hn =

0.1,δ = 0.1,eR = 0.1,crR = 0.1,h =  

0.5,tβ = 0.6,FE = 0.3,rB = 0 1,L =  

0.2,eβ = 0 1,d = 1 0.2,eL = 1,
f

D =  

0.5,crR = 0.05,ω = 0.5,Aβ = 2 0.1,eL =
1.5,HΓ = 1.5,NΓ = and 0.5).TN =   

 

     The impact of the electrical Rayleigh number 1eL  

on the axial velocity ( )w r  is indicated throughout 

Fig. 2.  It is evident that the velocity enriches with the 

elevation in 
1eL  along the interval r ∈ [ ]0.1,0.4 .

Whilst, the opposite happens along the interval r ∈
[ ]0.42,0.8 .  Fig 3 exposes the variation of ( )w r  

for various magnitudes of Hartman number H . It is 

recognized that ( )w r declines with an elevation in 

H . In reality, Hartman number H  is denoted as the 

ratio amidst the magnetic force and the viscous one.  

In addition, it deemed as a dimensionless number that 

gives a measure of the relative significance of drag 

forces resulting from magnetic induction and viscous 

forces in Hartmann influx and determines the 

velocity profile for such influx. Thus, it is observed 

that the larger magnitudes of H  lead to decay in 

( )w r . Physiologically, this phenomenon is 

complying with the theory which explain that rising 

in H  is responsible for improving in Lorentz force 

which impedes the fluid influx motion. This reveals 

that if we enlarge the strength of H , the influx will 
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be encumbered. This important resultant conduct has 

an essential role in industrial applications, 

particularly in favours to solidification processes as 

casting and semiconductor single crystal growth 

applications. Also, the employing of magnetic 

particles in the recuperation of cancer is less focused 

on the delivery of drugs and more on their utilize as a 

new therapeutic outset in which tumour cells are 

stained by applying local heat through an external 

magnetic field. This observation is in a great 

complying with those attained by [2, 3, 11, 15, 19 and 

30].  The influence of aD  on ( )w r is introduced 

through Fig.4. it is noticed that ( )w r escalates with 

an enrichment in aD  . In fact, Darcy number is 

defined as the capacity of the porosity of the medium. 

Rising the porosity of the permeable porous medium 

leads to a dwindling in the resistance to the fluid. 

Thus, greater values of the medium porosity need 

more space to influx as a consequence its velocity 

increases. This conduct is in a good congruent with 

this obtained by [2]. 

     Fig. 5 exhibits the variance of ( )w r  for different 

values of FE . It is obvious that ( )w r  dwindles 

with the escalating in 
FE . In reality, electromagnetic 

interactions in the influx are responsible of this 

reduction demeanour. The influence of taper angle 

ω  on ( )w r is portrays though Fig.6.  In fact, the 

influence of vessel tapering in the existence of the 

stenosis merit specific attention due to its extreme 

importance. Additionally, the tapering has a 

substantial considerable role in the arterial system 

[35]. Consequently, this present study focused on 

discussing the influx inside a tapered tube in the 

existence of the stenosis. It is indicated that in case of 

the diverging tapered ( )0.10,0.05, 0ω ω= > , 

the magnitude of the axial velocity ( )w r  is larger 

than the other  both cases (the non-tapered artery 

0ω =  and the convergent tapered 

( )0.05, 0ω ω= − < ). Also, it is obvious that the 

axial velocity is elevated with the escalating in ω . 

Fig. 7 shows the impact of eβ on ( )w r . It is 

depicting that eβ  has an improving impact on ( )w r . 

Actually, greater values of eβ caused the effective 

conductivity to be dwindled. That leads to a 

declination in the force of magnetic damping. Thus, 

the axial velocity ( )w r promotes. These impacts are 

fully complying with [3,19, 29 and 30]. 

 

     The variation of ( )M
N r  for diverse magnitudes 

of Aγ  is depicted through Fig. 8. It is recognized that 

( )M
N r  is always positive and declined with the 

enhancement of Aγ .  This observed result is 

congruent with the work of [3, and 5]. Fig. 9 explains 

the demeanour of Aβ  on ( )M
N r . It is obvious that 

( )M
N r  is always positive and enhances with the 

elevation in
Aβ . This noticed outcome is fully 

complying with this reported by [3, and 5]. 

 

      Fig. 10 presents the influences of 
HΓ  on ( )T r . 

As noticed from this figure, ( )T r declines with the 

elevation in HΓ . In a view of the physiological 

situation, the enrich in HΓ  causes a non-conducting 

demeanour. Furthermore, it is noticed that the 

particles take more time to transport heat to its 

adjoining particles, which leads to decline in ( )T r .  

Over and above, ( )T r  elevates only in the absence 

of 
HΓ i.e., ( )0

H
Γ = . Consequently, ( )T r  is 

lower in the case of Cattaneo-Christov heat flux 

model when compared to classical Fourier’s law. 

This obtained outcome is complying with those 

displayed by [11, 13, 14, and 15]. The impact of dR  

on  ( )T r  is exposed through Fig. 11. It is 

recognized that ( )T r  deemed as a reduction 

function with the increment in 
dR . Actually, this 

reduction conduct is caused due to pervasion of the 

molecular energy of the fluid, that responsible for 

making dR  behave like that. This obtained outcome 

is fully agreement with the outcome reported by [2, 5, 

19, and 34]. 

 

     The influence of the thermophoretic parameter 

TN  on ( )F r  is examined through Fig. 12. As 

shown from that figure, the elevation in TN  lead to 

an enrichment in ( )F r . From the physiological 

point of view, elevating the thermophoretic parameter 
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TN  creates the larger mass influx due to temperature 

gradient which in turn enhances the concentration. 

This noticed outcome is fully consistent with this 

displayed by [2, 3, 11, and 15]. Fig. 13 exhibits the 

variation of ( )F r  for several values of nano Biot 

number 
ipN . It is found that ( )F r  dwindled with 

the increment in ipN . In the physical visualization, 

this conduct occurs since larger values of 
ipN  lead 

nanoparticles to need more time to diffuse that shows 

dwindling in ( )F r . This resultant observation is 

fully agreement with the work of [3]. 

 

     The variance of the concentration ( )C r  for 

varied values of the chemical reaction parameter 
cr

R  

is scrutinized through Fig. 14. It is indicated that the 

concentration ( )C r is always negative and dwindled 

with the augmenting in 
cr

R . The physical 

justification, chemical reaction parameter 
cr

R  

consolidates the rate of the interfacial mass transfer 

that leads to dwindle in the concentration profile 

( )C r . This resultant demeanour is fully consistent 

to those displayed by [29]. Fig. 15 explains the 

impact of the Lewis number ML  on the 

concentration ( )C r . It is evident that the 

concentration ( )C r  declines with an elevation in 

ML . Physiologically, the Lewis number ML is 

known as the ratio amidst the thermal diffusivity to 

mass diffusivity (or) “Schmidt number to Prandtl 

number”. This is employed to characterize flows in 

which there is simultaneous heat and mass (by 

convection) transfer. Thus, the enrich in ML causes 

the mass diffusion to decay that gives elevate in the 

inter-molecular force and causes a decline in fluid 

concentration ( )C r . The examining of Lewis 

number is significant to characterize fluid influx 

where there is heat and mass transfer. As well, there 

is a reverse proportion amidst the Lewis number 
M

L

and the Prandtl number 
r

P . This obtained demeanour 

is fully congruent to the results displayed by [3, 11, 

and 15]. 

 

     Fig.16 describes the influence of the electrical 

Rayleigh number 
1e

L  on the electric potential 

( )E
rϕ . Hither, the alternating current (Ac) of 

electric field is employed in order to create a dipole 

charge that conserve on the shape of the peristaltic 

waves. It is noticed that the electric potential ( )E rϕ  

enlarges by the elevate of 
1e

L . The impact of the 

adverse temperature parameter 
2e

L on the electric 

potential ( )E rϕ  is displayed through Fig.17. As 

shown in this figure, the electric potential ( )E rϕ  

declines with an enhancement in 2eL . These 

significant outcomes are complying to those reported 

by [29]. 

 

 

 

 

 

 

 

Fig. (2) 

 
Fig. (3) 
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Fig. (4) 

 
Fig. (5) 

 

 
 

Fig. (6) 

 
 

Fig. (7) 

 
 

Fig. (8) 

 

 
Fig. (9) 

 

 
Fig. (10) 
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Fig. (11) 

 
 

Fig. (12) 

 
 

Fig. (13) 

 

 
Fig. (14) 

 
 

Fig. (15) 

 
Fig. (16) 

 

 
Fig. (17) 

 
 

6. Conclusion 

      The notion of the current analytical study is to 

exhibit the impact of Cattaneo-Christov double 
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diffusion on peristaltic flow of tangent hyperbolic 

micropolar nanofluid inside an artery in the existence 

of mild stenosis. The effects of Hall currents, thermal 

radiation, ohmic dissipation, Soret, Dufour, heat 

generation and chemical reaction are also imposed. 

Furthermore, the convective conditions for both 

distributions of concentration as well as nano 

phenomenon and slip condition for temperature 

distribution are presumed. It is found that, the axial 

velocity ( )w r  decreases with the elevation in both 

, FH E . Whilst, it enhances with the enlarging in 

, ,a eD ω β .  The electrical Rayleigh number 1eL  

has a dual impact on the axial velocity ( )w r . 

Further, the spin velocity ( )M
N r  declines with an 

elevation in Aγ . Meanwhile, enlarging in Aβ  leads 

to escalate ( )M
N r . Moreover, the temperature 

( )T r  decays with an enhancement in both ,H dRΓ . 

Furthermore, the elevating in TN  causes an 

increment in the nanoparticles concentration ( )F r . 

Whereas, it declines with rising in 
ipN . The 

concentration ( )C r  dwindled with an escalating in 

both ,cr MR L . Finally, the electric potential ( )E
rϕ  

diminishes with an enlargement in 
1eL . Whilst, 

elevating in 2eL  causes rising in ( )E
rϕ . The 

foregoing outcomes may have applied in diverse 

scientific fields, which interested in discussing in the 

peristaltic transfer of non-Newtonian micropolar 

nanofluids flow through stenosed artery with 

Cattaneo-Christov double diffusion analytically. 

Further, this analysis study has various applications 

in diverse areas as, medicine, medical-industrial, and 

several other implementations. Through the 

physiological perspective, our model relates to 

sinusoidal waves that happen in the intestines, 

oesophagus, and stomach. In addition, the current 

consideration is very substantial in a significant 

medical implementation like endoscope, The 

endoscope has several clinical applications. Hence, it 

is considered to be a very significant tool utilized in 

determining real reasons responsible for many 

problems [37-64]. Moreover, in the human organs in 

which fluid is transported by peristaltic pumping, 

such as the stomach, small intestine, etc. 

Consequently, the present study introduces a 

description demonstrate the peristaltic motion of 

blood flow through a stenosed artery. 

 

Nomenclature 
The first Rivilin Ericksen tensor 

1A h  
Wave amplitude 

1
a  

Magnetic field strength 0B  
Brinkman number rB  

Speed of wave c
e  

Specific heat parameter of fluid c s  
Specific heat of nanoparticle c n  
Concentration susceptibility 

Cen  
Dimensionless concentration C 

Half-channel width 
0

R
 Coefficient of mass diffusivity D  

Darcy number aD  
Brownian diffusion coefficient 

N
D

 
Thermophoretic coefficient TD  

Dufour number D
F  

Thermal expansion coefficient of dielectric 

constant 0
e

 

Eckert number 
ck

E
 

Electromagnetic parameter 
FE  

Electric field 
fE

 Maximum height of stenosis 
0

h
 Height of stenosis in tapered artery 

0
H

 Hartman number H  
Mass transfer coefficient 

c
h

 
Nanofluid coefficient 

p
h

 
Current density 

1J  

Microinertia constant 
AJ  

Thermophoretic conductivity k 
Permeability of porous medium 

p
K

 Thermal conductivity 
E

K
 

Rosseland absorption coefficient 
r

K
 

Thermal diffusion ratio 

 H
K

 
Electrical Rayleigh number 

1e
L

 
Temperature parameter 

2e
L

 
Constant of chemical reaction 

rL  
Lewis number 

ML  
Nano Lewis number 

NL  
Slope of tapered vessel 

0
m

 
Mass transfer Biot number M

ic  
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The power law index 
h

n
 

Brownian motion parameter 
B

N
 

Thermophoresis parameter 
T

N
 

Nano Biot number N
ip 

Modified fluid pressure 
M

P
 

Prandtl number rP  
Radius of tapered artery ( )*

s
R z

 Radius of un tapered artery 
0R  

Constant of heat addition and absorption. 
GR  

Non-dimension chemical reaction parameter 
cr

R  
Reynold’s number eR  

Soret number 
R

S  

Time t  

Dimensionless fluid temperature T 

Mean fluid temperature mT  

Weissenberg number 
i

W  
Half-length of stenosis 

0
z  

Greek symbols  

Thermal slip parameter 1β  

Micropolar dimensionless viscosity 
A

β  
Hall parameter 

e
β  

Mean absorption coefficient 

 H
β  

adverse temperature gradient 
t

β  

Thermal relaxation time 
H

Γ  

Nano relaxation time 
N

Γ  

Electric potential 
 e
ϕ  

Temperature of the lower wall 
1

ϑ  

Temperature of the upper wall 
2

ϑ  

Free charge density 
e

ρ  

Wave number 
s

δ  

Spin-gradient viscosity 
a

γ  

Microrotation parameter 
Aγ  

Permittivity at vacuum 
0

ε  

Wavelength 
0

λ  

Fluid viscosity 
0 h

µ  

Kinematic viscosity 
s

ν  

Fluid density 
s

ρ  

Nanoparticle density 

 n
ρ  

Heat capacity of the fluid ( )
s

cρ  

Heat capacity of nanoparticle ( )
n

cρ  

Electrical conductivity 
s

σ  

Stefan Boltzmann coefficient 
0σ  

Angle of tapering ω  

Cauchy stress tensor hτ  

Dimensionless nanoparticle phenomena F  

Nanoparticle phenomena f  

Nanoparticle at the left wall 
0f  

Nanoparticle at the right wall 
1

f  

The second invariant strain tensor ξ  

Stream function ( ),r zψ
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