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Abstract 

Some novel enantiopure 3-carboxylic isoxazolidine derivatives were synthesized by stereocontrol 1,3-dipolar cycloaddition 

(1,3-DC) between nitrone derived (-)-menthone with alkenes derived from phenol and benzyl alcohol. Furthermore, the 

synthesized molecules were optimized for their drug-likeness and pharmacokinetics parameters by using in silico methods.  
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1. Introduction 

Interest in amino-acids continues to grow over the 

years due to their crucial and diverse role in the 

organism [1-3]. In addition, many studies have 

confirmed the effectiveness of amino-acids to treat 

certain diseases [4-8]. Forthermore, they are widely 

used in the synthesis of biologically active peptide 

analogues [9-10]. The stereoselective synthesis of 

amino-acids, which constitute one of the most 

widespread classes of natural compounds in nature, 

has been widely studied in the literature [11-12]. 

However, chemists are still interested in developing 

new synthetic routes to access unnatural amino-

acids. In our former work, we reported a particular 

and interesting methodology based on 1,3-dipolar 

cycloaddition which leads to natural and unnatural 

α-amino acids such as 4-hydroxyisoleucine [13-14], 

4S-hydroxyornithine [15] and α-amino-(4-hydroxy-

pyrrolidin3-yl)acetic acid derivatives [16] and other 

analogues [17-18]. 

3-Carboxylic isoxazolidine derivatives are 

considered as first-order precursors to access α-

amino-acids [19]. In this context, we propose in this 

work the synthesis of new 3-carboxylic 

isoxazolidine derivatives via the 1,3-DC of nitrone 

with olefines derived from phenol and benzyl 

alcohol. In addition, to account for further in vitro 

biological activity data of the designed compounds, 
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 in silico prediction of adsorption–distribution–

metabolism–excretion (ADME)/pharmacokinetics 

properties were assessed.  

 

2. Experimental  

General methods 

Reagents and solvents were used as purchased from 

Aldrich. Thin-layer chromatography (TLC) was 

performed on Silica Gel 60 F254 (Merck). The plates 

were visualized under UV light, or by gentle heating. 
1H and 13C NMR spectra were recorded using a 

Bruker DRX300 spectrometer. Chemical shifts are 

quoted in parts per million, referenced to the residual 

solvent peak. The following abbreviations are used: 

(s, singlet), (d, doublet), (dd, doublet of doublets), 

(ddd, doublet of doublet of doublets), (t, triplet), (q, 

quadruplet), (quin, quintuplet), (m, multiplet), (br, 

broad). Coupling constants are reported in Hertz 

(Hz). HRMS (LSIMS) data were recorded in the 

positive mode (unless stated otherwise) using a 

Thermo Finnigan Mat 95 XL spectrometer. MS (ESI) 

data were recorded in the positive mode using a 

Thermo Finnigan LCQ spectrometer. 

 

General procedure for synthesis of 3a-h: 

To a solution of 1 (1 eq.) in toluene was added a 

various allyl phenyl ether 2a-h (1 eq.). The mixture 

was refluxed for 72h with stirring. The obtained 

cycloadduct was purified by flash chromatography to 

separate the desired compound 3a-h. 

 

3a: (((1S,2S,2’S,3a’S,5R)-2-isopropyl-5,5’-

dimethyl-4’-oxotetrahydro-2’H-

spiro[cyclohexane-1,6’-imidazo[1,5-b]isoxazol]-2’-

yl)methoxy)benzene  

Prepared from 1 (1 eq.) and (allyloxy)benzene 2a (1 

eq.) to afford 3a (278 mg, 89 %) as white solid. NMR 
1H (Chloroform-D, 300 MHz) 0.84 (d, 3H, J 6.6 Hz), 

0.86 (d, 3H, J 6 Hz), 0.90 (d, 3H, J 6.3 Hz), 0.85-0.90 

(m, 1H), 1.23-1.27 (m, 2H), 1.35-1.37 (m, 1H), 1.44 

(dd, 1H, J 13.8, 6.9Hz), 1.65-1.71 (m, 1H), 1.75-1.81 

(m, 1H), 1.95-2.04 (m,1H), 2.04-2.07 (m,1H), 2.37 

(dt, 1H, J 17.7, 8.7Hz), 2.75 (s, 3H, NCH3), 2.75-2.79 

(m, 1H), 3.99 (d, 1H, 9.6 Hz), 4.04 (t, 1H, J 8.4Hz), 

4.07-4.11 (m, 1H), 4.20 (m, 1H), 6.89 (dd, 2H, J 2.1, 

9.0 Hz), 6.93-6.97 (m, 1H), 7.20-7.26 (m, 1H), 7.26-

7.30 (m, 1H). NMR 13C (Chloroform-D, 75 MHz):  

18.4; 22.3; 24.1; 24.3; 26.0; 29.4; 34.6; 35.5; 40.6; 

48.1; 65.6; 68.0; 75.1; 89.5; 114.6; 121.0; 129.4; 

158.5; 172.8. HRMS, calcd C22H32N2NaO3 [M+Na]+: 

395.2297, found 395.2305. 

 

3b: 4-(((1S,2S,2’S,3a’S,5R)-2-isopropyl-5,5’-

dimethyl-4’-oxotetrahydro-2’H-

spiro[cyclohexane-1,6’-imidazo[1,5-b]isoxazol]-2’-

yl)methoxy)methoxybenzene  

Prepared from 1 (1 eq.)  and 4-(allyloxy)benzonitrile 

2b (1 eq.) to afford 3b (278 mg, 89 %) as colorless 

oil. NMR 1H (Chloroform-D, 300 MHz) 0.79-0.89 

(m, 9H), 0.85-0.87 (m, 1H), 1.20-1.25 (m, 2H), 1.34 

(dd, 1H, J 3Hz, 11.1 Hz), 1.41 (dd, 1H, J 6.6, 13.5 

Hz), 1.60-1.66 (m,1H), 1.76 (d, 1H, J 14.4 Hz), 1.84-

1.90 (m, 1H), 1.99 (d, 1H, J 12.9 Hz), 2.29-2.34 (m, 

1H), 1.72 (s, 3H, NCH3), 2.73-2.79 (m, 1H), 3.97 (d, 

1H, J 9 Hz), 4.04 (dd, 1H, J 4.5, 10.5 Hz), 4.09-4.13 

(m, 1H), 4.18-4.22 (m, 1H), 6.93 (dd, 2H, J = 8.7 

Hz), 7.54 (dd, 2H, J = 8.4 Hz). NMR 13C 

(Chloroform-D, 75 MHz): 18.4; 22.2; 22.3; 24.1; 

24.3; 26.0; 29.3; 34.5; 35.1; 40.6; 48.0; 65.4; 68.4; 

74.8; 89.4; 104.4; 115.4; 119.0; 133.9; 161.8; 172.5 

(C=O). HRMS, calcd C23H31N3NaO3 [M+Na]+: 

420.2252, found 420.2258. 

 

3c: 4-(((1S,2S,2’S,3a’S,5R)-2-isopropyl-5,5’-

dimethyl-4’-oxotetrahydro-2’H-

spiro[cyclohexane-1,6’-imidazo[1,5-b]isoxazol]-2’-

yl)methoxy)phenol  

Prepared from 1 (1 eq.) and 4-(allyloxy)phenol 2c (1 

eq.) to afford 3c (248 mg, 76%) as red oil. NMR 1H 

(DMSO, 300 MHz) 0.78 (d, 3H, J 6.6 Hz), 0.83 (d, 

3H, J 6.6 Hz), 0.84 (d, 3H, J 6 Hz), 0.97 (m, 1H), 

1.26 (dd, 1H, J 6.3 Hz, 12.9 Hz), 1.34-1.39 (m, 2H), 

1.52-1.58 (m, 2H), 1.69 (d, 1H, J 12.3 Hz), 1.83-2.01 

(m, 2H), 2.24-2.28 (m, 1H), 2.43-2.48 (m, 1H), 2.64 

(s, 3H, NCH3), 3.17 (d, 1H, J 4.2 Hz), 3.88 (dd, 1H, J 

3.6 Hz, 8.7 Hz), 3.96 (dd, 1H, J 3.9 Hz, 10.8 Hz), 

4.04-4.08 (m, 1H), 6.65 (dd, 2H, J 2.4, 6.9 Hz), 6.74 

(dd, 2H, J 2.4, 6.9 Hz), 8.91 (s, 1H). NMR 
13

C 

(DMSO, 75 MHz): 18.5; 22.2; 22.3; 23.9; 24.2; 25.7; 

29.2; 34.1; 34.7; 47.1; 65.0; 68.5; 75.0; 88.5; 115.8; 

115.8; 151.4; 151.6; 172.1. HRMS, calcd 

C22H32N2NaO4 [M+Na]+: 411.2262, found 411.2254. 

 

3d: 4-(((1S,2S,2’S,3a’S,5R)-2-isopropyl-5,5’-

dimethyl-4’-oxotetrahydro-2’H-

spiro[cyclohexane-1,6’-imidazo[1,5-b]isoxazol]-2’-

yl)methoxy)-2-methoxyphenol  

Prepared from 1 (1 eq.) and 4-(allyloxy)-2-

methoxyphenol 2d (1 eq.) to afford 3d (253 mg, 
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72%) as red oil. NMR 1H (DMSO, 300 MHz) 0.78 (d, 

3H, J 6.6 Hz), 0.83 (d, 3H, J 6.6 Hz), 0.85 (d, 3H, J 

5.4 Hz), 0.92-0.94 (m, 1H), 1.25-1.34 (m, 2H), 1.41 

(t, 1H, J 6.9 Hz), 1.53-1.58 (m, 2H), 1.69 (d, 1H, J 

12.3 Hz),1.83-2.01 (m, 2H), 2.24-2.30 (m, 1H), 2.46 

(td, 1H, J 1.8 Hz, 6.9 Hz), 2.64 (s, 3H, NCH3), 3.73 

(s, 3H, OCH3), 3.88 (d, 1H, J 8.7 Hz), 3.95-3.99 (m, 

2H), 4.05-4.09 (m, 1H), 6.33 (dd, 1H, J 2.7, 8.7 Hz), 

6.52 (d, 1H, J 2.7 Hz), 6.64 (d, 1H, J 8.4 Hz), 8.43 (s, 

1H). NMR 13C (DMSO, 75 MHz): 18.5; 22.2; 22.3; 

24.0; 24.2; 25.7; 29.2; 34.1; 34.7; 47.1; 55.7; 65.0; 

68.3; 75.0; 88.5; 101.2; 105.5; 115.4; 140.8; 148.3; 

151.8; 172.1. HRMS, calcd C23H34N2NaO5 [M+Na]+: 

441.2356 found 441.2360. 

 

3e: 2-(((1S,2S,2’S,3a’S,5R)-2-isopropyl-5,5’-

dimethyl-4’-oxotetrahydro-2’H-

spiro[cyclohexane-1,6’-imidazo[1,5-b]isoxazol]-2’-

yl)methoxy)benzoic acid  

Prepared from 1 (1 eq.) and 2-(allyloxy)benzoic acid 

2e (1 eq.) to afford 3e (283 mg, 81%) as yellow oil. 

NMR 1H (DMSO, 300 MHz) 0.73 (d, 3H, J 6.6 Hz), 

0.74 (d, 3H, J 6.3 Hz), 0.81 (d, 3H, J 6.6 Hz), 0.79-

0.85 (m, 1H), 1.23-1.30 (m, 2H), 1.38-1.44 (m, 1H), 

1.50-1.56 (m, 2H), 1.66 (d, 1H, J 12.6 Hz), 1.84-2.04 

(m, 2H), 2.30-2.34 (m, 1H), 2.50-2.56 (m, 1H), 2.63 

(s, 3H, NCH3), 3.89 (d, 1H, J 8.4 Hz), 4.20-4.23 (m, 

1H), 4.35 (dd, 1H, J 7.5, 11.4 Hz), 4.44 (dd, 1H, J 

3.3, 11.4 Hz), 6.89-4.93 (m, 1H), 6.97 (td, 1H, J 0.6, 

8.1 Hz), 7.50-7.54 (m, 1H), 7.79 (dd, 1H, J 1.8, 8.1 

Hz), 10.47 (s, 1H). NMR 13C (DMSO, 75 MHz): 

18.5; 22.0; 22.1; 23.9; 24.2; 25.7; 29.1; 34.1; 34.2; 

47.1; 64.8; 73.8; 88.2; 112.9; 117.6; 119.4; 130.1; 

136.0; 160.0; 160.5; 168.5; 172.0. HRMS, calcd 

C23H32N2NaO5 [M+Na]+: 439.2206, found 439.2203. 

 

3f: 4-(((1S,2S,2’S,3a’S,5R)-2-isopropyl-5,5’-

dimethyl-4’-oxotetrahydro-2’H-

spiro[cyclohexane-1,6’-imidazo[1,5-b]isoxazol]-2’-

yl)methoxy)methylbenzene  

Prepared from 1 (1 eq.) and 1-(allyloxy)-4-

methylbenzene 2f (1 eq.) to afford 3f (283 mg, 81%) 

as yellow oil. NMR 1H (Chloroform-D, 300 MHz)  

0.84 (d, 3H, J 5.1 Hz, CH3), 0.86 (d, 3H, J 5.4 Hz, 

CH3), 0.91 (d, 3H, J 4.8 Hz, CH3), 0.88-0.94 (m, 1H), 

1.26 (t, 1H, J 4.5 Hz), 1.37 (dd, 1H, J 9.9, 2.4 

Hz),1.44 (dd, 1H, J 4.8, 9.9 Hz), 1.60 (dd, 1H, J 2.4, 

9.9 Hz), 1.71 (td, 1H, J 2.4, 9.6 Hz), 1.78-1.82 (m, 

1H), 2.00-2.04 (m, 1H), 2.07 (d, 1H, J = 10.2 Hz), 

2.27 (s, 3H), 2.34-2.38 (m, 1H), 2.70-2.80 (m, 4H), 

3.98 (d, 1H, J 7.2 Hz); 4.00-4.04 (m, 1H), 4.05 (dd, 

1H, J 4.5, 7.8 Hz), 4.18-4.20 (m, 1H), 6.79 (d, 2H, J 

6.3 Hz), 7.06 (d, 2H, J 6.3 Hz). NMR 13C 

(Chloroform-D, 75 MHz): 18.3; 20,3; 22.1; 24.0; 

24.2; 25.9; 29.2; 34.5; 35.2; 40.4; 47.9; 65.5; 68.1; 

75.1; 89.4; 114.4; 129.7; 130.1; 156.3; 172.7. HRMS, 

calcd C23H34N2NaO3 [M+Na]+: 409.2454, found 

409.2465. 

 

3g: (1S,2S,2'S,3a'S,5R)-2-Isopropyl-2'-

(benzyloxymethyl)-5,5'-dimethyldihydro-2'H-

spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-

4'(5'H)-one 

Prepared from 1 (1 eq.)  and 

((allyloxy)methyl)benzene 2g (1 eq.) to afford 3g 

(282 mg, 87%) as yellow oil. NMR 1H (Chloroform-

D, 300 MHz) 0.83 (d, 3H, J 6.9 Hz, CH3), 0.85 (d, 

3H, J 7.2 Hz, CH3), 0.93 (d, 3H, J 6.3 Hz, CH3), 

0.92-0.95 (m, 1H), 1.22-1.26 (m, 1H), 1.29-1.33 (m, 

1H), 1.38-1.42 (m, 1H), 1.61 (dt, 2H, J 9.9, J 3.3 Hz), 

1.71 (td, 1H, J 12.6, 3.6Hz), 1.80-1.86 (m, 1H), 2.05-

2.09 (m, 1H), 2.20.2.24 (m, 1H), 2.64 (ddd, 1H, J 

12.3, 0.6 Hz), 2.74 (s, 3H, NCH3), 3.55 (dd, 1H, J 

6.6, 10.8Hz), 3.64 (dd, 1H, J 3.6, 10.8 Hz), 3.94 (d, 

1H, J 8.7Hz), 4.02-4.04 (m, 1H), 4.54-4.58 (m, 2H), 

7.31-7.34 (m, 5H). NMR 13C (Chloroform-D, 75 

MHz): 18.4; 22.3; 22.4; 24.2; 24.3; 26.0; 29.5; 34.7; 

35.5; 40.7; 48.1; 65.6; 70.4; 73.2; 77.2; 89.6; 127.5; 

127.6; 128.3; 138.1; 172.8. HRMS, calcd 

C23H34N2NaO3 [M+Na]+: 409.2454, found 409.2462. 

 

3h: (1S,2S,2'S,3a'S,5R)-2-Isopropyl-2'-(3-

bromobenzyloxymethyl)-5,5'-dimethyldihydro-

2'H-spiro[cyclohexane-1,6'-imidazo[1,5-

b]isoxazol]-4'(5'H)-one 

Prepared from 1 (1 eq.) and 1-((allyloxy)methyl)-3-

bromobenzene 2h (1 eq.) to afford 3h (356 mg, 91%) 

as yellow oil. NMR 1H (Chloroform-D, 300 MHz) 

0.82 (d, 3H, J 6.9 Hz, CH3), 0.85 (d, 3H, J 7.2 Hz, 

CH3), 0.92 (d, 3H, J 6.6 Hz, CH3), 0.91-0.93 (m, 1H), 

1.23-1.27 (m, 1H), 1.32 (dd, 1H, J 3 Hz, 10.2 Hz), 

1.38-1.42 (m, 1H), 1.50-1.56 (m, 1H), 1.62-1.66 (m, 

1H), 1.74 (dd, 1H, J 3.3Hz, 12.6 Hz), 1.80-1.84 (m, 

1H), 2.03-2.08 (m, 1H), 2.19-2.23 (m, 1H), 2.64 

(ddd, 1H, J 1.2, 5.1, 12.3Hz,), 2.74 (s, 3H, NCH3), 

3.53 (dd, 1H, J 6.9, 11.1 Hz), 3.64 (dd, 1H, J 3.6, 

11.1Hz), 3.94 (d, 1H, J 8.7Hz), 4.00-4.06 (m, 1H), 

4.52 (q, 2H, J 12.3 Hz), 7.10-7.30 (m, 2H), 7.39 (dt, 

1H, J 1.8, 7.5 Hz), 7.38-7.42 (m, 1H). NMR 13C 

(Chloroform-D, 75 MHz): 18.4; 22.3; 22.4; 24.1; 

24.3; 26.0; 29.5; 34.6; 35.4; 40.6; 48.1; 65.6; 70.6; 

72.3; 76.4; 89.6; 122.5; 125.8; 129.9; 130.3; 130.6; 
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140.5; 172.8. HRMS, calcd C23H33BrN2NaO3 

[M+Na]+: 487.1583, found 487.1567.  

 

ADMET prediction 

Prediction of ADME parameters of the synthesized 

analogues were performed using the SwissADME 

(http://www.swissadme.ch/) server.  

  

3. Results and discussion 

Alkenes are obtained via an alkylation of phenol and 

benzyl alcohol derivatives by applying the same 

procedures already described in the literature [20-21]. 

The latter were engaged in 1,3-DC reaction with 

chiral nitrone 1 in toluene at reflux for 72 h. The 1,3-

DC occurred in an exo approach of monosubstituted 

alkenes on the less crowded side of the nitrone 

derived from (-)-menthone 1 to access isoxazolidines 

3a-h with simultaneous creation of two stereogenic 

centers and stereo- and regiospecifically (scheme 1). 

This was approved based on our previous work 

[18,22-23] and NMR data.  

Indeed, in our previous work we have shown that the 

protons H3 and H4proR in syn orientation have a high 

coupling constant (3J3-4proR (syn) ≥ 7.0 Hz) [24]. 

While, the 3J3-4proS coupling constant is lower (3J3-4proS 

(anti) ≤ 3.7 Hz) [25]. For H4 and H5 protons with an 

syn position, the coupling constant is greater than 7 

Hz [26]. The coupling constant is lower for protons 

arranged anti. The interpretation of the 1H NMR 

spectra of the cycloadducts 3a-h showed that 3J3-

4proR(syn) is between 7.2 and 9.6 Hz, the coupling 

constant J3-4proS (anti) is low (0.6 ≤ 3J3-4proS (anti) ≤ 

1.8 Hz) and the coupling constant 3J4proR-5 (syn) is 

greater than 7 Hz. This comparative analysis of the 

coupling constants led to the stereochemistry of 

cycloadduct 3 proposed in figure 1. Moreover, the 

interpretation of the Noesy spectra confirmed the 

presence of: (i) strong correlations between the 

protons H5-HproS, H5-H8 and H3-HproR, (ii) weak 

correlations between H3-HproS protons, (iii) medium 

correlations between H3-Hmethyl and H3-H13 protons. 

These observations further confirm the structure 

shown in figure 1. 

 

 

Scheme 1. Synthesis 3-carboxylic isoxazolidine 

derivatives 

 

Pharmacokinetics studies 

In order to guide the selection of molecules in the 

early phases of drug discovery and development for a 

successful drug, ADME profile including 

physicochemical properties, lipophilicity and 

druglikeness of the synthesized compounds have 

been predicted [27-34]. As shown, all ligands were 

found to meet to the Lipinski’s rule of five, having a 

total polar surface areas (TSPA) in the range of 

42.01-79.31 Å and a good lipophilicity, expressed by 

the consensus Log Po/w which is in the range of 

2.49-4.10. They exhibited a high GI absorption and 

were computed to possess good bioavailability score 

Fig. 1. NOE effects for compound 3 

 

http://www.swissadme.ch/
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 (55%), with only 3e was not permeable to BBB. All 

compounds are non-P-glycoprotein (P-gp) substrates 

suggesting that absorption from the gastrointestinal 

tract and across the BBB may be not compromised. 

Consequently, this lead to an increasing 

bioavailability as well as decraese in the possibility 

of their resistance by tumor cell lines through efflux. 

Their skin permeation (LogKP) parameters ranged 

from -7.31 to -5.09, thus facilitating the accessibility 

of the bioactive molecules through the skin. Their 

cytochrome P450 isoenzymes (CYP1A2/ CYP2C19/ 

CYP2C9/ CYP2D6/ CYP3A4), playing a 

fundamental role in the biotransformation of drugs 

through O-type oxidation reactions have been also 

predicted (table 1). 

 

Table 1. ADME properties of compounds 3a-h. 

 

 

 

 

Entry 3a 3b 3c 3d 3e 3f 3g 3h 

Physicochemical Properties/Lipophilicity/Druglikeness 

Molecular weight 372.50 397.51 388.50 418.53 416.51 470.60 386.53 465.42 

Num. heavy atoms 27 29 28 30 30 34 28 29 

Num. arom. heavy 

atoms 
6 6 6 6 6 6 6 6 

Fraction Csp3 0.68 0.65 0.68 0.70 0.65 0.63 0.70 0.70 

Num. rotatable bonds 4 4 4 5 5 9 5 5 

Num. H-bond acceptors 4 5 5 6 6 6 4 4 

Num. H-bond donors 0 0 1 1 1 0 0 0 

Molar Refractivity 113.64 118.36 115.66 122.16 120.60 138.65 118.01 125.71 

TPSA  42.01 65.80 62.24 71.47 79.31 68.31 42.01 42.01 

Consensus Log Po/w 3.41 3.26 3.04 3.19 2.49 4.04 3.44 4.10 

Lipinskiˈs Rule 
Yes Yes Yes Yes Yes Yes Yes Yes 

Bioavailability Score 
0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 

Pharmacokinetics 

GI absorption 
High High High High High High High High 

BBB permeant 
Yes Yes Yes Yes No Yes Yes Yes 

P-gp substrate 
No No No No No No No No 

CYP1A2 inhibitor No No No No No No No No 

CYP2C19 inhibitor 
No No Yes Yes No No  No Yes 

CYP2C9 inhibitor 
No No No No No No No No 

CYP2D6 inhibitor Yes Yes Yes Yes Yes Yes Yes Yes 

CYP3A4 inhibitor 
No No No No No Yes  No No 

Log Kp (cm/s) 
-5.09 -5.44 -5.44  -5.64  -7.31  -5.38  -5.41  -5.40  
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The bioavailability of the synthesized compounds 

was also estimated based on their pink area of radar 

chart (Figure 2). All compounds were completely 

included in the pink area and justifying their good 

predicted oral bioavailability. 

 

Fig. 2.  Bioavailability radar of compounds 3a-h based on physicochemical indices ideal for oral bioavailability. 

LIPO, Lipophilicity: -0.7 < XLOGP3 < þ 5; SIZE, Molecular size: 150 g/mol < mol. wt. < 500 g/mol; POLAR, 

Polarity: 20 Å2 < TPSA <130 Å2; INSOLU, Insolubility: 0 < Log S (ESOL) < 6; INSATU, Insaturation: 0.25 < 

Fraction Csp3 < 1; FLEX, Flexibility: 0 < Number of rotatable bonds < 9. The colored zone is the suitable 

physicochemical space for oral bioavailability. (B) Boiled-egg (B) model of compounds 3a-h. 
 

Based on their LogP and TPSA parameters, the GI 

absorption and BBB permeation as given by the 

BOILED-Egg method (Brain or intestinal estimated 

permeation), have been estimated. Data outlined 

clearly that all compound were in the yellow zone 

(with high probability to permeate through BBB to 

access CNS) with red color making them not a 

substrate for P-glycoprotein (PGP-) which reduced 

the possibility of their resistance by tumor cell lines 

through efflux (figure 3). 

 
 

Fig. 3.  Boiled-egg (B) model of compounds 3a-h. 

    

3a 3b 3c 3d 

    

3e 3f 3g 3h 
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4. Conclusion 

In this study, a new some enantiopure 3-carboxylic 

isoxazolidine derivatives has been synthesized via 

1,3-DC with various monosubstituted alkenes. 

Assessment of in silico ADME 

properties/pharmacokinetics revealed that the 

synthesized molecules possess good permeability and 

bioavailability with high chance to be well absorbed 

by the gastrointestinal tract. 
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