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Abstract 

A quantitative structure–retention relationship (QSRR) model with chemical reaction optimization algorithm 

(CROA) for predicting retention indices (RI) of 169 constituents of essential oils is proposed. In this, the CROA is 

utilized to select the most informative descriptors with high prediction. The proposed model was internal and 

external validated based on 
2

intQ , 
2

LGOQ , 
2

BootQ , trainMSE , Y-randomization test, 
2

extQ , testMSE , and the 

applicability domain (AD). The validation results indicate that the model is robust and not due to chance correlation. 

In addition, the results indicate that the descriptors selection and prediction performance of the proposed model for 

training dataset outperforms the other two used modeling methods. The proposed model shows the highest 
2

intQ , 

2

LGOQ , and 
2

BootQ , and the lowest trainMSE . For the test dataset, proposed model shows higher external validation 

value (
2

extQ  = 0.936), and lower value of testMSE  compared with the other methods, indicating its higher 

predictive ability. In conclusion, the results reveal that the proposed model is an efficient approach for modeling 

high dimensional QSRRs and useful for the estimation of RI of essential oils that have not been experimentally 

tested. 
Keywords: Chemical reaction optimization algorithm; lasso; descriptor selection; QSRR; Essential oils 

 

1. Introduction 

Essential oils are natural compounds extracted 

from plant secondary metabolism ADDIN EN.CITE [. 

Essential oils have been widely used in food, 

medicine, cosmetic, and fragrance industry [1-4]. It 

was proven that they have a wide range of biological 

properties such as antimicrobial and antioxidant 

activity [5-8]. The characteristics and antimicrobial 

activity of the essential oils depend on their 

components [9]. However, the ingestion of large 

quantities or wrong use of essential oils may cause 

toxic effects to humans [1]. Isolation of essential oils 

is carried out using several extraction methods such as 

organic solvent extraction, microwave assisted 

distillation, high pressure solvent extraction, 

supercritical CO2 extraction, ultrasonic extraction, and 

solvent free microwave extraction [2]. Various 

procedures using gas chromatography (GC) and gas 

chromatography with mass spectrum (GC-MS) can be 

used for qualitative identification and quantitative 

determination of the essential oils components [1,2]. 

However, sometimes such as in the case of isomers the 

identification of the essential oils using GC-MS may 

not be accurate [1,3].  

Due to the time consuming of using experimental 

methods, quantitative structure–retention relationship 

(QSRR) procedures are used to predict the GC 

retention indices. QSRR is a theoretical approach 

which is used in computational chemistry. The 

principle of QSRR is to correlate molecular 

descriptors derived from chemical structures of the 

studied components quantitatively with their 

experimental retention indices [1,10]. QSRR 

procedures are developed and validated to select the 

most informative descriptors that can define the 

retention index of the desired essential oil components. 

QSRR procedures can provide theoretical information 

about the compounds interactions with the mobile and 

https://dx.doi.org/10.21608/ejchem.2021.32116.2682
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_1
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_5
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_9
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_1
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_2
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_1
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_2
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_1
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_3
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_1
file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_10


 Maimoonah Khalid Qasim 

_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 65, No. 7 (2022) 

2 

stationary phases, influence of the molecular structure 

on retention, and may provide explanation of possible 

absorption and elution mechanisms [3].  

Many studies have been carried out to develop 

QSRR models for predicting the retention indices of 

essential oils. Fragkaki, et al. [11] carried out a QSRR 

study by the correlation of the GC-MS relative 

retention times of α-, β1-, and β2-agonists with their 

molecular characteristics using multiple linear 

regression and partial least squares as regression 

methods. QSRR study was conducted for gas 

chromatographic retention indices of 90 saturated 

esters using MLR regression [12]. A QSRR model was 

proposed to estimate the retention of 83 various drugs 

using ant colony optimization for variable selection. 

Multiple linear regression and support vector 

machines were used as regression methods [13]. 

Artificial neural networks, principal component 

analysis and cluster analysis were complementarily 

applied to construct QSRR models based on retention 

factors of the 59 esters alkoxyphenylcarbamic acid 

[14]. QSRR model was developed based on MLR 

method to predict the retention indices in gas 

chromatography of 169 essential oils components. The 

variable selection was done using ordered predictors 

selection (OPS) algorithm [1]. QSRR models were 

developed based on the chromatographic retention of 

amino acid analogues using PLS and MLR regression 

methods [15]. QSRR relationships were used for 

predicting retention times of 89 sulfur-containing 

compounds in two dimensional gas chromatography 

based on MLR regression method using CODESSA 

software [16]. Filipic, et al. [17] constructed QSRR 

models based on retention behavior of 22 imidazoline 

drugs using PLS and MLR regression. 

In chemometrics area, the dimensionality of data 

becomes larger, where the dimension of data may 

grow exponentially with the sample size [18]. Such 

high-dimensional data present simultaneous 

challenges of statistical accuracy and computational 

feasibility [19]. Recent studies are also conducted [20-

23]. 

In this paper, the chemical reaction optimization 

algorithm is utilized to perform descriptor selection 

and to enhance the constructed QSRP model. The 

performance is compared with other penalized 

methods.  

 

2. MATERIALS AND METHODS 

2.1. Data set 

The gas chromatography retention indices (RI) of 

169 constituents of essential oils were obtained from 

Conforti, et al. [24]. The chemical composition of the 

studied essential oils were experimentally isolated and 

characterized by GC and GC-MS [24]. A QSRR study 

have been conducted for these 169 compounds by Qin, 

et al. [1]. In the present study, we followed the same 

procedure that was used by Qin, et al. [1] to split the 

dataset into training and test datasets. The data were 

divided into 85 compounds as a training dataset and 84 

compounds as a test dataset. The training dataset was 

used for constructing the QSAR model, and the test 

dataset was used for the evaluation of the QSAR 

model performance based on several evaluation 

criteria. 

2.2. Molecular descriptor calculation 

The molecular structures of the compounds were 

sketched using CHEM3D software (CambridgeSoft 

Corporation, Cambridge, MA,USA) [25]. The 

structures were optimized using the molecular 

mechanics (MM2) method implemented in Chem3D 

software, and then using molecular orbital package 

(MOPAC) module implemented in the same Chem3D 

software. DRAGON software (version 6.0) was used 

to generate 4,885 molecular descriptors based on the 

optimized structures [26-28]. To include consistent 

and useful descriptors, preprocessing steps were 

performed as follows. First, descriptors that had 

constant or zero values for all compounds, 301 

descriptors, were excluded. Second, the remaining 

descriptors were refined further by removing those in 

which 70% of their values were zeros (237 

descriptors). After that, descriptors with a relative 

standard deviation of less than 0.001, 174 descriptors, 

were removed. In addition, the correlation of the 

remaining descriptors was examined to omit 

multicollinearity by removing those that were highly 

correlated (rij ≥ 0.90) (108 descriptors). Finally, 4071 

descriptors remained for constructing the QSRR 

model. 

 

2.3. Chemical reaction optimization algorithm 

We often encounter optimization problems in 

scientific and technological research and 

development. Over the past decades, a number of 

evolutionary algorithms have been suggested [29,30].   

The chemical reaction optimization algorithm 

(CROA) is evolutionary optimization techniques 

developed by Lam and Li [31]. CROA is an 

optimization technique inspired 

by chemical reaction process. It mimics the 

interactions of molecules in chemical reaction to reach 

a low energy stable state. In CROA, a candidate 

solution for a specific problem is encoded as a 

molecule. Each molecule represents a point in the 

search space, and hence a possible solution to the 

problem. A population consists of a finite number of 

molecules, each molecule is decided by an evaluating 

mechanism to obtain its potential energy (PE). Based 

on this potential energy and undergoing CROA 

operators, a new molecule(s) is generated.  

In a chemical reaction process, a sequence of 

collisions among molecules occurs. Molecules collide 

either with each other or with the walls of the 

container. Collisions under different conditions 

provoke distinct elementary reactions, each of which 
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may have a different way of manipulating the energies 

of the involved molecule(s). The elements of the 

CROA are as follows:  



 Maimoonah Khalid Qasim 

_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 65, No. 7 (2022) 

4 

2.3.1 The manipulated agent 

CROA is a multi-agent algorithm and the 

manipulated agents are molecules. Each molecule has 

several attributes, some of which are essential to the 

basic operations of CROA .The essential attributes 

include (a) the molecular structure (w); (b) the 

potential energy (PE); and (c) the kinetic energy 

(KE).The rest depends on the algorithm operators and 

they are utilized to construct different CROA variants 

for particular problems provided that their 

implementations satisfy the characteristics of the 

elementary reactions. The optional attributes adopted 

in most of the published CROA variants are (d) the 

number of hits (𝑁𝑢𝑚𝐻𝑖𝑡); (e) the minimum structure 

(𝑀𝑖𝑛𝑆𝑡𝑟𝑢𝑐𝑡): the minimum PE (𝑀𝑖𝑛𝑃𝐸); and (g) the 

minimum hit number (𝑀𝑖𝑛𝐻𝑖𝑟). Ilustrations of the 

attributes mentioned above are listed in the following: 

• Molecular structure w captures a solution of the 

problem. It is not required to be in any specific 

format: it can be a number, a vector, or even a 

matrix. For example, if the problem solution 

space is defined as a set of vectors composed of 

five real numbers, then o can be any of these 

vectors 

• Potential energy PE is defined as the objective 

function value of the corresponding solution 

represented by w. If 𝑓 denotes the objective 

function, then we have 

(w)wPE f=      …(1) 

• Kinetic energy 𝐾𝐸 is a non-negative number and 

it quantifies the tolerance of the system accepting 

a worse solution than the existing one. We will 

elaborate on the concept later in this section. 

• Number of hits When a molecule undergoes a 

collision one of the elementary reactions will be 

triggered and it may experience a change in its 

molecular structure. NumHit is a record of the 

total number of hits (i.e. collisions) a molecule 

has taken. 

• Minimum structure MinStruct is the w with the 

minimum corresponding PE which a molecule 

has attained so far. After a molecule experiences 

a certain number of collisions, it has undergone 

many transformations of its structure, with 

different corresponding PE. MinStruct is the one 

with the lowest PE in its own reaction history. 

• Minimum potential energy When a molecule 

attains its 𝑀𝑖𝑛𝑆𝑡𝑟𝑢𝑐𝑡,  𝑀𝑖𝑛𝑃𝐸 is the 

corresponding 𝑃𝐸.  

• Minimum hit number 𝑀𝑖𝑛𝐻𝑖𝑡 is the number of 

hits when a molecule realizes 𝑀𝑖𝑛𝑆𝑡𝑟𝑢𝑐𝑡. It is an 

abstract notation of time when MinStruct is 

achieved. 

  

2.3.2. Elementary reactions 

There are four types of elementary reactions, 

each of which takes place in each iteration of CROA. 

They are employed to manipulate solutions (i.e. 

explore the solution space) and to redistribute energy 

among the molecules and the buffer. Note that there is 

no strict requirements on the mechanisms of the 

operators and operators designed for other algorithms 

may also be adopted. However, CROA ensures the 

conservation of energy when new solutions are 

generated with the operators. 

 

2.3.2.1. On-wall ineffective collision 

An on-wall ineffective collision represents the 

situation when a molecule collides with a wall of the 

container and then bounces away remaining in one 

single unit. In this collision, we only perturb the 

existing 𝑤  to 𝑤′ , 1.e. 

 This can be done by picking o in the 

neighborhood of 𝑤′o. Let 𝑁(. ) be any neighborhood 

search operator, we have  (w)w N =  and 

PE ( )w f w
=  Moreover a certain of 𝐾𝐸  of 

transformed molecule is withdrawn to the central 

energy buffer (buffer). Let 𝐾𝐸𝑙𝑜𝑠𝑠𝑅𝑎𝑡𝑒 be a 

parameter of CRO, 0 ≤ 𝐾𝐸𝐿𝑜𝑠𝑠𝑘𝑎𝑡𝑒≤ 1, and 

a≠[𝐾𝐸𝑙𝑜𝑠𝑠𝑅𝑎𝑡𝑒,1] be a random number, uniformly 

distributed from 𝐾𝐸𝑙𝑜𝑠𝑠𝑅𝑎𝑡𝑒 to 1. We get 

)
(PE PE KE ) a

w w w w
KE  = − +       …(2) 

and the remaining energy, 

)
(PE PE KE ) (1 a)

w w w− +  − ,  

)
PE KE PE

w w w + 
    

      …(3) 

 It is always possible to undergo an on-wall 

ineffective collision when PE PE
w w  When a 

molecule experiences more of this elementary 

reaction, it will have more KE transferred to butter. 

Hence ,the chance of having a worse solution is lower 

in a subsequent change. 

 

2.3.2.2. Decomposition  

Decomposition refers to the situation when a 

molecule its a wall and then breaks into several parts 

(for simplicity, we consider two parts in our 

discussion). Assume that 𝑤 produces 𝑤1
′  and 𝑤2

′ . i.e., 

1 2w w w → +  

Any mechanism, which can produce 𝑤1
′  and 𝑤2

′   

from w is allowed. Theoretically , even generating 

solutions independent of the existing one (random 

generation of new solution) is feasible. The idea of 

decomposition is to allow the system to explore other 
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regions of the solution space after enough local search 

by the ineffective collisions. The effectiveness of the 

solution generation mechanism is problem-dependent 

.Since more solutions are created, the total sum of PE 

and KE of the original molecule may not be sufficient. 

In other words ,we may have 

1 2
PE KE PE PE

w w w w +  + . 

As energy conservation is not satisfied, this 

decomposition has to be aborted. To increase the 

chance of having a decomposition completed, we 

randomly draw a small portion of energy from buffer 

to support the change. We modify the energy 

conservation condition for decomposition as follows: 

 
1 21 2

PE PE PE
w w w w

KE buffer   + +    + (4) 

This models the situation that some energy from 

buffer is transferred to the molecule when it hits the 

wall. If (4) holds, the existing molecule with o is 

replaced by the two newly generated ones, whose KEs 

randomly share the remaining energy 

1 21 2
E (PE ) (PE PE )

dec w w w w
KE buffer   = + +   − +

,i.e., 

1 3
E

w dec
KE  =       …(5) 

2 3
E (1 )

w dec
KE  =  −  …(6) 

KE where s3 is a random number generated in [0, 1]. 

The energy in the buffer is also updated by : 

1 2(1 )buffer buffer  = − …(7) 

 

2.3.2.3. Inter-molecular ineffective collision  

Inter-molecular ineffective collision takes place 

when multiple molecules collide with each other and 

then bounce away. The molecularity (assume two) 

remains unchanged before and after the process, i.e 

1 2 1 2w w w w + → +  

 This elementary reaction is very similar to the 

unmolecu- lar ineffective counterpart; we generate 𝑤 

and 𝑤′ by  1 1 2 2( ) ( )w N w and w N w = =  . 

The energy management is similar but no 𝑏𝑢𝑓𝑓𝑒𝑟 is 

involved. The energy conservation condition can be 

stated as 

1 2 1 2 1 2
PE PE KE KE PE PE

w w w w w w + + +  +  (8) 

 As more molecules are involved, the total sum 

of energy of the molecular sub-system is larger than 

that of the on- wall ineffective collision. The 

probability of the molecules to explore their 

immediate surroundings is higher. In other words, the 

molecules have higher flexibility to be trans formed to 

more diverse molecular structures. We can use the 

same operator for on-wall ineffective collision to pro- 

duce new solutions. We apply the operator to each 

molecule to get a new one. If (8) is satisfied, 𝐾𝐸𝑠 of 

the transformed molecules share the remaining energy 

𝐸𝑖𝑛𝑡𝑒𝑟 =  in the sub-system, i.e.,  

1 2 1 2 1 2
(PE PE KE KE ) (PE PE )

w w w w w w + + + − +  

1 int 4
E

w er
K E  =      …(9) 

2 int 4
E (1 )

w er
K E  =  −     …(10) 

where  is a random number generated in [0, 1]. 

 

2.3.2.4. Synthesis 

Synthesis does the opposite of decomposition. A 

synthesis happens when multiple (assume two) 

molecules hit against each other and fuse together, i.e., 

1 2w w w + →   

As only one molecule is produced, it is likely to satisfy 

the energy conservation condition: 

1 2 1 2
PE PE KE KE PE

w w w w w + + +      (11) 

If (11) holds, the resulting KE ing energy, i.e., just 

takes up all the remain- 

1 2 1 2
KE (PE PE KE KE ) (PE )

w w w w w w = + + + −       (12) 

We can see that we allow greater change to 𝑤′ 

with respect to 𝑤1 and 𝑤2 and 𝐾𝐸𝑤′  is usually higher 

than𝐾𝐸𝑤  . The resulting molecule has a higher 

"ability" to explore a new solution region. Any 

mechanism allowing the combination of solutions is 

allowed, where the resultant molecule is in a region 

farther away from the existing ones in the solution 

space .The idea behind synthesis is diversification of 

solutions. The implementation detail is again problem-

dependent. 

 

2.3. Conservation of energy 

One of the fundamental assumptions of CROA is 

conservation of energy, which means that energy 

cannot be created or destroyed. The whole system 

refers to all the defined molecules and the container, 

which is connected to buffer. The total amount of 

energy of the whole system is determined by the 

objective function values (i.e. 𝑃𝐸) of the initial 

population of molecules whose size is 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, the 

initial 𝐾𝐸 (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐾𝐸) assigned, and the initial value 

of 𝑏𝑢𝑓𝑓𝑒𝑟. Let PE𝑤𝑖(𝑡), 𝐾 𝐸𝑤𝑖(t), 

𝑃𝑜𝑝𝑆𝑖𝑧𝑒(𝑡), 𝑎𝑛𝑑 𝑏𝑢𝑓𝑓𝑒𝑟 (𝑡) be the 𝑃𝐸 of molecule i, 

the 𝐾𝐸 of molecule i, the number of molecules, and 

the energy in the central buffer at time t. When the 

algorithm evolves, the total amount of energy in the 

system always remains constant, i.e., 

1

(PE (t) KE (t) (t)
i i

Popsize

w w
i

buffer C
=

+ + =     (13) 

where C is a constant. Each elementary reaction 

manages a sub-system (i.e. a subset of entities of the 

system); a uni-molecular collision involves a molecule 

and the container while an inter-molecular collision 

concerns multiple molecules. After an elementary 
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reaction, the total energy of the constructed sub-

system remains the same. Let 𝑘 and 𝐼 be the number 

of molecules involved before and after a particular 

elementary reaction, and let aw and w be the molecular 

structures of an existing molecule and the one to be 

generated from the elementary reaction, respectively. 

In general, the elementary reaction can only take place 

when it satisfies the following energy conservation 

condition: 

1 1

( )
i i i

k l

w w w
i i

PE KE PE 
= =

+    …(14) 

We modify this condition for decomposition as it 

involves 𝑏𝑢𝑓𝑓𝑒𝑟 on the left-hand side of (14). Note 

that 𝑃𝐸 is determined by Eq.(1) according to the 

molecular structure. If the resultant molecules have 

very high potential energy, i.e. they give very bad 

solutions, the reaction will not occur. 

Theoretically, energy cannot attain a negative 

value and any operation resulting in negative energy 

should be forbidden. However, some problems may 

attain negative objective function values (i.e. negative 

PE), but we can convert the problem to an equivalent 

one by adding an offset to the objective function to 

make each PE non-negative. The law of conservation 

of energy is still obeyed and the system works 

perfectly. 

 

4. Prediction evaluation criteria 

To provide a satisfactory evaluation of the 

compared modeling methods in constructing an 

efficient QSRR model, the following criteria were 

performed. The used criteria for the training dataset 

were mean-squared error of the training dataset (

trainMSE ) and leave-one-out internal validation (

2

intQ ), which are defined by 

2

, ,

1

ˆ( )
trainn

i train i train

i
train

train

y y

MSE
n

=

−

=


  (15) 

and  

2

, ,
2 1

int

2

,

1

ˆ( )

1

( )

train

train

n

i train i train

i

n

i train

i

y y

Q

y y

=

=

 
− 

 = −
 

− 
 




  (16) 

respectively. 

Furthermore, the test dataset was used to validate the 

model by computing the following criteria, i.e., 

mean-squared error of the test dataset ( testMSE ) and 

external validation  

(
2

extQ ). These criteria are defined by 

2

, ,

1

ˆ( )
testn

i test i test

i
test

test

y y

MSE
n

=

−

=


  (17) 

and 

2

, ,
2 1

2

,

1

ˆ( )

1

( )

test

test

n

i test i test

i
ext n

i test train

i

y y

Q

y y

=

=

 
− 

 = −
 

− 
 




  (18) 

respectively, where trainn  and testn  represent the 

training and test sample sizes, the ,i trainy , ,i testy , 

,
ˆ

i trainy , and ,test
ˆ

iy  stand for the RI values of the 

training dataset, test dataset, and their corresponding 

predicted RI values. While y  and trainy  represent the 

mean of all the RI values and the mean of the training 

RI values, respectively. 

 

5. RESULTS AND DISCUSSION 

To demonstrate the usefulness of the proposed 

method, CROA, comprehensive comparative 

experiments with the lasso and the non-adaptive 

bridge penalty method was fixed as 0 100  .  

From Table 1, it is obvious that the performance 

of the CROA is much better than the lasso, in terms of 

selected descriptors. On the other hand, the result of 

the proposed method, CROA, is the best one among 

them. It selected 4 descriptors out of 4071 descriptors 

comparing with 6 and 9 selected descriptors of Bridge 

and lasso, respectively. The names of the selected 

descriptors and their descriptions for each used 

method are presented in Table 1.  The QSRP model by 

CROA is 

𝑦̂𝐼𝑅 = 5.214 + 0.608𝐸𝑖𝑔09𝐴𝐸𝐴(𝑏𝑜) + 1.674𝑀𝑊

− 8.551𝑀𝑜𝑟07𝑚
+ 3.09𝑆𝑝𝑀𝑎𝑥𝐴_𝐸𝐴 

The results of the prediction evaluation of the 

constructed QSRR models using CROA, Bridge, and 

lasso are listed in Table 2. We can see that the CROA 

was superior to Bridge and lasso in terms of prediction 

performance for the training data. CROA yields the 

highest 
2

intQ , 
2

LGOQ , and 
2

BootQ , and the lowest 

trainMSE .   

Furthermore, depending on testing data, it is noted 

that CROA reveals greater value of 
2

extQ  and less 

value of testMSE  compared to the other two used 

methods. This enhancement of CROA, in terms of 

testMSE , over the Bridge and lasso is 30.92% and 

61.95%, respectively. Additionally, the predictive 

ability in the testing data using of the CROA was 
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0.944, which was much better than the 0.901 and 0.811 

obtained, respectively, by the Bridge and lasso. 

Overall speaking, the results demonstrated that 

the CROA is effective in modeling high-dimensional 

QSRR. The CROA not only improved the prediction 

performance but also identified a small subset of 

descriptors compared to the Bridge and the lasso. 

 

 

Table 1: The selected descriptor names and their descriptions by the three used methods 

Method Descriptor name Group type Description 

CROA 
Eig09_AEA(bo) Edge adjacency indices 

eigenvalue n. 9 from augmented edge 

adjacency mat. weighted by bond order 

 MW Constitutional indices molecular weight 

 Mor07m 3D-MoRSE descriptors signal 07 / weighted by mass 

 
SpMaxA_EA Edge adjacency indices 

normalized leading eigenvalue from edge 

adjacency mat. 

Bridge Qindex Topological indices quadratic index 

 
SpMaxA_EA Edge adjacency indices 

normalized leading eigenvalue from edge 

adjacency mat. 

 MW Constitutional indices molecular weight 

 
GATS5m 2D autocorrelations 

Geary autocorrelation of lag 5 weighted by 

mass 

 SdO Atom-type E-state indices Sum of dO E-states 

 

SM14_EA(ri) Edge adjacency indices 

spectral moment of order 14 from edge 

adjacency mat. weighted by resonance 

integral 

lasso P_VSA_MR_2 P_VSA-like descriptors P_VSA-like on Molar Refractivity, bin 2 

 
GATS5m 2D autocorrelations 

Geary autocorrelation of lag 5 weighted by 

mass 

 SdO Atom-type E-state indices Sum of dO E-states 

 

SM14_EA(ri) Edge adjacency indices 

spectral moment of order 14 from edge 

adjacency mat. weighted by resonance 

integral 

 
Eig03_AEA(dm) Edge adjacency indices 

eigenvalue n. 3 from augmented edge 

adjacency mat. weighted by dipole moment 

 Mor07m 3D-MoRSE descriptors signal 07 / weighted by mass 

 Mor24p 3D-MoRSE descriptors signal 24 / weighted by polarizability 

 
Eig09_AEA(bo) Edge adjacency indices 

eigenvalue n. 9 from augmented edge 

adjacency mat. weighted by bond order 

 MW Constitutional indices molecular weight 

 

Table 2: Prediction evaluation criteria values for the 

training and testing data 

Methods 
No. of 

descriptors
 

Training set Testing set 

trainMSE  
2

intQ
 

2

LGOQ  
2

BootQ
 testMSE  

2

extQ  

CROA 4 0.101 0.961 0.957 0.955 0.277 0.944 

Bridge 6 0.234 0.914 0.911 0.909 0.401 0.901 

lasso 9 0.571 0.827 0.824 0.822 0.728 0.811 

 

5.1 Y-randomization test 

The CROA model was further validated by 

applying the Y-randomization test [32]. This was in 

order to ensure that the predictive power of the CROA 

model was not based on chance. This test randomly 

shuffled the retention indices values several times and 

applied CROA each time. In each time, the 
2

intQ  was 

calculated. If all the obtained   values were less than 

the 
2

intQ  of the constructed QSRR by CROA, then 

the constructed QSRR was not due to chance 

correlation, indicating that the CROA method could 

lead to an acceptable method using the training data. 

Figure 1 shows the results for the Y-randomization test 

for 500 times of 
2

intQ  values.  

It can be clearly seen from Figure 1 that the 
2

intQ  values were in the range of 0.0530 to 0.3951. In 

comparison to true 
2

intQ  values of CROA (

2

int 0.961Q =  ), these values indicate that the QSRR 

model of retention indices of essential oils by CROA 

was not due to chance correlation or structural 

dependence of the training data. 

5.2 Robustness performance 

To further evaluate the ability of CROA to 

construct a robust QSRR model, the leverage approach 

was used as an applicability domain (AD) assessment. 

file:///F:/work/Egyptian%20journal%20of%20chemistry/Vol%2065%20issue%207%202022/EJCHEM-0000-2682.docx%23_ENREF_32
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AD is defined as “a theoretical region in chemical 

space, defined by the model descriptors and modeled 

response, and thus by the nature of the chemicals in the 

training set, as represented in each model by specific 

molecular descriptors” [18]. Figure 2 displays the 

Williams plot of the leverage values against the 

standardized residuals for each compound for the 

CROA model (the dotted line indicates the leverage 

threshold, while the dashed line represents the 

standardized residual limits). The influential 

compound can be detected when its leverage value is 

greater than the leverage threshold (
* 3( 1) / )h p n= +  where p  is the number of the 

selected descriptors in the final QSAR model, and n  

represents the number of compounds. 

It is obvious from Figure 2 that no compounds 

have a standardized residual higher than the limit ±3, 

which can be considered as retention indices outliers, 

or with a high leverage value. Thus, it is clearly 

demonstrated from Figure 2 that all the results confirm 

that the constructed QSRR model using the CROA is 

reliable and robust.  

 

 
Figure 1. Y-randomization test for CROA over 500 

times. 

 

 
Figure 2. Williams plot for the training and testing 

data of CROA. 

6. CONCLUSION 

In the present work, a new QSRR model 

approach for the prediction of retention indices (RI) of 

essential oils constituents was developed by proposing 

CROA. The results gained by the internal validation 

criteria ( trainMSE , 
2

intQ , 
2

LGOQ , and 
2

BootQ ) for 

training dataset and the external validation parameters 

( testMSE  and 
2

extQ ) for the test dataset prove better 

predictive power of the CROA model compared with 

other two developed models. The reduction in 

trainMSE  was 82.31% and 56.83% of lasso and 

Bridge methods. Further, using 
2

intQ  criteria, the 

CROA has the highest value with 0.961. The lasso 

method is the worst method in constructing the QSRP 

model.  In addition, the obtained results by the 

applicability domain and Y-randomization test 

confirm that the CROA model is reliable, robust and 

not due chance correlation. In conclusion, the current 

study proposes CROA as a useful modeling approach 

to be used for predicting RI of new essential oils 

constituents. 
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