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Abstract 

Guava (Psidium guajava L.) has been considered a hard-to-root species, where the percentage of rooting and 

survival of the stem cuttings is low. To enhance the rooting potential of guava stem cuttings, the current study 

was conducted to investigate the influence of NAA and IBA alone or combined with silver nanoparticles on the 

rooting of guava semi-hardwood cuttings. Silver nanoparticles were synthesized using the chemical reduction 

method. UV/VIS spectra and TEM micrographs confirmed the synthesis of silver nanoparticles (AgNPs) with an 

average particle size ranging d from 14.8 to 32.4 nm, and zeta potential confirmed the stability of AgNPs due to 

the high negative charge of zeta potential. Semi-hardwood cuttings of guava were subjected to six treatments, 

including the dipping in separate aqueous solutions of IBA, NAA, IBA-AgNPs, NAA-AgNPs, dipping in IBA 

followed by dipping in AgNPs solution (IBA+AgNPs), and dipping in NAA followed by dipping in AgNPs 

solution (NAA+AgNPs). Results indicated that the hormone type significantly affected all rooting parameters; 

higher measurements of rooting percentage, root number, root length, and root weight were recorded with IBA 

treatment, whereas NAA recorded significantly lower values. Auxin-AgNPs (IBA-AgNPs and NAA-AgNPs) and 

the double-dipping treatments improved rooting efficiency compared with the auxin treatments alone. Cutting of 

NAA-AgNPs treatment developed a lower number of long roots, while IBA-AgNPs recorded higher values of all 

root parameters. The present results demonstrated the stimulatory effect of auxin and AgNPs treatments on the 

rooting of guava stem cuttings. 
Keywords: Psidium guajava, rooting, propagation, stem cuttings, IBA, NAA, silver nanoparticles.   

1. Introduction 

Guava (Psidium guajava L., Myrtaceae), the 

“poor man’s fruit” or “apple of the tropics”, is a 

commercially significant fruit crop in tropical and 

subtropical regions [1]. Guava is popular due to its 

comparatively low price, year-round availability, 

good taste, and nutritional value as a potential source 

of carbohydrates, antioxidants, vitamins, 

polyphenols, and minerals [2,3]. Guava cultivation 

has great economic significance in many countries 

around the world; the major guava-producing 

countries are India, Pakistan, Brazil, Egypt, Mexico, 

and Indonesia [4]. Guava is commonly propagated by 

seeds; subsequently, the produced seedlings do not 

maintain the genetic purity of the propagated mother 

plants. Furthermore, seedling trees exhibit vigorous 

growth and a long juvenile period [5,6]. Several 

methods of clonal propagation of guava have been 

proposed, such as cutting, layering, budding, grafting, 

and micropropagation [7-10]. In this regard, clonal 

propagation by grafting did not provide satisfactory 

results for guava propagation, while the number of 

plants obtained by air-layering is very low [11,12]. 

Propagation by stem cutting is a simple, rapid, and 

cost-effective propagation method that ensures the 

production of true-to-type plants [13]. However, all 

the above-mentioned techniques are still not 

commercially applicable due to the low rooting 

potential of guava cuttings. Several methods have 

been used to improve the rooting of guava cuttings 

[7, 13-15]. Auxin plays an important role in 

adventitious root formation [16] by increasing root 

primordium initiation [17] and promoting starch 

hydrolysis and sugar mobilization to the cutting base 

[18]. Auxin treatments are frequently used to improve 

the rooting potential of different fruit tree species 

[19,20]. The effects of IBA and NAA on the rooting 

of guava cuttings were previously reported [21,22]. 

One of the major challenges in the commercial 

application of auxin treatment is its sensitivity to 
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environmental conditions; degradation by light and 

high-temperature results in the loss of biological 

activity [23,24]. Recently, the applications of 

nanoparticles in agriculture are receiving much 

attention because of their unique physicochemical 

properties, i.e., high surface area, higher uptake, and 

translocation potential in plant tissues [25-27]. 

Nanoparticles can serve as delivery agents of 

fertilizers, pesticides, and plant growth regulators that 

target specific organelles in plants [28,29]. The use of 

silver nanoparticles (AgNPs) has been reported for 

various agricultural and industrial applications 

[30,31]. AgNPs promote root growth and increase 

root elongation in different plant species [32-37]. 

Moreover, AgNPs exhibited high antimicrobial 

activity against a broad spectrum of microorganisms 

[38]. AgNPs showed excellent antibacterial, 

antifungal and antiviral efficacy and had an inhibitory 

impact against nematode, bacterial, and fungal plant 

pathogens [31,39,40]. Thus, the aim of the current 

study was to evaluate the effect of synthesized silver 

nanoparticles combined with IBA and NAA on the 

rooting of guava semi-hard cuttings. 

2. Materials and Methods 

2.1. Chemicals  

Indole-3-butyric acid (IBA) was obtained from 

Sigma-Aldrich (Basel, Switzerland). 1-naphthalene 

acetic acid (NAA) was obtained from Caisson 

Laboratory, Inc. (Smithfield, Utah, USA). Silver 

nitrate (AgNO3) was obtained from Organik Kimya 

(Istanbul, Turkey). Sodium borohydride was obtained 

from CDH-Central Drug House (New Delhi, India) 

and polyethylene glycol 400 (PEG) was obtained 

from Alpha Chemika (Maharashtra, India). All 

solutions were prepared with deionized water unless 

otherwise stated. 

2.2. Preparation of silver nanoparticle  

Silver nanoparticles were synthesized by the 

chemical reduction method. 1 mM silver nitrate 

(AgNO3) was prepared by dissolving 0.034 g of 

AgNO3 in 200 mL of deionized water in an ice bath. 

The 2 mM sodium borohydride (the reducing agent) 

was prepared by adding 0.0456 g of NaBH4 to 600 

mL of deionized water. The prepared solutions were 

kept in the freezer for 30 minutes. Polyethylene 

glycol (PEG 400) was used as stabilizing agent; 0.1% 

polyethylene glycol was prepared by dissolving 0.2 g 

of PEG in 200 mL of deionized water. Sodium 

borohydride solution was placed on a magnetic stirrer 

on ice bath, and then PEG solution was added. Silver 

nitrate solution was added to the previous mixture 

drop by drop using a burette under vigorous stirring 

until the transparent solution changed to a yellow 

color. The color change indicates the formation of 

silver nanoparticles (AgNPs) stabilized by PEG [41]. 

2.3.  Preparation of IBA and NAA solution 

The Indole-3-butyricacid (IBA) and naphthalene 

acetic acid (NAA) solutions were prepared at a 

concentration of 10 mM by dissolving 1.015 g IBA in 

500 mL of 50% aqueous ethanol (v/v) and 0.930 g 

NAA in 500 mL of 50% aqueous ethanol (v/v); the 

prepared solutions were stored in a dark bottle kept at 

4 °C. 

2.4.  Preparation of IBA-AgNPs and NAA -AgNPs 

mixture 

The IBA (10 mM) or NAA (10 mM) was mixed 

to the freshly prepared silver nanoparticles (1 mM); 

the mixture was subsequently stirred for 30 min. The 

prepared IBA and NAA-AgNPs mixture were 

separately stored in a dark bottle kept at 4 °C for 

further uses. 

2.5.  Characterization of silver nanoparticles  

2.5.1. UV-Vis spectroscopy  
A UV/VIS spectrophotometer (T80, PG 

Instruments Ltd, UK) was used for the scan spectrum 

characterization of the synthesized AgNPs at the 

central lab of the Biochemistry Department, Faculty 

of Agriculture, Cairo University. The scanning range 

of the samples was 300700 nm. Millie-Q water was 

used as a blank reference. 

2.5.2. Transmission Electron Microscopy (TEM)  
A morphological analysis, including the size and 

shape of the synthesized nanoparticles, was 

performed using transmission electron microscopy 

(JEOL JEM-1400, USA) at the Cairo University 

Research Park (CURP), Faculty of Agriculture, Cairo 

University. A drop of Millie-Q water, which 

dissolved synthesized nanoparticles, was placed on a 

carbon grid (C-grid). The images were obtained at a 

bias voltage of 40-120 kV. 

2.5.3. Particle Size and Zeta Potential  

Particle size and zeta potential of the synthesized 

nanoparticles were measured by photon correlation 

spectroscopy and laser Doppler anemometry, 

respectively, using a Zetasizer® 3000 particulate size 

description analyzer (Malvern Instruments, UK). The 

size was measured three times at 25 C and a 90 

scattering angle, and each measurement was recorded 

for 3 min. The mean hydrodynamic diameter was 

generated by cumulative analysis. The automatic 

mode of an aqueous dip cell was used to measure the 

zeta potential. 

2.6.  Plant material and rooting treatments 

https://www.crunchbase.com/search/organizations/field/organizations/location_identifiers/utah-united-states
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This study was conducted inside the experimental 

greenhouse (70% shade-net) at the Faculty of 

Agriculture, Cairo University (031°12'65"E 

longitude, 30°00'48"N latitude). The plant materials 

were collected from a 35-year-old guava tree grafted 

onto seedling rootstocks and growing in the 

experimental orchard of the Pomology Department, 

Faculty of Agriculture, Cairo University. These trees 

were previously selected and characterized as 

promising guava genotypes by Bakr et al. [42]. 

Active growing shoots were collected during June 

and semi-hard wood cuttings of 15-20 cm in length 

with a couple of half-leaves at the upper nodes were 

prepared and subjected to six rooting treatments as 

follows: 

1. Dipping in IBA (10 mM) solution. 

2. Dipping in NAA (10 mM) solution. 

3. Dipping in IBA-AgNPs mixture.  

4. Dipping in NAA-AgNPs mixture. 

5. Dipping in IBA followed by dipping in 

AgNPs solution. 

6. Dipping in NAA followed by dipping in 

AgNPs solution. 

Each treatment contained 60 cuttings divided into 

three replications, 20 cuttings for each. The cuttings 

were dipped in each rooting treatment for 30 seconds 

before being planted into plastic trays (15 cm depth) 

filled with a 1:3 mixture of sand and peatmoss and 

kept under a mist irrigation system; the cuttings were 

intermittently misted (15 s misting followed by 10 

min pause) from 07:00–18:00 using micro sprinklers, 

with the mist frequency being automatically 

regulated. After two months of planting, the 

measurements of the rooting potential of guava semi-

hard wood cutting for each treatment were examined; 

the measured parameters included rooting percentage, 

number of roots (roots > 2 mm), root length (cm), 

number of leaves per each transplant (the remaining 

leaves plus the newly emerged leaves), and root fresh 

and dry weight (g).  

2.7. Statistical analysis 

The experiment was carried out in a randomized 

complete block design [43]. The assumptions of 

normality were tested by Shapiro-Wilk's test [44]; 

analysis of variance was performed using the R 

software (version 4.0.5, R Core Team, Vienna, 

Austria). The mean and standard error (SE) were 

calculated from three replicates per treatment, and the 

significant differences between treatments were 

assessed by means of multiple Duncan range test at 

significance level of 0.05 [45]. 

3. Results and Discussion 

3.1. Characterization of the synthesized silver 

nanoparticles 

3.1.1. UV-Vis spectroscopy 

The UV-VIS spectra and absorption spectrum 

of the synthesized AgNPs are shown in Fig. (1). 

AgNPs exhibit a well-defined absorption peak in the 

scanning range from 300 to 700 nm. The maximum 

absorbance for the AgNPs sample measured is 410 

nm. The characteristic feature of the peak between 

400-500 nm in the UV-VIS spectrum validated the 

synthesis of AgNPs, and it is attributable to plasmon 

surface resonance (PSR) excitation [46,47]. 

According to Singh et al. [48], the UV–Vis peak is 

between 400 and 435 nm, indicating the synthesis of 

well-dispersed spherical AgNPs. 

 

Fig. 1. UV–Vis absorption spectra of synthesized 

AgNPs 

3.1.2. Transmission electron microscopy (TEM) 

TEM analysis was employed to evaluate the 

shape and size of AgNPs (Fig. 2). The individual 

AgNPs are mostly dark spherical objects. The 

average size of silver nanoparticles ranged from 14.8 

to 32.4 nm. The TEM image indicated that the 

AgNPs were spherical in shape and scattered in the 

solution. The TEM micrograph demonstrated that the 

mean size of the prepared nanoparticle is comparable 

to the particle size that has been reported in previous 

studies [49,50]. Therefore, the synthesised AgNPs in 

our study represented typical nanoparticles in terms 

of shape and size. 

Fig. 2. The transmission electron microscope 

micrographs of synthesized AgNPs 
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3.1.3. Zeta potential and particle size of AgNPs 
The mean size and size distribution of silver 

nanoparticle suspension were analyzed using the 

Zetasizer analysis. The size distribution profile (Fig. 

3) represents a typical batch of nanoparticles with a 

mean diameter of 12.09 nm and a narrow size 

distribution (polydispersity index < 1). A zeta 

potential was applied to determine the surface 

charges of silver nanoparticles. The zeta potential 

may greatly influence particle stability in suspension 

through the electrostatic repulsion between particles. 

Fig. (4) shows that the surfaces of AgNPs have a 

negative charge of about -31.5 mV. The value of zeta 

potential is useful for predicting the interactions 

between particles [51]. The high negative charge 

confirms the repulsion among the particles and 

thereby increases the stability of the AgNPs [52]. The 

negative charge confirms the role of PEG as 

stabilizing agent in preventing the aggregation of the 

AgNPs due to electrostatic repulsion among the 

negative charges [53].  

 

Fig. 3. Size distribution by intensity of AgNPs. 

 

Fig. 4. Zeta potential distribution of AgNPs 

3.2. The effect of silver nanoparticles on rooting 

potential   

3.2.1.  Rooting percentage  
According to the data illustrated in Fig. (5), 

auxin and AgNPs treatments had a significant effect 

(P ≤ 0.05) on the rooting percentage of guava 

cuttings. IBA recorded a significantly higher rooting 

percentage (26.67%) compared with NAA (5.34%). 

Concerning the effect of AgNPs, the mixture of auxin 

and AgNPs (auxin-AgNPs) and double-dipping 

(auxin+AgNPs) treatments improved the rooting 

potential of guava cuttings; NAA-AgNPs increased 

rooting percentage by 9.79 times (52.33%) while 

double-dipping treatments recorded 5.91 times 

increase in rooting percentage compared with NAA 

(5.33%). Both the BA-AgNPs and double-dipping 

(IBA+AgNPs) treatments statistically recorded 

similar results (31.6 and 33.3%, respectively).  

 
Fig. 5. Effect of silver NPs and hormonal 

treatments on the rooting percentage of guava stem 

cutting. Means with different letters between 

treatments are significantly different at P ≤ 0.05. 

Vertical bars represent standard error (± SE). 

3.2.2. Root number and length   
The presented data in Fig. (6) indicated that 

the number of roots developed per cutting was 

significantly affected by auxin and silver nanoparticle 

treatments. NAA recorded the lowest root number (2 

roots), followed by the NAA-AgNPs treatment (5 

roots), while the dipping in IBA-AgNPs and the 

double-dipping with IBA then AgNPs (IBA+AgNPs) 

recorded significantly (P ≤ 0.05) the highest root 

number (18 roots), followed by the treatment with 

IBA (13.5 roots). Also, root lengths were 

significantly affected by different rooting treatments 

(Fig. 7); IBA recorded a higher root length (8.67 cm) 

compared with NAA (2 cm), IBA+AgNPs (8.11 cm), 

and NAA+AgNPs (8.56 cm), while IBA-AgNPs and 

NAA-AgNPs mixture recorded the highest root 

lengths (12.89 and 12.78 cm, respectively).  

 
Fig. 6. Effect of silver NPs and hormonal 

treatments on the root number of guava stem 

cutting. Means with different letters between 

treatments are significantly different at P ≤ 0.05. 

Vertical bars represent standard error (± SE). 

https://www.sciencedirect.com/topics/immunology-and-microbiology/zeta-potential
https://www.sciencedirect.com/topics/immunology-and-microbiology/zeta-potential
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Fig. 7. Effect of silver NPs and hormonal 

treatments on the root length of guava stem cutting. 

Means with different letters between treatments are 

significantly different at P ≤ 0.05. Vertical bars 

represent standard error (± SE). 

3.2.3. Roots weight 
The effect of hormonal and AgNPs 

treatments on root fresh weight (FW) and dry weight 

(DW) per transplant is shown in Fig. (8 and 9). The 

treatment of guava cuttings with IBA significantly 

enhanced root fresh (0.53 g) and dry weight (0.38 g) 

compared to the NAA treatment, which recorded the 

lowest values (0.20 and 0.10 g, respectively). 

Generally, AgNPs significantly improved the root 

fresh and dry weight, IBA-AgNPs had significantly 

higher root fresh and dry weight compared with 

NAA-AgNPs, while there were non-significant 

differences between dipping treatments with 

IBA+AgNPs or NAA+AgNPs treatments on root 

FW. In other words, IBA-AgNPs had the highest root 

FW value (0.81 g), and IBA-AgNPs and IBA+AgNPs 

had the highest root DW values (0.54 and 0.48 g, 

respectively), compared to all other experimental 

treatments.  

 
Fig. 8. Effect of silver NPs and hormonal treatments 

on the root fresh weight of guava stem cutting. Means 

with different letters between treatments are 

significantly different at P ≤ 0.05. Vertical bars 

represent standard error (± SE).  
 

 

 
Fig. 9. Effect of silver NPs and hormonal treatments 

on the root dry weight of guava stem cutting. Means 

with different letters between treatments are 

significantly different at P ≤ 0.05. Vertical bars 

represent standard error (± SE).  

3.2.4. Leaves number 
Results in Fig. (10), indicate that there are slight 

differences between the examined rooting treatments 

in leaf number per cutting. The highest leaf number 

was recorded for IBA treatment. NAA-treated 

cuttings showed complete defoliation at the end of 

the rooting experiment. The NAA+AgNPs treatment 

recorded the highest leaf number (4 leaves) compared 

with all other treatments. Moreover, there were no 

significant differences between the IBA-AgNPs and 

IBA+AgNPs treatments.  

 
Fig. 10. Effect of silver NPs and hormonal treatments 

on the leaf number of guava stem cutting. Means with 

different letters between treatments are significantly 

different at P ≤ 0.05. Vertical bars represent standard 

error (± SE).  

 

Guava is traditionally propagated by seeds, which 

is the simplest propagation method. At the same time, 

seedling trees are undesirable in commercial 

orchards; they represent a great variability in 

productivity and fruit quality. In addition, seedling 

trees have a long juvenility period [54]. In contrast, 

vegetative propagation produces uniform trees with a 

short juvenile period compared to seedling plants [1]. 

Propagation by cuttings has significant advantages, 

such as obtaining true-to-type trees and being easy to 

implement; it insures production of nursery plants in 

one growing season [4]. Exogenous auxin application 

is commonly used to stimulate adventitious root 
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formation of stem-cuttings [19,20]. The effects of 

IBA and NAA on rooting of guava cuttings were 

previously reported [21,22]. In the present study, IBA 

significantly enhanced rooting parameters compared 

with NAA; the obtained results are in agreement with 

previous research which confirms that IBA is 

efficient in inducing root formation of guava cuttings. 

IBA significantly exhibited higher rooting 

percentage, number of roots per cutting, and root 

length [7,13,21,55]. The efficiency of IBA compared 

to NAA may be due to the slow and continuous 

release of IAA from IBA [56,57]; enhanced 

translocation of carbohydrates to the base of cuttings 

[6]; also an increase in indole-3-acetyl-aspartic acid 

(IAAsp) was reported in avocado micro-cuttings 

treated with IBA which stimulates normal growth of 

root meristemoids [58]. The obtained results confirm 

the inferior effect of NAA in root induction; as NAA 

is very stable, which may block the development of 

root meristemoids [59], root elongation is very 

sensitive to auxin and the higher concentration may 

inhibit rooting [60]. IBA promotes root elongation by 

influencing the synthesis of enzymes involved in cell 

enlargement [61,62]. Roots developed with NAA 

treated cutting were shorter in length; and leaf 

abscission was noticed in NAA, whereas IBA 

produced longer roots. Similar results were 

previously reported by Ali et al. [63]. The higher 

value of root fresh and dry weight in IBA treated 

cutting may be attributed to the higher number of 

roots and root length; the effect of AgNPs in 

promoting root growth, increasing root elongation 

and fresh and dry biomass of roots was previously 

reported in different plant species including rice 

[32,36], Arabidopsis [35], Populas tremula [34], 

Eruca sativa [33] and strawberry [37]. Our results 

demonstrated that AgNPs had a positive effect on the 

rooting parameters of guava cutting; the effect of 

AgNPs on root induction and root growth may be due 

to the effect of AgNPs on blocking ethylene signaling 

[64]. Ag+ inhibits ethylene action upon binding to 

ethylene receptors through replacement of the Cu+2 

ions by Ag+ which blocks ethylene receptors and 

inhibits the ethylene action [65]. The higher 

concentrations of auxin inhibit rooting elongation by 

increasing ethylene biosynthesis [60].  Our results 

showed that AgNPs significantly improved rooting 

parameters of NAA treated cutting; this may be due 

to the effect of AgNPs as ethylene inhibitors [64-66]. 

De Klerk and Hanecakova [67] indicated that the 

high NAA concentrations increase ethylene synthesis 

in mung bean cuttings, which inhibits rooting. 

Moreover, the application of silver thiosulfate 

(inhibitor of ethylene action) or 

aminoethoxyvinylglycine (inhibitor of ethylene 

synthesis) promotes rooting even at high NAA 

concentrations. Also, AgNPs increase Arabidopsis 

root elongation and increase number of cells in the 

root apical meristem [68]. Moreover, AgNPs inhibit 

defoliation of plant leaves through inhibiting the 

activity of ethylene gas [69]. Furthermore, AgNPs 

treatments can indirectly influence the rooting 

potential of stem cuttings through inhibition of soil-

borne pathogens. The high moisture during rooting of 

stem cuttings under mist irrigation often promotes the 

spread of soil-borne pathogens, which usually attack 

the stem cutting base [70]. In this regard, silver 

nanoparticles (AgNPs) exhibited highly antimicrobial 

activity against plant pathogens [39,40]. 

4. Conclusion 

According to the obtained results, auxin type 

significantly affected all rooting parameters; higher 

rooting percentage, root number, root length, and root 

weight were recorded with IBA treatment. 

Interestingly, silver nanoparticles mixed with auxin 

treatments significantly improved rooting potential 

and recorded higher values of rooting parameters 

compared with the auxin treatments alone. The 

present results demonstrated the stimulatory effect of 

auxin and AgNPs mixture on the rooting of guava 

stem cuttings. Therefore, it could be a novel method 

for commercial vegetative propagation. 
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