

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Determination The Structure of New Some Imines by Physical and Chemical Methods

Asmaa B. Al-Dabbagh,^a Arwa M. Othman^{b,*}

^{*a,b*} Northern Technical University/Mosul Technical Institute/Techniques Department of Chemical and Oil Industries, Mosul 964, Iraq

Abstract

This paper is concerned with the preparation of eight new imines by standard methods; These having syn oxime and Schiff base structures. They are derived from aromatic aldehydes with suitable primary amines, depending on their structures. This investigation deals with studying structure of imines by chemical and physical methods, (I.R, U.V and H¹NMR) spectra and melting points .This studying led to diagnose the intra and inter molecular hydrogen bonding in these imines, using dilution method by the aid of I.R spectra. Moreover, the influences of hydrogen bonds on the association process in these imines and their relationship with melting points were also determined

Key words: Structure, imines, Schiff bases, I.R., U.V. and H¹NMR spectra, hydrogen bonding and physical-chemical methods.

1. Introduction

Schiff bases are compounds containing an azomethine group (-CH=N-), which formed by the condensation of a primary amine with a carbonyl compound as aldehyde. Aliphatic aldehydes Schiff bases were finding in comparison unstable and were readily polymerizable whereas those of aromatic aldehydes, having an efficient conjugation system, were more stable [1] by resonance. [2]

During the latest few years, a great numbers of aliphatic, aromatic imine as oxime, and their mixture were prepared by Azzouz et al. [3] Azomethines derived from various carbonyls, β -Ketone, β -Ketoester and primary amines were well known compounds had studies extensively by saeed et al. [4] Several Schiff bases were prepared from

salicyaldehyde,[5,6,7]

2-hydroxy-1-naphaldehyde[8],2,4-dihydroxybenzaldehyde[9], and benzaldyhde, [10] Schiff bases were known to be neoplasm inhibitors[11], and plant growth regulated[12] Schiff-bases derived from anilines and its derivative with aromatic, aldehydes have a variety of applications in analytical[13] chemistry pharmacological[14] and medical[15] activities including antimicrobial, anti-inflammatory, anticancer, anti-fungal, anti-tuberculosis, and antioxidant.[16] Schiff base complexes[17] had greater importance than the parent Schiff base in biology because the ligands and metal ion can produce the highly active compounds and these interesting application were encourage the worker in this study to increase experimentation in the field of imine

chemistry in the direction of synthesis of a new oxime and Schiff bases and study their structures by physical and chemical methods. Schiff bases and their metal complexes had clear advantages and wonderful applications also they are very important as catalysts in various fields in biological systems, polymers, dyes, in the food, in analytical chemistry, medicinal and pharmaceutical fields.^[18,19]

2. Experimental

2.1. Materials

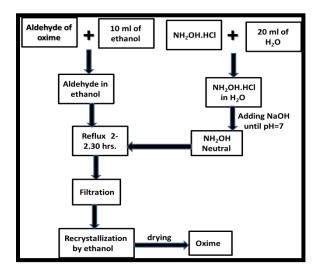
All chemicals were supplied from Fluka or BDH chemical companies.

2.2. Instrumentation

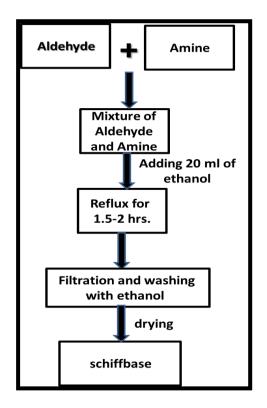
The U.V spectra of all imines (Schiff bases and oximes) were measured by double beam computerized U.V. (1650 Schimadzu U.V.-Visible

*Corresponding author e-mail: <u>asmaabaker@ntu.edu.iq</u>, <u>arwam81@ntu.edu.iq</u>(<u>Asmaa B. Al-Dabbagh</u>) Receive Date: 16 April 2021, Accept Date: 19 June 2021

DOI: 10.21608/ejchem.2021.72668.3605


©2021 National Information and Documentation Center (NIDOC)

spectrophotometry) using quartz cuvette of dimensions 1*1*3cm3.The I.R spectra of liquid and solid of imines had measured by using computerized FTIR Bruker (Tensor 27) spectrophotometer .The melting points of solid imines were measured by using electro thermal melting point (305 m.p. Bibby scientific limited).The ¹HNMR spectra of all imines were measured by Bruker BioSpin GmbH(400.22Hz), ¹HNMR Spectra have been measured on a 400.22HZ spectrometer using (DMSO) as solvent.


The Sensitive balance to weight the substances type GR-200.

2.3. Synthesis of Schiff bases

New imines under investigation were prepared by standard method.^[20] By mixing 10⁻²mole amount (p-aminobenzaldehyde, formaldehyde O-aminobenzaldehyde, 3,4-dihydroxybenzaldehyde, cinaaldehyde, with 10⁻²M Primary amine (hydroxyl) amine, HCl, Aniline, p-chloroaniline, p-nitroaniline, p-toluidine, m-hydroxyaniline) in ethanol solvent, according to standard method. These mixtures were refluxed for 1.5-2 hours. The precipitate was removed from reaction mixture by filtration wash with added ethanol and drying. As shown in the Flow Chart (1) and the Flow Chart (2). Pure imines were purified by re crystallization from absolute ethanol. The number, nomenclature, structure and melting points of pure solid. Samples were shown in table (1).

Flow Chart (1): Show preparation process of Oxime.

Flow Chart (2): Show preparation process of

Schiffbase•

Com p. No.	Symbol of comp.	Nomenclature	Structure	M.P (° C)
1	Syn-p-ABox	Syn-p-aminobenzaldoxime	$H_2N \rightarrow C = N - OH$	180-184
2	Syn-o-ABox	Syn-o-aminobenzaldoxime	H -C=N-OH NH ₂	162.6
3	o-ABA	o-Aminobenzylideneaniline	$\underbrace{_{NH_2}^{H}}_{NH_2}$	170
4	р-АВ-р-СА	p-Aminobenzylidene-p-chloroaniline	$H_2N - C = N - C = N - Cl$	67-68
5	p-AB-p-NA	p-Aminobenzylidene-p-nitroaniline	$H_2N \longrightarrow C = N \longrightarrow NO_2$	144-146
6	р-АВ-р-МА	p-Aminobenzylidene-p-methyl aniline	$H_2N - O - CH_3$	40-42
7	3,4-DHB-m- HA	3,4-dihydroxybenzylidene-m- hydroxyaniline	HO \rightarrow	-
8	C-m-HA	Cinnamildene-m-hydroxyaniline	H H N-O OH	254-259

Table (1): Shows the number, nomenclature, structures and melting points of new imines

3. Results and Discussion 3.1. Physical methods

At the beginning of this investigation, it was thought of great importance to confirm the structures of imines under study by physical method. The physical property was often used to identify new compounds or check the purity of samples this encourage the worker in this paper to extend diagnosis of these compounds by the available physical. (U.V., FTIR, H¹NMR and melting point)^[18] and chemical method.

3.1.1. Melting point

It is well known in literature ^[21] that melting points of pure chemical samples were affected by

ABox and CA-m-HA, having melting point values 180-184°C and 254-259°C respectively. These support the presence of intermolecular hydrogen bonding and a high molecular weight of value 210 g/mole in imines(8). On the contrary to that imine syn o-ABox. Had a lower^[21] melting point of value 162.6 °C due to the presence of intra molecular hydrogen bonding. Meanwhile, imine o-ABA had moderate melting point of value 170°C owing to presence of intra molecular hydrogen bonding. In imine p-AB-p-CA contains amino and chloro groups on aldehyde and amine regions respectively. Chloro group had a great tendency of electron

chemical structure and the ability of hydrogen bond formation especially of intermolecular type.

Coming back to table (1) shows a maximum

melting point are observed for imines symbol syn p-

6183

withdrawing property resulted to an electron, deficiency on NH₂ group. The latter may resulted to decrease the possibility of hydrogen bond formation, which resulted to a decrease the possibility of polymerization process in, this imine. point of values 144-146°C.Schiff base p-AB-p-MA has a low m.p of value 40-42 °C due to the weak inter molecular hydrogen bonding formation by NH2 group, this resulted to low m.p for the Schiff base. Schiff base 3,4-DHB-m-HA has undetermined m.p or exists in liquid state. In other words, this Schiff base exists as a tautomeric mixture of keto and enol forms as in the following tautomerism reaction of type:

Any one of these equilibrium form can act as an impurity with respect to the other form. Therefore, it will not surprise to decrease the melting point of tautomeric enol and keto forms or the existence of Imine p-AB-p-NA contains two opposing electron properties of NH_2 and NO_2 groups with intermolecular hydrogen bonding of NH_2 group, resulted to expected melting

this Schiff base in liquid state. Finally, imine 3,4-DHB-m-HA contains three phenol groups. These resulted in a strong hydrogen bond formation of polymeric ^[22] material of melting point value higher than 350°C, which was difficult to be measured by normal melting point apparatus

3.1.2. The I.R Spectra of imines

The I.R spectra of imines (1-8) were measured in solid state and the results were summarized in table (2). Typical I.R spectral for eight solid imines is show in figures (1-5).

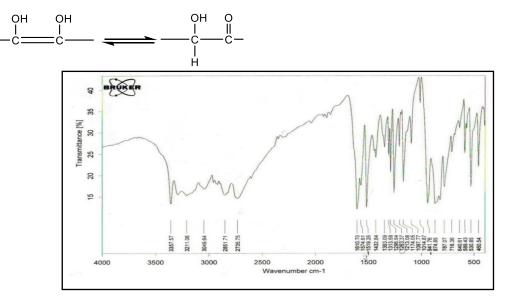


Fig (1): IR spectrum of solid Syn-p-AB-

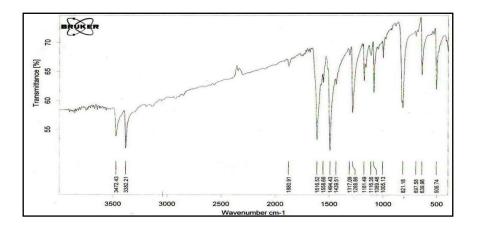


Fig (2): IR spectrum of solid p-AB-p-

Egypt. J. Chem. 64, No. 11 (2021)

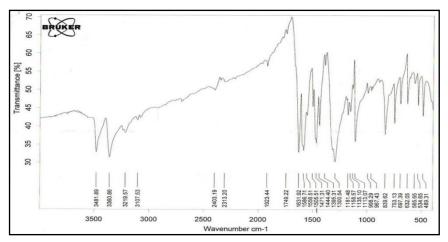


Fig (3): IR spectrum of solid p-AB-p-

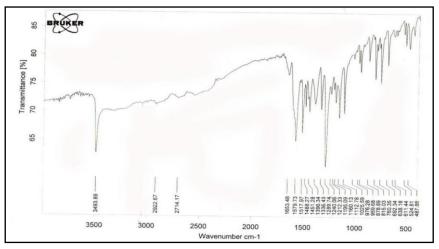


Fig (4): IR spectrum of solid 3,4-DHB-m-

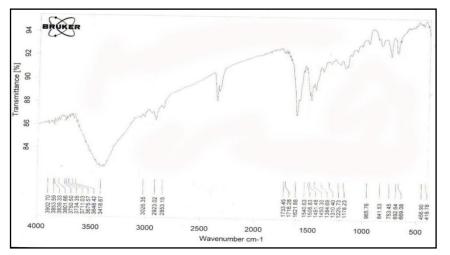


Fig (5): IR spectrum of solid C-m-

These showed the following vibrations: A sharp or a medium stretching wave number in the range (3648.42-3311.26) cm⁻¹, which confirm free OH, groups in these imines. The appearance of asymmetric stretching absorption of primary amine group in the range (3481.89-3357.34) cm⁻¹ of different intensities. Also the appearance of symmetric stretching absorption bands of sharp or medium intensities. Both asymmetric and symmetric bands mentioned confirmed a primary NH₂ groups were present in imines in the table. A stretching hydrogen bonding bands of medium or broad intensities were present in imines in the table. These were of type H-N...H. In the range (3061.53-2915.38) cm⁻¹ a weak absorption bands for stretching C-H groups are observed. In the range (1600.92-1494.43) cm⁻¹ a strong or medium stretching absorptions for aromatic amines. In the range (1668.17-1601.21) cm⁻¹ a strong stretching absorptions for imine linkage of type CH=N was observed.

A strong stretching absorption for C-Cl band, between (821.18-506.74) cm⁻¹. This confirmed the presence of Cl atom in p-AB-p-CA, a very strong wag absorption for CH₂-X band in (1089.43) cm⁻¹. In imine (5) a very strong band for asymmetric stretch absorption of NO₂ group was seen in (1556.51) cm⁻¹ and a very strong band for symmetric stretch for NO2 in (1300.54) cm⁻¹ was seen. All oximes under study showed tautomerism of oxime to nitroso group (N=O), with a strong medium intensity band in a range of value (1521.70-1519.26) cm⁻¹. These tautomerism studies were in agreement with literature^[5,23,24,25]. In imine (6), a weak stretching absorption for C-H alkyl in (2915.38) cm⁻¹ and a symmetric aliphatic C-H bending of methyl group in (1440.82) cm⁻¹ and symmetric aliphatic C-H bending in (1332.17) cm⁻¹. In imine (8), a strong stretching absorption for C=C in (1540.63) cm⁻¹, which confirmed to (C=C) group in conjugation with.

 υNO_2

1556.51 (s) 1300.54 v(s)

υΟ-Н	NH ₂ asymetr ic	vNH ₂ symetri c	υ hydrogen bond	υС-Н	vAromatic	υC=N	υCl	υCH ₃
3211.26(3357.34	3290.72	•	3049.64	1574.61	1610.70	•	
s)	(s)	(m)	-	(w)	(s)	(s)	-	-
3363.50	3460.95	3381.60	3230.79	3046.15	1600.92	1668.17		
(m)	(s)	(s)	(m)	(w)	v (s)	(s)	-	-
	3461.10	3313.94	3199.56	3053.84	1581.46	1601.21		
-	(m)	(m)	(m)	(w)	v (s)	(s)	-	-
							1089.43	
_	3471.98	3382.21	_	3045.0	1494.43	1616.52	v (s)	_
-	(s)	(s)	-	(w)	v (s)	v (s)	821.18-506.74	-
							(s)	
	3481.89	3360.86	3107.53	3046.0	1586.71	1631.92		
-	(m)	(m)	(b)	(w)	(s)	(s)	-	-
				2915.38				1440.82
	3450.10	3350.66	3173.42	(w)	1581.37	1660.07		(s)
-	(m)	(s)	(b)	3038.46	(s)	(s)	-	1332.17
	× /			(w)				(s)
3493.89				3061.53	1579.73	1653.48		
v(s)	-	-	-	(w)	v (s)	(m)	-	-
3648.42			3418.67	3026.35	150683	1621.88		
(m)	-	-	(b)	(w)	(m)	(s)	-	-

These results, encouraging the worker to repeat the I.R. ^[23] in the liquid state. The latter was widely used

for study the type of hydrogen bonding in imines (2,3) which have NH₂ group in ortho position. Typical I.R spectra for imines (2,3) shown in figures (6-8).

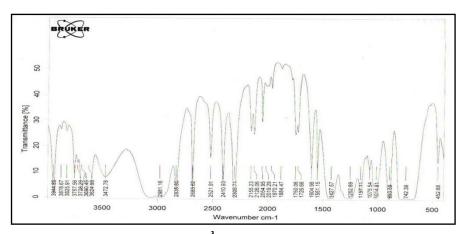


Fig (6): The IR spectra of 10⁻³M of imine (2) before the dilution in

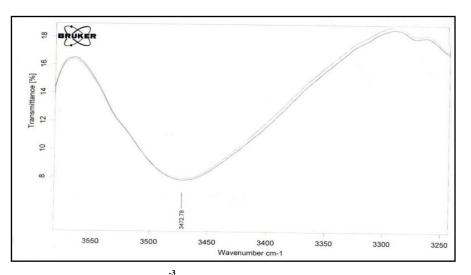


Fig (7): The IR spectra of 10^{-3} M of imine (2) after the dilution in Dichloromethane

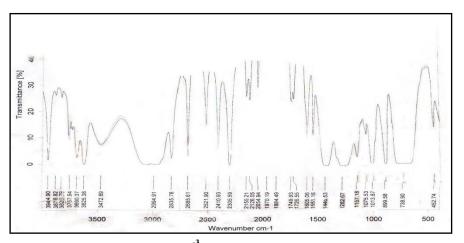


Fig (8): Show the IR spectra of 10⁻³M imine (3) before and after the dilution

Some I.R spectra of imines in liquid state

Actually all imines under study had either NH₂ or OH group. These groups had an ability to form either intermolecular or intra molecular hydrogen bonding.

Such type of bonding was examined by dilution of 10^{-3} M solutions of ratio 1:3 in 1,2-dichlormethane. Results collected were shown in figures (6-8).

Figures (6-8) were confirmed the existence of intra molecular and intermolecular hydrogen bonding in imines o-A Box and o-ABA respectively.imines1 and 2 were studied in which the type of hydrogen bonding was inter or intra due to their containment of the amino group in ortho site, using anon polar solvent ,so the dilution process is able to distinguish whether the hydrogen bond is inter or intra, so the intra hydrogen bond is affected by intensity to a less degree than the inter hydrogen bond. Other imines had intermolecular hydrogen bonding the result agreement with other similar studies in this field ^(24,26,27).

3.1.3. U.V spectra:

The U.V spectra of imines (1-8) show bands in table (3) with molar extension coefficient values of more than 1000 in unit L.mole⁻¹.cm^{-1(21,28)}. These were interpreted by $\Box \rightarrow \Box^*$ transition ⁽²¹⁾ which can identify for knowing molar extension coefficient by using beer-Lambert law. All imines have ε_{max} value greater than one thousand. These were measured in polar solvent (ethanol), these measurements were in agreement with the previous imines (1-8). Were measured electronic spectra in polar solvent (ethanol).

No.	Symbol of imine	λ_1	ε _{1max}	λ_2	ε _{2max}	λ_3	ε _{3max}
		nm	L.mole ⁻¹ .cm ⁻¹	nm	L.mole ⁻¹ .cm ⁻¹	nm	L.mole ⁻¹ .cm ⁻¹
1	Syn-p-ABox	282	18920	219	13050	-	-
2	Syn-o-ABox	293	5940	224.2	4775	-	-
3	o-ABA	291	53320	220.8	26320	-	-
4	p-AB-p-Ca	300.8	2882	243.4	16310	-	-
5	p-AB-p-Na	372	10263.1	355.5	8652.63	367.5	9168.42
6	p-AB-p-MA	326.6	45.500	236.0	29250	-	-
7	3,4-DHB-М-На	314	1224	280.6	1368	233.2	1850
8	С-М-На	268.5	14185	266.5	14260	-	-

A $\pi \rightarrow \pi^*$ transition have identified for all imines from ε_{max} value of greater than one thousand in unit L.mole⁻¹.cm⁻¹.

Table (3) and Figures (9-14) of U.V spectra for imines (1-8) showed the following:

bonding in imines o-A Box and o-ABA respectively. imines1 and 2 were studied in which the type of hydrogen bonding was inter or intra due to their containment of the amino group in ortho site, using anon polar solvent, so the dilution process is able to distinguish whether the hydrogen bond is inter or intra, so the intra hydrogen bond is affected by intensity to a less degree than the inter hydrogen bond. Other imines had intermolecular

hydrogen bonding the result agreement with other similar studies in this field. ${}^{[24,26,2}\!$

Imines (1, 2, 3, 4, 6, 8) showed two U.V. bands. These mean the existence of imines in two different planes. The first one is assigned to aromatic ring originated from aldehyde part of molecule.

The second on belonged to rest molecule. Imines (5,7) on the other hand showed three bands. These were assigned to aldehyde ring, azomethine linkage and primary amine ring respectively.

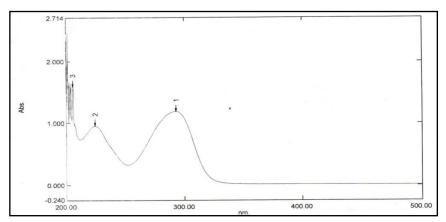


Fig (10): Show the U.V spectra of imine (2) in Ethanol

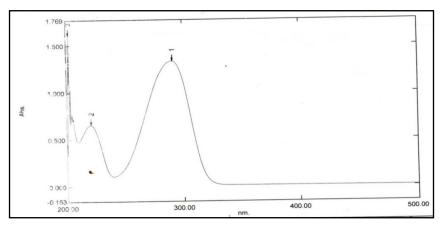


Fig (11): Show the U.V spectra of imine (3) in Ethanol

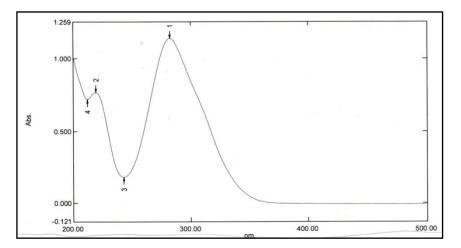


Fig (9): Show the U.V spectra of imine (1) in Ethanol

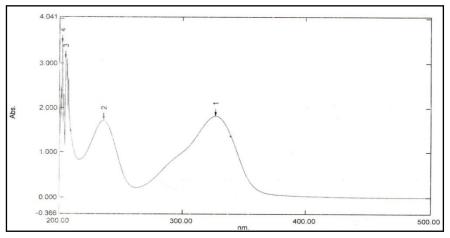


Fig (13): Show the U.V spectra of imine (6) in Ethanol

Fig (14): Show the U.V spectra of imine (8) in Ethanol

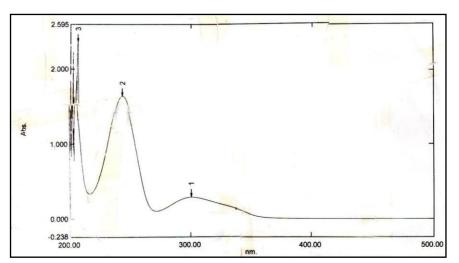


Fig (12): Show the U.V spectra of imine (4) in Ethanol



Fig (15): Show the H¹N.M.R spectra of imine (1)

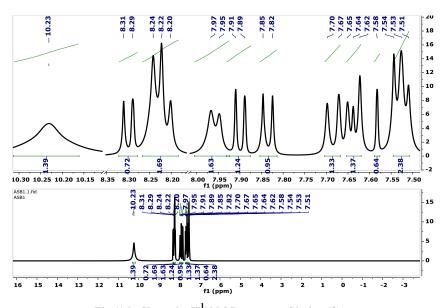


Fig (16): Show the H¹N.M.R spectra of imine (8)

3.1.4. H¹NMR spectra:

The H¹NMR spectra of imines (1-8) were measured and showed the following:

Imine(1): (s,1H,OH) 10.57, (s,1H,C=N) 7.9,(d,4H,Ar.) 7.26-6.53, (s,2H,NH2) 3.40 as in fig.(15).

Imine (2): (s,1H,OH) 12.09, (s,1H,C=N) 7.9, (m,4H,Ar.) 7.63-6.54, (s,b,2H,NH2) 5.93.

Imine(3): (s),(d,4H,Ar.) 7.64-7.61, (m,5H,Ar.) 6.57-6.53, (s,b,2H,NH2) 5.89.

Imine (4): (s,1H,C=N) 8.32, (d,4H,Ar) 7.61-7.39, (d,4H,Ar.) 7.20-6.62) (s,2H,NH2) 5.91.

,Ar.) 7.91-7.51 as in fig.(16).

Imine(5): (s,1H,C=N) 10.32, (d,4H,Ar.) 8.85-8.26 (d,4H,Ar.) 7.69-8.02, (s,2H,NH2) 5.91.Imine (6): (s,1H,C=N)8.66, (d,4H,Ar.) 7.23-7.21, (d,4H,Ar.) 7.25-6.55, (s,2H,NH2) 3.32 (s,3H,CH3) 2.24,.

Imine(7): (s,1H,C=N) 8.45, (s,2H,OH) 14.79 (s,1H,OH) 10.13, (s,2H,Ar.) 6.4-7.62 (d,4H,Ar.) 12.01-12.4, (t,1H,Ar) 7.39

. Imine (8): (d,1H,C=N) 8.31-8.29, (s,1H,OH) 10.23, (t,H,C=C) 8.24-8.20, (d,H,C=C) 7.97-7.95, (m,4H

Egypt. J. Chem. 64, No. 11 (2021)

3.2. Chemical methods ^[27]:

These were accomplished by using standard procedures for testing functional groups in imines listed in table (1). These showed tests for the following groups: (Primary aromatic amine, Oxime group, Aromatic nitro group, Phenol group and Aliphatic alkene C=C).

All these tests displayed in table(4) when applied on imines (1-8) listed in table (1), showed a positive result, which support the correct synthesis of imines under study.

All these results were in full agreement with other similar studies in this field. ^[29,30]

No. of imine	Ferric chloride test	Diazotization test	Bromine water test	Ferrous hydroxide test
1	(Violent color) +ve	+ ve	-	-
2	(Violent color) +ve	+ ve	-	-
3	-	+ ve	-	-
4	-	+ ve	-	-
5	-	+ ve	-	+ve (red brown) precipitate
6	-	+ ve	-	-
7	(blue) +ve	-	-	-
8	(blue) +ve	-	+ve decolorization of bromine solution	-

Table (4): Show the chemical test of imine (1-8).

4. Conclusions

All new imines were prepared by standard method of reaction of aldehyde with primary amine and hydroxyl amine, the structure of all imines was confirmed by chemical method (test) with positive result and physical method, the physical methods contained melting points and spectroscopic methods ,which it included I.R, U.V and H¹NMR spectra, the I.R spectra was used in the liquid state to distinguish the intra hydrogen bond from inter, the presence of intra hydrogen bond of some imine worked to raise the melting point of these compounds, the I.R spectra of imines (1,2) show tautomerism reaction of oxime to nitroso group.

Conflicts of interest

There are no conflicts to declare

Acknowledgments:

The authors gratefully acknowledged Northern Technical University, to support for completing search requirements.

References:

1. Arulmurugan1 S., Kavitha1 H. P. and Venkatraman B.R., "BIOLOGICAL ACTIVITIES OF SCHIFF BASE AND ITS COMPLEXES: A REVIEW", RASAYA J. Chem., Vol.3, No.3, (2010), p385-410.

- Koll A.,"Specific Features of Intramolecular Proton Transfer Reaction in Schiff Bases", Int. J. Mol. Sci., Vol. 4, (2003), p.434-444, DOI:10.3390/i4070434
- Azzouz A.S.P and Hussin M.A.E., "Determination of structure for acid oxime and phenol derived from aromatic and aliphatic carbonyl compounds by physical methods", Tikrit J. Pure Sci., Vol. 15, No.3, (2010), p233-255.
- Saeed A.A.H., Wattion. M.H. and Sultan. A.W.A, "The effect of temperature and the Kinetics of the hydrolysis of some diketone Schiff bases". Thermochimica Acta, 68, (1983), p17-22.
- 5. Al-Dabbagh A.B.N., "Practical and theoretical study for tautomerism and azodyes formation for a number of aromatic imines", Ph.D. Thesis Mosul University, (2013),.
- Saieed M.S. and Zaidan M. A., "Kinetic study for the oxidation of amino acids Schiff base using permanganate ion", Iraqi, Nat.J. Chem., 48, (2012), p445-456.

Egypt. J. Chem. 64, No. 11 (2021)

- Xarier A., N. and Srividhya N., "Synthesis and study of Schiff base ligands", IOSR, J. Of Applied Chemistry (IOSR-JAC).Vol.7, (2014), p6-15.
- Kadhiravansivasamy. K, Sivajiganesam. S, Periyathambi T, Nadhakumar. V, Chidhambram. S and Manimekalai .R, "Synthesis and characterization of Schiff base Co¹¹, Ni¹¹ and Cu¹¹ complexes Derived from 2-Hydroxy-1naphthaldehyde and 2-Picdylamine", Mod. Chem., appl., 5:1, (2017), p.1000197, DOI: 10.4172/2329-6798.1000197
- Azzouz A.S. and Al-Niemi M.M., "Determination of structures derived from 2,4-dihydroxy benzaldehyde by chemical and physical mothods", J. Edu. Sci., Vol.22, No.1, (2009), p1-16.
- Azzouz A.S.P. and Ali R.T., "Synthesis of Schiff base Drived from Benzaldehyde and Salicyaldehyde with some Amino acid by a New Development method", Nat. J. Chem., 37, (2010), 158-168.
- 11. Montazerozohori M., Khani S., Joohari S. and Musavi S.A, "Synthesis spectral and
- some new Schiff bases of pharmaceutical interest", Ann. Adv. Chem.1, (2017), p.053-056, DOI: 10.29328/journal.aac.1001006
- 17. Warad I., Ali O., Al Ali A., Jaradat N. A., Hussein F., Abdallah L., Al-Zaqri N., Alsalme A. and Alharthi F. A., "Synthesis and Spectral Identification of Three Schiff Bases with а 2-(Piperazin-1-yl)-N-(thiophen-2-yl methylene)ethanamine Moiety Acting as Novel Pancreatic Lipase Inhibitors: Thermal, DFT, Antioxidant, Antibacterial, and Molecular Docking Investigations", Molecules, Vol. 25,2253 (2020),p1-15, doi:10.3390/molecules25092253
- 18. Al-Salami B.K., Gata R.A. and Asker K.A., "Synthesis spectral, Thermal stability and Bacterial Activity of Schiff Bases Derived From. Selective Amino Acid and Their Complexes", Advance in Applied Science Research, Vol.8, No.3, (2017), p.4-12.
- Prakash A. and D. Adhikari, "Application of Schiff bases and their metal complexesa review", Int. J. Chem. Tech Res., 3, (2011), p1891-1896.
- 20. Mohan C., Kumar V., Kumari N., Kumari S., Yadav J., Gandass T. and Yadav S., "Synthesis, Characterization and Antibacterial Activity of Semicarbazide Based Schiff Bases and their Pb(II), Zr(IV) and U(VI) Complexes", Advanced Journal

thermal Behavior of some new four coordinated complexes", E. Journal of Chemistry, Vol.9, No.4, (2011),p.2483-2492.

- 12. Dudhat S.R. and Kulkarni S., "Application of Schiff Bases and their Metal Complexes as Insecticides and plant Growth Regulators A Review", IJETSR, Vol.5, No.3, (2018), p.3394-3386.
- 13. Aderibigbe S.A., Adegoke O.A., Idwon O. and Olaleye S.O., "Sensitive spectrophometric Determination of 2,6-Dinitrobenzene Diazouniam Ion", Acta, Poloniapharmaceutica, Vol.69, No.2, (2012), p.203-211.
- Kumar J., Rai A. and Raj V., "Acomprehnsive Review on the pharmacological Activity of Schiff Base containing Derivatives", Organic & Medical Chem. IJ, Vol.1, No.3, (2017), p88-102,DOI: 10.19080/OMCIJ.2017.01.555564
- 15. Kumar A., Verma S., Mishra A.K and Kumar S., "Syntheis of

of Chemistry-Section B Natural Products and Medical Chemistry, Section B, Vol.2, No.(4), (2020), p187-196,DOI:10.22034/ajcb.2020.113663

- 21. Vogel A.I., "Text book of Practical Organic Chemistry", 5th Ed., Longman , London, P.847.
- 22. Pimental G.C. and Mecellellan. A.L., (1960), "The hydrogen Bond Freeman", New York , (1989), p.67-170.
- 23. Azzouz A.S.P. Al-Niemi and M.M.H., "Study on Association of substituted Benzonic Acids and other Acids by physical methods. Effect of Temperature and Structure of Acids on Association Process", Z. Phys. Chem., 219, (2005), p1591-1608.
- Al-Dabbagh A.B., "Tautomerism study of some Aromatic Schiff bases", M. Sc. Thesis, Mosul University, (1999),.
- Azzouz A.S.P. and Al-Dabbagh A.B.N., "The Influence of pH and Temperature on Tautomericm Reaction of some Aromatic Mono and bi Schiff Bases", Nat. J. Chem., 26, (2007), p.295-304.
- Azzouz A.S.P. and Hussin M.A. and Al-Dabbagh M.G., "Thermodynamic study on Toutomerism Reaction of some Benzoin Compounds by Halogen titration method", Nat. J. Chem., 38, (2010), p.361-372.
- 27. Azzouz A.S.P., Rahman A.A.A. and Taki A.G., "Determination of Imines Structures Derived from 2-Hydroxy-1-

Naphtrnldehyde by physical methods", J. Edu. Sci., Vol.15, No.2, (2003), p.1-5.

- 28. Majer R. and Azzouz A.S., "Mass Spectrometric Study of Structural Isomerism of Aromatic Aldotimes" J. Chem. Soc. Farad Trans., Vol.1, No.79, (1983), p.675-688.
- Silvertein R.M., Basster G.C. and Morril T.C., "Spectrophotometric Identification of organic compounds", 2nd.Ed., John, Wiley, New York (1976),.
- Azzouz A.S.P and Al-Hyali D.E., "Determination of structures for some syn and Anti Isometric Aril Schiff Bases by some Spectroscopic and physical methods", Int. J. Chem., Vol.6, No.3,

(2014), p.9698-

- 9701doi:10.5539/ijc.v6n3p21,
- Azzouz A.S.P. and Al-Abassy A.K.E., "Evidences for zwitterions formation during determination of pka values for oaminobenzylidene,o,m,p-hydroxy anilines", Phy. Chem. An Indian J., Vol.9, No.2, (2014), p.41-47.