

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Combining ability estimation for yield and its components of sunflower inbred lines

Ahmed¹, M.A., Heba M. Noaman¹ and H. A. Zahran^{2*}

¹Oil Crops Research Department, Field Crops Research Institute, Agricultural Research Center, Giza Egypt

²Fats and Oils Department, National Research Centre, Dokki, Cairo, Egypt

Abstract

The objective of this investigation was to determine the combining ability for yield and its components in sunflower A-line by tester matting design among seven cytoplasmic male sterile lines and five restorer lines were selected to product 35 crosses. Parents and crosses were evaluated during the summer of 2017 year. Results indicated that the mean squares due to parents, crosses, parent's vs crosses except for days to 50% flowering and number of seeds plant⁻¹. Lines, testers, and line x tester were significant for all studied traits. A_{14} and A_{31} of A- lines and Rf_1 and Rf_{20} of Rf testers proved to the best general combiners for seed yield plant⁻¹ and the most of its attributes. Moreover, the best cross combinations were of $A_4 \times Rf_{14}$, $A_6 \times Rf_{14}$, $A_{31} \times Rf_8$, $A_{28} \times Rf_{20}$, $A_{23} \times Rf_{20}$, $A_1 \times Rf_1$ and $A_{14} \times Rf_{11}$ that performed better than other developed hybrids in the view of seed yield plant⁻¹ and one or more of its attributes. The ratio of σ^2 GCA/ σ^2 SCA was less than unity for all the traits indicating that non-additive gene effects played an important role in the inheritance of these traits. The biplot graphic allowed a rapid and effective overview of general combining ability (GCA) and specific combining ability (SCA) effects of inbred lines, best lines, and testers as well as their performance in crosses.

Keywords: Combining ability, gene action, hybrids, GGE biplot, line × tester

1. Introduction

Sunflower (*Heliathus annuus* L.) is one of the three crop species along with soybean and canola that account for approximately of the world vegetable oil. Sunflower is grown on 27.02 million hectares in the world, producing 54.92 million metric tons of seed yield (USDA 2021). Egypt production of edible vegetable oils has been suffering several problems due to the lower domestic production of oil crops that resulted in failing to meet the needs of domestic consumption. Recently, the state began to pay attention to the expansion of crop cultivation to meet the growing demand to meet the needs of the population.

General combining ability (GCA) provides an evaluation of the degree of mainly additive gene action, while specific combining ability (SCA) refers to the performance of two particular lines in a specific cross and it thus reflect non-additive types of gene interaction. Common technique has been extensively used in sunflower to classify parental lines in terms of their ability to combine and

express hybrid vigor in cross combination. The resulting total genetic variation is partitioned into general and specific combining ability effects. The importance of hybrid cultivars in sunflower has recently increased because of their higher seed yield compared to open cross-pollinated varieties in many countries in the world. Hybrids of sunflower are more stable, highly self-fertile, with high yield performance, and more uniform at maturity [1].

The two types of combining ability, general (GCA) and specific (SCA), have been recognized in quantitative genetic. General combining ability is regarded as additive gene effects, while specific combining ability reflects the non-additive gene actions [2]. investigators found that the non-additive genetic effects played an effective role in the inheritance of seed yield and other agronomic traits [3-5]. While, Ciric et al. [6], Golabadi et al. [7] showed that the additive gene effects represented the major role in the inheritance of seed yield or other agronomic traits.

*Corresponding author e-mail: hazahran@hotmail.com.; (Hamdy A. Zahran).

EJCHEM use only: Receive Date: 20 October 2021, Revise Date: 26 November 2021, Accept Date: 26 November 2021

DOI: <u>10.21608/ejchem.2021.102004.4736</u>

Thus, keeping in view, the pivotal importance of combining ability as well line x tester analysis of 12 parents (7 CMS lines and 5 restorers) along with their 35 F₁ hybrids were used to study the mechanism as well as mode of inheritance to help sunflower breeders to decide for efficient breeding strategies to improve the valuable characters. A biplot approach [8] has been developed for analyzing the data regarding combining abilities, heterosis and relationships among parents. This approach provides a graphical demonstration of the data using principal components (PC1 and PC2) which are obtained through principal component analysis. Keeping in view the importance of combining ability and heterosis in plant breeding.

The objectives of the present study were: (i) to estimate both general and specific combining ability effects of some new sunflower inbred lines and crosses respectively, and (ii) to identify the most superior and hybrids for use in hybrid sunflower breeding programs aiming to have highly and stable seed yield.

2. Materials and Methods

Twelve parental sunflower genotypes were used in present investigation. A-lines were A₁ (L₁), $A_4(L_2)$, $A_6(L_3)$, $A_{14}(L_4)$, $A_{23}(L_5)$, $A_{28}(L_6)$, and A_{31} (L₇) they were obtaining by backcrossing and selection for 6 generation (A₅ with L₃₉). The tester, Rf-lines, Rf₁ (T_1), Rf₈ (T_2), Rf₁₁ (T_3), Rf₁₄ (T_4), and Rf₂₀ (T₅) are male restorer lines, Rf₁and Rf₂₀ were obtained by self-pollination from A₁₂ x Rf₁₅ and A_1x Rf₁₆ for 6 generation are presented in Table (1). All possible combinations crosses were executed by using line × testers meting design to produce 35 F₁ seed during year 2016-summer season. The 35 F₁ crosses and their parents were evaluated durng 2017 at Giza Agricultural Research station, Field Crops Research Institute, A.R.C. Egypt (22°, 32° N latitude and 24°, 37° E longitude).

Table 1. A- Lines and restorers (*cms* and *Rf*) were used.

CMS/Rf	Habitus	Source	Type	
A_1	Non-branched, Single headed	Argentine	Oilseed	
A_4	Non-branched, Single headed	Romania	Oilseed	
A_6	Non-branched, Single headed	U.S.A	Oilseed	
A_{14}	Non-branched, Single headed	Romania	Oilseed	
A_{23}	Non-branched, Single headed	Russia	Oilseed	
A_{28}	Non-branched, Single headed	Russia	Oilseed	
A ₃₁	Non-branched, Single headed	Egypt	Oilseed	
Rf_1	Branched, Multi headed	Egypt	Oilseed	
RF_8	Branched, Multi headed	Egypt	Oilseed	
RF_{11}	Branched, Multi headed	Egypt	Oilseed	
RF_{14}	Branched, Multi headed	Egypt	Oilseed	
RF_{20}	Branched, Multi headed	Egypt	Oilseed	

The experiment was designed as randomized complete block design (RCBD) with three replications. The plot size was 4 rows, 4 meter long and 60 cm apart. Planting was done in hills spaced 20 cm apart. Seedling were thinned to one plant per hill before the first irrigation (two weeks after planting in both seasons). The cultural practices followed as the recommendations for oil seed sunflower production. Ten plants were selected at random from each plot to record the data on days to 50 % flowering, plant height, head diameter,100 seed weight, seed yield/plant and seed oil content which was determined according to AOAC [9] using soxhlet apparatus and diethyl ether as a solvent. The data was subjected to combined analysis of variance across two seasons according to Steel and Torrie [10] after insurance of the

homogeneity of individual error terms. The estimates of combining ability effects (GCA and SCA) were made following Kempthorne [11] & Singh and Chaudhary [12]. Biplot analysis for combining ability: Following analysis of variance the data were subjected to biplot analysis according to the method of Yan and Hunt [8] and Bertoia et al. [13]. GGE biplot methodology for combining abilities (GCA and SCA) in a line × tester data set was used, with the following model as:

Yij-
$$\beta j = \lambda 1\xi i 1 \eta j 1 + \lambda 2\xi i 2\eta j 2 + \epsilon i j$$

Where: Yij: genotypic value of the cross between ith line and jth tester; β j: average value for crosses involving jth tester; λ 1: singular value for PC1; λ 2: singular values for and PC2; ξ i1 and η j1:

eigenvectors for PC1 associated with ith line; ξ i2 and η j2: eigenvectors for PC2 associated with jth tester; ϵ ij: overall residual of the model associated with the combination of line i and tester j.

Symmetrical scaling was carried out for Principal components scores for entries and testers Yan and Hunt, [8], Bertoia et al. [13]. The analyses reported in this study were performed with the GGE-biplot software. Which are a windows-based application that generates biplots for a two-way data set [14].

3. Results and Discussion

3.1. Analysis of variance

The analysis of variance (Table 2) showed significant differences among genotypes for all studied traits, indicating a wide genetic variability in this material. Results revealed that parents, crosses, parents' vs crosses (except days to 50% flowering and number of seeds) showing the presence of heterotic effects as non-additive genetic variance in the crosses, lines, testers and lines × testers. Similar results were obtained by Imran et al. [15], Cvejic et al. [16], Bhoite et al. [17], Telangre et al. [18], Rizwan et al. [4] and Ahmed et al. [5].

Table 2. Analysis of variance for combining ability effects of the studied sunflower traits.

S.O.V	df	Days to 50% flowering	Plant height (cm)	Head diameter (cm)	100-seed weight (g)	Number of seeds plant ⁻¹	Oil seed content (%)	Seed yield plant ⁻¹ (g)
Rep	2	5.63	9.71	2.77	0.22	11685.58	7.16	23.91
Genotypes	64	32.67**	1690.82**	18.96**	6.46**	214841.36**	39.24**	689.28**
Parent (P)	14	15.07**	1943.36**	23.25**	4.22**	133481.97**	29.61**	593.75**
Crosses (C)	49	39.10**	1504.55**	10.70**	6.33**	246390.79**	42.25**	499.95**
P vs. C	1	7.57	5246.16**	252.50**	35.82**	37113.89	42.57**	8177.57**
Line	9	117.44**	5198.25**	24.33**	0.82**	560910.48**	87.73**	713.55**
Tester	4	40.39**	1360.70**	11.61**	48.91**	632588.76**	47.23**	1417.14**
LxT	36	19.30**	605.10**	7.14**	0.60**	103394.54**	30.05**	293.68**
Error	128	2.03	77.07	1.23	0.13	13615.64	2.65	46.57

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

3.2. Mean performance

Data in Table (4) are shown the mean performance of sunflower lines, tester, and their F_1 hybrids for studied traits. Significant differences were found among the Rf- testers and A- lines and their F_1 hybrids regarding to days to 50% flowering, plant height, head diameter, 100- seed weight (g), number of seeds plant⁻¹, oil seed content (%), and seed yield plant⁻¹ (g), indicating the existence of genetic differences among the genotypes.

Among the Rf-testers, the earliest days to flowering was observed in Rf₈ (49 days) and the latest was Rf₁₄ (53.3 days). Among A-lines, A₁₄ was the earliest (46.8 days) and A₁ was the latest (54.6 days). Among F₁ hybrids the combination of A₁₄ × Rf₈ had the lowest number of days to flowering of 47 days. The highest number of days to flowering of 59 days was found in the combination of A₁ × Rf₂₀. the shortest plant height was observed in Rf₈ (94.3cm) and the highest was Rf₁₄ (161.3 cm). Among A-lines, A₄ was the shortest (122 cm) and A₁ was the highest (172.9 cm), while 106.7 cm was

recorded in with the combination of $A_4 \times Rf_8$ to 208.7 cm with the hybrid combination of $A_1 \times Rf_{20}$. The narrowest head diameter among the A-lines was found in A₆ (15.03 cm) and the widest in A₄ (19.50 cm), while among Rf-testers the lowest value of head diameter was recorded in Rf₁₁ (11.67 cm) and the highest was in Rf_{14} (13.33 cm), F_1 hybrids head diameter ranged from 16.0 cm at the two combinations of $A_6 \times Rf_{11}$ and $A_{23} \times Rf_{11}$ to 22.3 cm with the combination of $A_{14} \times Rf_{11}$. The lightest 100-seed weight among the A-lines was found in A_{14} (5.67g) and the heaviest in A_{28} (6.46 g), while among the Rf-testers the lowest value was recorded in Rf₈ (3.64 g) and the highest in Rf₂₀ (7.57 g), and F_1 hybrids ranged from 5.20 g at the combination of $A_{31} \times Rf_1$ to 10.24 g at the combination of $A_{23} \times Rf_{20}$. The lowest number of seeds plant⁻¹ among the A-lines was found in A₆ (708.1) and the highest in A_{14} (1322.5), among the Rf-testers the lowest value was recorded in Rf₂₀ (637) and the highest in Rf_1 (1240.2), while F_1 hybrids ranged from 630.4 seeds at the combination of $A_6 \times Rf_1$ to 1600.6 seeds at the combination of $A_{14} \times Rf_1$. The lowest seed oil content among the A-

lines was found in A_4 (31.04%) and the highest in A_{31} (39.63%), among the Rf-restorers the lowest value was recorded in Rf_{20} (30.24%) and the highest in Rf_1 (40.83%), while F_1 hybrids ranged from 27.59% at the combination of $A_{28} \times Rf_{11}$ to 43.03% at the combination of $A_{31} \times Rf_1$. As regards seed yield, the lowest-yielding A-line was in A_4 with

43.13 g, while the highest-yielding in A_{31} with 74.93 g. Among the Rf-testers, Rf₈ had the lowest and Rf₂₀ the highest seed yield (33.69 and 51.33 g, respectively), while F₁ hybrids ranged from 52.06 g at the combination of $A_{28} \times Rf_{11}$ to 93.24 g at the combination of $A_{28} \times Rf_{20}$.

Table 3. Mean performance of sunflower lines, testers and their F₁hybrids for studied traits.

Genotype	Days to 50% flowering	Plant height (cm)	Head diameter (cm)	100-seed weight (g)	Number of seeds	Oil seed content (%)	Seed yield plant ⁻¹ (g)
A_1	54.6	172.9	17.43	6.04	1079.1	35.25	64.21
A_4	52.1	122.0	19.50	6.02	1069.6	31.04	74.93
A_6	53.2	129.0	15.03	6.1	708.1	35.62	57.16
A_{14}	46.8	133.2	17.03	5.67	1322.5	37.19	52.63
A_{23}	53.4	134.2	18.73	6.11	849.0	33.37	70.67
A_{28}	54.1	149.1	18.33	6.46	1015.4	34.19	66.14
A_{31}	50.5	125.3	17.17	5.96	1188.9	39.63	43.14
Rf_1	52.3	103.7	13.00	4.14	1240.2	40.83	37.08
Rf_8	49.0	94.3	12.67	3.64	925.8	35.78	33.69
Rf_{11}	51.3	155.0	11.67	4.01	876.7	35.16	35.17
Rf_{14}	53.3	161.3	13.33	4.40	840.6	32.63	48.06
Rf_{20}	51.3	94.7	12.67	7.57	637.0	30.24	51.33
A_1*R_1	53.0	172.0	20.67	6.10	1546.8	38.39	90.22
A_1*R_8	55.3	154.3	16.33	5.91	974.3	32.57	56.63
A_1*R_{11}	53.3	192.3	17.67	5.70	1027.1	36.04	58.53
A_1*R_{14}	55.7	182.7	19.00	6.71	911.0	34.71	71.00
A_1*R_{20}	59.0	208.7	18.00	9.14	787.5	31.75	72.60
A_4*R_1	53.7	142.7	21.33	6.11	1412.9	35.77	85.73
A_4*R_8	56.0	106.7	16.50	6.00	757.5	33.33	54.36
A_4*R_{11}	50.3	138.0	16.50	5.51	945.7	39.45	56.36
A_4*R_{14}	56.0	146.0	18.33	6.39	1221.7	35.72	80.54
A ₄ *R ₂₀	48.0	108.7	16.67	9.45	821.8	39.17	79.59
A_6*R_1	51.9	145.0	17.33	6.50	630.4	31.80	54.89
A_6*R_8	51.5	131.7	16.73	6.36	662.1	31.69	54.89
A_6*R_{11}	51.0	142.0	16.00	6.33	666.3	30.53	55.00
A_6*R_{14}	51.0	135.0	18.67	6.55	930.1	31.88	69.67
A ₆ *R ₂₀	54.3	125.3	15.33	8.18	776.9	29.29	70.69
A ₁₄ *R ₁	48.0	147.7	19.67	6.65	1600.6	30.65	89.59
A ₁₄ *R ₈	47.0	138.7	19.33	5.43	1399.3	36.15	79.01
$A_{14}*R_{11}$	49.3	146.0	22.33	5.35	1548.0	30.60	86.09
A ₁₄ *R ₁₄	48.0	147.7	18.67	6.02	1144.9	40.75	74.57
$A_{14}*R_{20}$	53.7	121.0	18.67	8.67	819.6	32.67	72.90
A ₂₃ *R ₁	57.0	160.3	18.67	6.06	1168.9	36.39	67.76
A ₂₃ *R ₈	55.7	140.7	17.67	5.74	777.4	31.74	55.10
A ₂₃ *R ₁₁	53.0	124.0	16.00	5.55	824.5	34.82	52.85
$A_{23}*R_{14}$	56.3	146.3	15.90	6.35	653.3	30.65	52.06
A ₂₃ *R ₂₀	48.0	134.7	21.00	10.24	757.4	30.18	82.90
A ₂₈ *R ₁	57.0	169.3	20.33	6.76	1317.6	37.42	84.48
A ₂₈ *R ₈	55.3	141.0	19.33	6.07	735.0	28.77	58.16
A ₂₈ *R ₁₁	55.7	139.7	18.33	5.29	1100.6	27.59	69.50
A ₂₈ *R ₁₄	54.7	181.0	17.00	6.81	847.5	29.41	55.73
A ₂₈ R ₁₄ A ₂₈ *R ₂₀	51.3	153.7	20.93	9.85	907.4	30.63	93.24
$A_{28} \cdot R_{20}$ $A_{31} * R_{1}$	49.7	118.7	20.67	5.20	1332.0	43.03	81.31
A ₃₁ *R ₈	50.0	137.0	20.00	5.82	1274.8	38.15	80.09
A ₃₁ *R ₈ A ₃₁ *R ₁₁	49.0	143.3	20.00	5.41	1177.6	36.40	72.71
A ₃₁ *R ₁₁ A ₃₁ *R ₁₄	55.7	143.3 144.0	20.67	6.35	1253.5	34.26	59.38
A ₃₁ *R ₁₄ A ₃₁ *R ₂₀	48.0		21.33	9.86	820.4	31.19	39.38 83.06
		116.7					
Mean L.S.D (5%)	52.2 2.3	141.6 14.2	17.83 1.8	6.37 0.6	1007.1 189.0	34.14 2.6	65.86 11.1

3.3. Combining ability analysis

3.3.1. General combining ability effects

The general combining ability effects (ĝi) of the testers and parental inbred lines for all traits are presented in Table (3). From the breeder's point of view, high negative values of days to 50% flowering and plant height along with high positive values for yield and its components would be useful for sunflower breeding program.

3.3.2. Estimates of combining ability effects

The combining ability analysis revealed that among the lines A₁₄ and A₃₁ were good general combiners for seed yield plant⁻¹, head diameter, number of seeds plant⁻¹ and days to 50% flowering (Table 4). The lines identified on the basis of their GCA were good general combiner's *viz.*, A₄ and A₃₁ for plant height and oil content, A₂₈ for 100-seed weight, A₆ for plant height. Among the testers Rf₁ was a good general combiner for head diameter, number of seeds plant⁻¹, oil seed content and seed yield plant⁻¹ whereas Rf₂₀ for days to 50%

flowering, plant height, 100-seed weight and seed yield plant⁻¹.

3.4. Genetic components analysis

The genetic components of the studied traits were calculated and reported in Table 4. The variance of A line (δ^2) (CMS lines) and Rf tester (δ^2_t) (restorer fertility lines) were significant for all the studied traits, implying the important effects of both additive and dominance gene actions on the genetic control of the investigated traits. The variance among the CMS lines (A lines), for all the traits, were greater than that among the Rf testers (restorer), indicating the possible existence of some degree of maternal effects for the genetic control of the studied traits. Variance of SCA was greater than the variance of GCA for all studied traits, which indicates that higher amount of genetic variability was caused by SCA effect (Table 4). Results suggest that the traits were under greater influence of non-additive type of gene action. These results are in contrary to those of Dudhe et al. [19], Hladni et al. [20], Andarkhor et al. [3], Golabadi et al. [7], Patil et al. [21], Rizwan et al. [4] and Ahmed et al.

Table 4. General combining ability effects of the A-lines and Rf-testers for the seed yield and its components.

Inbred lines	Flowering	Plant height	Head diameter	100-seed	Number seeds	Oil content	Seed yield
			Line	es			
$\overline{A_1}$	2.902**	36.789**	-0.283	0.043	32.712	0.875	-0.540
A_4	0.435	-16.811**	-0.750	0.023	15.286	2.874**	0.998
A_6	-0.411	-9.400**	-1.803**	0.115	-283.488**	-2.779**	-9.288**
A_{14}	-5.098**	-5.011	1.117**	-0.445**	285.859**	0.348	10.116**
A_{23}	1.635**	-4.011	-0.770	0.121	-180.341**	-1.058	-8.184**
A_{28}	2.435**	11.722**	0.571	0.285*	-35.041	-3.052**	1.905
A ₃₁	-1.898**	-13.278**	1.917**	-0.142	165.012**	2.791**	4.993*
L.S.D 5%	1.031	6.360	0.804	0.262	84.533	1.178	4.944
L.S.D 1%	1.365	8.418	1.065	0.347	111.887	1.560	6.544
			Teste	ers			
Rf_1	0.574	5.603*	1.193**	-0.616**	270.373**	2.392**	8.822**
Rf_8	0.615	-9.494**	-0.631	-0.766**	-69.436	-0.615	-7.710**
Rf_{11}	-0.698	1.265	-0.497	-1.077**	24.769	-0.183	-5.897**
Rf_{14}	1.540**	9.456**	-0.297	-0.215	-22.065	0.096	-4.181*
Rf_{20}	-2.031**	-6.830*	0.231	2.673**	-203.641**	-1.690**	8.966**
L.S.D 5%	0.871	5.375	0.680	0.222	71.443	0.996	4.178
L.S.D 1%	1.153	7.114	0.900	0.294	94.562	1.318	5.530
GCA	0.39	17.58	0.07	0.11	2794.18	0.24	4.03
SCA	5.76	176.01	1.97	0.16	29926.30	9.14	82.37
GCA/SCA	0.07	0.10	0.04	0.69	0.09	0.03	0.05

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Egypt. J. Chem. 65, No. 3 (2022)

Positive as well as negative and significant estimates of SCA effects were observed among the crosses for seed yield (Table 5). Out of the 35 crosses, seven crosses have shown significant positive SCA effects for seed yield plant⁻¹. The cross $A_4 \times R_{14}$ (13.41) followed by $A_6 \times Rf_{14}$ (12.83), $A_{31} \times Rf_8$ (12.49), $A_{28} \times Rf_{20}$ (12.05), $A_{23} \times Rf_{20}$ (11.80), $A_1 \times Rf_1$ (11.63) and $A_{14} \times Rf_{11}$ (11.55) showed high positive significant effect for this trait. The cross $A_{14}\times Rf_{14}$, $A_{28}\times Rf_1$, $A_4\times Rf_{20}$, $A_{31}\times Rf_1$ and A₄×Rf₁₁ showed positive significant for seed oil content, $A_6 \times Rf_{20}$, $A_1 \times Rf_1$, $A_{14} \times Rf_{11}$, $A_6 \times Rf_{14}$, $A_{31} \times Rf_8$ and $A_4 \times Rf_{14}$ for number of seeds plant⁻¹, $A_{23} \times Rf_{20}$, $A_{31} \times Rf_8$ and $A_6 \times Rf_{11}$ for 100-seed

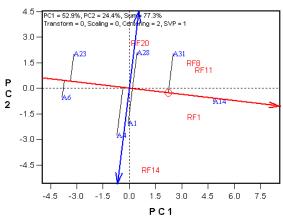
weight, $A_{14} \times Rf_{11}$, $A_{23} \times Rf_{20}$, $A_4 \times Rf_1$ and $A_6 \times Rf_{14}$ for head diameter showed the highest positive significant SCA effect. Whereas, the highest significant negative SCA effect for maturity and physiological traits was shown by A23×Rf20, $A_1 \times Rf_1$, $A_4 \times Rf_{20}$ and $A_6 \times Rf_{14}$ for days to 50% flowering, $A_{31}\times Rf_1$, $A_{28}\times Rf_{11}$, $A_{23}\times Rf_{11}$, $A_{1}\times Rf_{8}$ and $A_1 \times Rf_1$ for plant height. Similar finding for identification of superior inbred lines and hybrids based on GCA and SCA effects for seed yield and its components in sunflower were also reported by Hladni et al. [20], Patil et al. [21], Rizwan et al. [4] and Ahmed et al. [5].

Table 5. Specific combining ability for agronomic traits in 35 sunflower F_1 hybrids.

Hybrid	Days to flowering	Plant height	Head diameter	100-seed w.	Seeds number	Oil content %	Seed yield plant-1g
A_1*R_1	-2.841*	-15.603*	1.140	0.005	227.073*	1.304	11.625*
A_1*R_8	-0.549	-18.173*	-1.370	-0.038	-5.617	-1.503	-5.440
A_1*R_{11}	-1.235	9.068	-0.170	0.069	-46.989	1.528	-5.450
A_1*R_{14}	-1.140	-8.789	0.964	0.211	-116.225	-0.081	-5.405
A_1*R_{20}	5.765**	33.497**	-0.565	-0.247	-58.212	-1.248	-6.140
A_4*R_1	0.292	8.664	2.273*	0.032	110.567	-3.308*	5.589
A_4*R_8	2.585*	-12.240	-0.736	0.072	-204.957*	-2.745*	-9.248*
A_4*R_{11}	-1.769	8.335	-0.870	-0.104	-110.995	2.946*	-9.055
A_4*R_{14}	1.660	8.144	0.764	-0.086	210.871*	-1.063	13.409*
A_4*R_{20}	-2.769*	-12.903	-1.431	0.086	-6.486	4.170**	-0.695
A_6*R_1	-0.621	3.619	-0.673	0.330	-373.160**	-1.629	-14.964**
A_6*R_8	-1.042	5.372	0.550	0.343	-1.617	1.268	1.572
A_6*R_{11}	-0.255	4.924	-0.316	0.627*	-91.589	-0.328	-0.132
A_6*R_{14}	-2.493*	-10.267	2.150**	-0.021	219.011*	0.747	12.826*
A_6*R_{20}	4.411**	-3.648	-1.711	-1.279**	247.354*	-0.058	0.698
$A_{14}*R_1$	0.492	1.864	-1.260	0.043	27.693	-5.906**	0.332
$A_{14}*R_{8}$	-0.882	7.960	0.230	-0.031	166.270	2.601	6.291
$A_{14}*R_{11}$	2.765*	4.535	3.097**	0.203	220.765*	-3.381*	11.554*
$A_{14}*R_{14}$	-0.807	-1.989	-0.770	0.008	-135.502	6.490**	-1.681
$A_{14}*R_{20}$	-1.569	-12.370	-1.298	-0.223	-279.226**	0.196	-16.496**
$A_{23}*R_1$	2.426*	13.530	-0.373	-0.116	62.193	1.240	-3.195
$A_{23}*R_{8}$	1.051	8.960	0.450	-0.283	10.536	-0.403	0.680
$A_{23}*R_{11}$	-0.302	-18.465*	-1.350	-0.162	-36.535	2.248	-3.390
$A_{23}*R_{14}$	0.793	-4.322	-1.650	-0.221	-160.935	-2.201	-5.892
$A_{23}*R_{20}$	-3.969**	0.297	2.922**	0.782**	124.741	-0.885	11.797*
$A_{28}*R_1$	1.626	6.797	-0.047	0.419	65.627	4.268**	3.436
$A_{28}*R_{8}$	-0.082	-6.440	0.777	-0.121	-177.164	-1.376	-6.348*
$A_{28}*R_{11}$	1.565	-18.532*	-0.356	-0.590	94.198	-2.991*	3.178
$A_{28}*R_{14}$	-1.673	14.611*	-1.890*	0.071	-112.069	-1.453	-12.314*
$A_{28}*R_{20}$	-1.435	3.564	1.515	0.220	129.408	1.552	12.048*
$A_{31}*R_{1}$	-1.374	-18.870**	-1.060	-0.713*	-119.993	4.031**	-2.822
$A_{31}*R_{8}$	-1.082	14.560*	0.097	0.057	212.550*	2.158	12.494*
$A_{31}*R_{11}$	-0.769	10.135	-0.036	-0.043	-28.855	-0.021	3.294
$A_{31}*R_{14}$	3.660**	2.611	0.430	0.039	93.878	-2.440	-11.752*
$A_{31}*R_{20}$	-0.435	-8.436	0.569	0.661*	-157.579	-3.728**	-1.213
L.S.D (5%)	2.306	14.221	1.799	0.587	189.021	2.635	11.055

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Egypt. J. Chem. 65, No. 3 (2022)

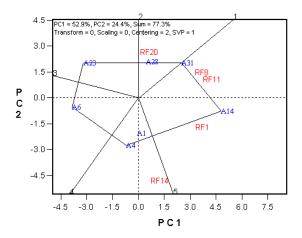

3.5. Biplot Analysis

3.5.1. General and Specific Combining Ability

Figure 1 is the Average Tester Coordination (ATC) view of the biplot brought up by the Average Tester Coordination function of GGE biplot for seed yield plant⁻¹. A GGE biplot is said to adequately approximate the variability in the twoway data when the first two PCs explain more than 60% of the variability in the data, and the combined interaction effect account for more than 10% of the total variability [22, 23]. The small circle on the average tester axis represents the average tester, which is defined by the average PC1 and PC2 values of all testers [24]. The line passing through the biplot origin and the average tester is referred to as average tester axis or ATC abscissa. The perpendicular line to the ATC passing through the origin of biplots shown with both side arrow heads in Fig. 1 is referred to as ATC ordinate.

Projection of the entries onto the ATC abscissa denotes GCA effects of the entries. The arrow head indicates the highest GCA effects. Thus, A_{14} displayed highest GCA effects, and the relationship among the lines was $A_{14} > A_{13} > A_{28} > A_{1} > A_{4} > A_{23} > A_{6}$ for GCA effects. Observed relationship was comparable according to conventional GCA analysis which brought out the line A_{14} with significant and positive GCA effects (10.12**). Whereas, line A_{6} showed significantly negative GCA effects (-9.28**), followed by A_{23} (-8.18**).

The study clearly brought out A_6 to be a poor combiner for these traits, while A_{14} to be best. Similarly, GCA for the testers was also visualized by switching the role of line and testers. The GCA relationship among testers was $Rf_{20} > Rf_{1} > Rf_{8} > Rf_{11} > Rf_{14}$ (Fig. 1). When compared these results to the conventional GCA analysis which revealed the testers Rf_{20} and Rf_{1} with significant and positive gca effects (8.97** and 8.82**). Whereas, Rf_{8} , Rf_{11} and Rf_{14} showed negative gca effects for seed yield plant Rf_{14} showed negative Rf_{14} showed negative


Figure 1. Biplot based on seed yield data explaining combining ability in sunflower genotypes.

The projections of the lines onto the ATC ordinate indicate their SCA effects [8]. Yan and Hunt [8] pointed out that in conventional analyses, SCA is associated with crosses rather the parents. However, GGE biplot of such crosses bring out this additional advantage. Observed SCA indicates the tendency of the lines to produce superior hybrids with specific testers. In the current study A14 followed by A₃₁ showed the highest SCA. Among testers the highest SCA effect was noticed in RF₂₀ followed by RF1 and RF14, while that was in RF8 and RF₁₁ in decreasing order. However, identified genotypes with the highest SCA not necessarily indicate always SCA towards positive direction but bring out only higher numerical values without the sign of it. Akinwale et al. [24] with GGE biplot analysis of a line x tester data set of Singh and Chaudhary [12]. Successfully identified lines with better SCA.

The polygon view of 'Which-won-where' analysis of GGE biplot provides us opportunity to visualize which tester combines well with which line [8]. The entries located on the vortex of the polygon are the best mating partners with the testers in the same sector and the poorest-mating partners with the testers in another sector. Similarly, lines at the vortex of opposite sector will be poorest with the testers in facing section. For SY, A₁₄ and A₃₁ combine well with Rf₁, Rf₈ and Rf₁₁ testers, as all of them fall in the same sector at vortex of which A₁₄ was placed and A₂₈ combines well with Rf₂₀ testers (Fig. 2). All other lines were poor combiners with the testers. Yan and Hunt [8] were first to indicate possibility to identify best combiners using GGE biplot approach in diallel crosses. Subsequently,

26 E.F. Ewies et.al.

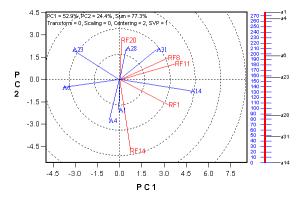

GGE approach has been deployed in identifying best combiners in Khalil and Raziuddin [25] in Brassica; Bertoia et al. [13] in maize, Darvishzadeh et al. [26] in sunflower.

Figure 2. Biplot based on seed yield data explaining specific cross combination in sunflower genotypes

3.6. Relationship among Genotypes

The interrelationship among genotypes is visualized in Fig. 3. The lines that connect the biplot origin and the markers of the genotypes are known as vectors. The angle between vectors of two genotypes relates to the correlation coefficient between them, and the linear map to the right of the graph (in degrees) help in explaining the relationship among them [25]. For positive relationship between two genotypes the angle between their vectors must be smaller than 90° [14, 28, 29]. Thus, based on Fig 3, entries A₁ and A₄ showed a strong and positive relationship between them, and were too close to each other (almost 0° angle). The entry A₁₄ is also lying close to both A₁ and A₁₄ (angle < 90°), and predicted a positive relationship among them. Similarly, the angles between A₁₄ and A₃₁, A₃₁ and A₂₈ were also smaller which also exhibited the positive relationship among them. However, the negative relationship was observed between two groups i.e (A4, A28) and (A₆, A₁₄), meaning that these genotypes were apparently different from one to another. Tester Rf8 and Rf₁₁ showed positive and strong relationship (Fig. 3). Moreover, the testers (Rf_8 and Rf_{11}) showed an equal and positive relationship with Rf₁ and Rf₂₀, since they are located in-between their vectors, but tester Rf₁ and Rf₂₀ were negatively correlated (angle > 90°). Similarly, Rf₁₄ and Rf₂₀ were located in opposite directions (angle > 140°) exhibiting negative relationship.

Figure 3. Biplot based on line x tester data in sunflower for seed yield explaining relationship among lines and testers.

4. Conclusion

Significant differences were found among the A lines, Rf testers and their F₁ hybrids for all studied traits. Analysis of variance of the combining abilities revealed highly significant differences for A-lines, A₁₄ and A₃₁ and Rf-testers Rf₁ and Rf₂₀ proved to the best general combiners for seed yield plant⁻¹ and the most of its attributes. Moreover, the best cross combinations were $A_4 \times Rf_{14}$, $A_6 \times Rf_{14}$, $A_{31} \times Rf_8$, $A_{28} \times Rf_{20}$, $A_{23} \times Rf_{20}$, $A_1 \times Rf_1$ and $A_{14} \times$ Rf₁₁.The main role in inheritance for all studied traits is played by non-additive component of the genetic variance which is confirmed by the GCA/SCA relation in F₁ generation that is less than one. The combination of the lxt mating design and GGE biplot in the same time gives the most important information for parental choice.

References

- [1] Jocic, S., S. Cvejic, M. Ciric, N. Hladni, D. Miladinovic, V. Miklic, and Radeka (2012). Estimation of combining abilities in sunflower (*Helianthus annuus* L.). Proceedings of the 18th International Sunflower Conference. Mar Del Plata & Balcare, Argentina, 657-662.
- [2] Sprague, G.F. and L.A. Tatum. (1942). General vs. specific combining ability in single cross of corn. J. Agron. 34: 923-32.
- [3] Andarkhor, S.A., N. Mastibege and V. Rameeh (2012). Combining ability of agronomic traits in

COMBINING ABILITY ESTIMATION FOR TIELD AND ITS COMPONENTS OF SOMEOWER...

- sunflower (*Helianthus annuus* L.) using line \times tester analysis. Int. J. Biol. 4:89-95.
- [4] Rizwan M., H. A. Sadaqat, M. A. Iqbal and F.S. Awan (2020). Genetic assessment and combining ability analysis of achene yield and oil quality traits in (*Helianthus annuus* L.) hybrids. Pak.J. Agri. Sci. 57(1):101-108.
- [5] Ahmed. M.A., T.H.A. Hassan., M.R.F.Abou Mowafy (2021). Genetic analysis for some economic traits in sunflower (*Helianthus annuus* L.). J. of Plant Production, Mansoura Univ., 12 (3):263-268.
- [6] Ciric, M., S. Jocic, S. Cvejic, P. Canak, M. Jockovic, R. Marinkovic, M. Mirosavljevic (2013). Evaluation of combining abilities of new sunflower inbred lines. Genetika, 45 (2): 289-296.
- [7] Golabadi, M., P. Golkar and M.R. Shahsavari (2015). Genetic analysis of agro-morphological traits in promising hybrids of sunflower (*Helianthus annuus* L.). Acta Agric. Slovenica 105:249-260.
- [8] Yan W. K., and L. A. Hunt (2002). Biplot analysis of diallel data. Crop Sci., 42(1): 21-30.
- [9] A.O.A.C (1990). Official methods of analysis of the association of official analysis agriculture chemists, 15th Washington, D.C., U.S.A.
- [10] Steel, R. G. D., and J. H. Torrie, (1980). Principles and Procedures of Statistics: A Biometrical Approach, McGrawHill, NewYork, NY, USA.
- [11] Kempthorne O. (1957). An Introduction of Genetics Statistics. The Iowa University Press.
- [12] Singh, R. K. and B. D. Chaudhary (1985). Line × tester analysis. Biometrical methods in quantitative genetic analysis. Kalyani Publishers New Delhi, India.
- [13] Bertoia, L., C. Lopez and R. Burak. (2006). Biplot analysis of forage combining ability in maize landraces. Crop Sci. 46:1346-1353.
- [14] Yan, W. (2001). GGE Biplot- A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. J. Agron. 93: 1111–1118.

- [15] Imran M., A. qasrani. M.A. Nawaz, M.K.Shabaz, M.Asif and Q. Ali (2015). Combining ability analysis for yield related traits in sunflower (*Helianthus annuus* L.). Am-Euras. J. Agric. & Environ. Sci., 15 (3): 424-436.
- [16] Cvejic S., S. Jocic, E. Mladenovic, M. Jockovic, D. Miladinovic, I. Imerovski and A. Dimitrijevic (2017). Evaluation of combining ability in ornamental sunflower for floral and morphological traits Czech J. Genet. Plant Breed., 53 (2): 83-88.
- [17] Bhoite, K.D., R.B. Dubey, Mukesh Vyas, S. L. Mundra and K. D. Ameta (2018). Evaluation of combining ability and heterosis for seed yield in breeding lines of sunflower (*Helianthus annuus* L.) using line × tester analysis. J. of Pharmacognosy and Phytochemistry 7(5): 1457-1464.
- [18] Telangre S. S., K. R. Kamble, S. P. Pole and M. M.Solanki (2019). Studies on combining ability of new restorer lines in sunflower (*Helianthus annuus* L.). Electronic Journal of Plant Breeding, 10 (3): 1339 1344.
- [19] Dudhe, M.Y., M.K. Moon, and S.S. Lande, (2011). Study of gene action for restorer lines in sunflower. Helia, 34 (54): 159-164.
- [20] Hladni N. D., M.K., Skoric, S., Balalic, V., Jocic, A.Miklic, and N. Dusanic (2011) Lines × tester analysis for yield components in sunflower and their correlations with seed yield (*Helianthus annuus* L.). Genetica, 43:297-306.
- [21] Patil T. R., V. K., Vikas M. Kenganal, I. Shankergoud and J. R. Diwan (2017). Combining ability studies in restorer lines of sunflower (*Helianthus annuus* L.). J. Appl. Nat. Sci. 9 (1): 603 608.
- [22] Yang R., J. Crossa, P. L. Cornelius and J. Burgueno (2009). Biplot analysis of genotype \times environment interaction: proceed with caution. Crop Sci., 49: 1564-1576.
- [23] Yan W., K. D. Glover, and M. S. Kang (2010). Letter to Editor. Crop Sci., 50: 1121-1123.
- [24] Akinwale R. O., M. A. B. Fakorede, B. Badu-Apraku and A. Oluwaranti (2014). Assessing the usefulness of GGE Biplot as a statistical tool for

28 E.F. Ewies et.al.

plant breeders and agronomists. Cereal Res. Commun., 42(3):534-546.

- [25] Yan W. and M. S. Kang (2003). GGE Biplot Analysis-a graphical tool for breeders, geneticists, and agronomists. Boca Raton, FL, USA: CRC Press. Boca Raton, FL, pp: 207-228.
- [26] Khalil, I.A., and Raziuddin (2017) Combining ability for seed yield in indigenous and exotic *Brassica napus* genotypes. Sarhad J. Agri. 33(1):177-182.
- [27] Darvishzadeh R., I. Bernousi S. P. Kiani G. D. Guillaume and A. Sarrafi (2009). Use of GGE-biplot methodology and Griffing's diallel method for genetic analysis of partial resistance to phoma black stem disease in sunflower. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 59: 485-490.
- [28] Zahran, H. A., Abd-Elsaber, A., and Tawfeuk, H. Z. (2020). Genetic diversity, chemical composition and oil characteristics of six sesame genotypes. *OCL*, *27*, 39.
- [29] Ahmed, M. A., Hassan, T. H., and Zahran, H. A. (2021). Heterosis for seed, oil yield and quality of some different hybrids sunflower. *OCL*, 28, 31.
