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Abstract 

Water is the cornerstone of all life. With cascading warnings of water shortages, treating wastewater to achieve the 

purity required for various applications ranging from irrigation of crops to its use in drinking water is critical.  Both carbon dots 

and MOFs have attracted intense interest, and many investigations have been raised, especially concerning their function as 

photocatalysts. The carbon dots show great advantages: biocompatibility, ease of conducting chemical reactions to change the 

nature of their surface, good colloidal stability, and low cost. These good qualities give both carbon dots and organic metal 

frames great potential to replace the traditional catalysts currently used in treating water from organic dyes. The applications of 

metal-organic frameworks (MOFs), which contain photo-active sites, especially ZIF-8, in the field of photocatalysis to remove 

dyes as water pollutants, have been discussed. The MOFs materials prepared by bonding metal ions with the organic ligands 

showed superior photoactivity properties to their individual counters. This article summarizes the progress made in preparing 

carbon dots and summarizing the synthesis methods and emission mechanisms. We envision that the carbon dots will ultimately 

have significant commercial use and become a strong competitor to some fluorescent materials currently used to treat 

wastewater. This review provides insights into both basic research and practical applications of carbon dots.  
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1. Introduction 

Water, for all living things on Earth, is the basis of 

life. Confronting limited water resources with 

increasing urbanization requires highly advanced 

technologies to ensure water quality. Water is life as it 

directly affects human health. Likewise, many 

industries and economies depend on freshwater [1]. 

The percentage of farm water directed to irrigation of 

crops represents about 40% of the farm water, and 20-

40 liters per person consumes the interface in its daily 

use and may increase to 50 liters per day according to 

the place in which the person resides. Consequently, 

the human race’s consumed water, whether for 

personal use or in industry, represents a huge 

proportion that must be utilized by disposing of 

industrial or household wastes [2]. According to the 

World Health Organization, water pollution has been 

defined as bacterial, chemical, physical, or radioactive 

contamination or any additives that may affect water’s 

physical properties [3].  Water pollution has many 

negative effects on the living, human beings, the 

environment, and aquatic communities. Water 

pollution causes approximately 14,000 deaths per day, 

mostly due to contamination of drinking water by 

untreated sewage in developing countries [4]. 

Generally, the pollutant comes from sewage, and 

industrial effluents discharged into the river without 

pretreatment and surface runoff from agricultural land 

where fertilizer, pesticides, insecticides, and manures 

are used [5].  

Chemical pollutants of water, whether organic or 

inorganic, are the most dangerous to the ecosystem 

and represent a real threat in various countries. 

Industrial wastes contain many chemicals that are 

difficult to decompose environmentally [6]. Some 

industries tend to color their products, especially the 

products we deal with daily, to improve their vault and 

shopping attractiveness. Many chemical dyes are 
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widely used to enhance the shape of these products and 

are usually non-toxic. Still, some dyes are used 

industrially and effectively in large industries such as 

textiles, leather tanning, plastics, paper, and cosmetics 

that harm living organisms and even agricultural soil 

and groundwater [7]. 

Organic dyes are one of the main pollutants 

released into industrial wastewater from textile 

factories, especially organic dyes soluble or poorly 

soluble in water. Those classified internationally as 

reactive, direct, and basic/ acidic. Since it has a high 

solubility in water, its removal by traditional methods 

is a challenge [8, 9], for example, but not limited to, 

the global production of color pigments is close to 

800,000 tons per year, and about 10-15% of these dyes 

are lost during the textile dyeing process [10]. A large 

amount of potable water is wasted by the textile 

industry ( i.e., about 200 liters of water is consumed to 

produce 1 kg of textiles), so a large amount of 

wastewater is usually discharged without taking into 

account any pretreatment, which leads to an increase 

in water pollution [11]. Dyes dissolved in the 

wastewater of textile factories cause great harm to 

aquatic organisms. It reduces and sometimes prevents 

sunlight permeability in the water, reducing the rate of 

photosynthesis in aquatic plants and causing a 

decrease in the level of dissolved oxygen [9]. Highly 

colored waste of industrial pollutants is considered the 

most dangerous and causes cancer, as it is directly 

related to the destruction of the environment and the 

emergence of multiple diseases for living organisms 

[12], so the formation of scientific research at their 

disposal has become an imposed matter [13]. In 

general, chemical, physical and biological treatment 

procedures can be used for this purpose; These 

procedures differ in their efficiency, whether in the 

dissolution of the dyes or their adsorption efficiency, 

cost, and yield [14].  

There are many types of research, in addition to 

those concerned with water purification using 

nanomaterials, which are receiving high attention, 

especially in the field of energy such as hydrogen [15-

17], biodiesel production [18-25], and also our groups 

have published the use of nanometric materials in the 

production of production and transportation of heavy 

oil [26-34] and others [35, 36] to secure the human 

race’s needs of clean and renewable energy. Here, this 

review will discuss two nanocomposites, namely 

metal-organic framework and carbon dots, and their 

role in removing pollutants from water. Emphasis will 

be placed on the preparation methods, the morphology 

of the prepared compounds, and the results of their use 

as photocatalysts or adsorbents for toxic dyes removal 

from water. In addition, this review provides an 

objective, comprehensive overview through a 

systematic discussion of methods for preparing MOFs 

and carbon dots and an in-depth look at the different 

preparation methods for these materials. Its 

performance is reviewed as photocatalysts by itself or 

loaded with some materials and a review of its 

mechanism of action . 

 

2. Metal-organic framework 

By seeking to find new porous materials that differ 

in their composition from zeolite compounds and their 

derivatives, it was found that Metal-organic 

frameworks (MOFs) are among the most important 

porous group members’ materials [25, 37, 38]. MOFs 

are of unparalleled interest due to their large surface 

area compared to functionalized mesoporous materials 

[34, 39-49], polymer membrane [42, 50] and ease of 

surface grafting with various functional chemical 

groups, and large pore size. MOFs are aromatic or 

aliphatic moieties attached to carboxyl, amine, or 

imidazole groups with some transitional elements. 

MOFs have proven their distinction over others in 

many areas, including adsorption  [51, 52], storage of 

various gases, separation of liquids and gases [53], and 

heterogeneous catalysis  [51, 52, 54]. More 

specifically, MOFs are composed of mono-metallic 

ions or metallic clusters [55-58] coordinated 1,4‐

benzene dicarboxylic acid, 1,3,5‐benzene 

tricarboxylic acid, 4,4′‐bipyridine; 4,5‐imidazole 

dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, 4-

bis[(1H-pyrazole-4-yl)ethynyl]benzene, etc., [59] 

(Figure 1). Interesting features are that MOFs have 

distinct properties, for example, their crystallinity 

combined with extremely high porosity (up to 90% of 

the free volume), massive interior spaces extending 

beyond 6000 m2g-1, and a well-defined crystalline 

structure, which increases their applications [60-64]. 

For the first time, MOFs with considerable porosity 

were prepared in 1995 by the scientist Yaghi and Li 

[65], who used 4,4'-bipyridine as a linker and Cu(I) as 

a central metal. The authors found that the obtained 

material had a three-dimensional crystalline 

framework containing pore space with a channel (≈ 2 

x 4 Å). These channels are similar to some zeolitic 

types, such as analcime and natrolite. They also found 

that this substance has good stability in the air for long 

periods, while its stability in boiling water reaches one 

hour. 
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Figure 1. Some examples of MOFs’s legands [59, 66]. 

 

There are over 70 000 MOFs recorded in the 

Cambridge Structural Database [67]. The material of 

Institut Lavoisier is known as MIL MOFs (MIL‐53, 

MIL‐100, and MIL‐101), which are composed of 

inorganic moieties (lanthanide or transition metals) 

and legends (terephthalic or trimesic acid) [68]. The 

University of Oslo series, known as UiO‐66 and UiO‐

67 MOFs, comprises zirconium oxide as transition 

metal coordinated 1,4-benzene dicarboxylic acid or 

biphenyl-4,4′-dicarboxylate as ligands [69]. Hong 

Kong University of Science and Technology 

fabricated HKUST‐1 from Copper nitrate trihydrate 

and 1,3,5-benzene tricarboxylic acid in basic 

conditions [70]. IRMOF series is the largest series 

where the zinc nitrate could be replaced by different 

metals to coordinate terephthalate ions, and also the 

other ligands could be introduced [71]. Zeolitic-MOFs 

series (ZIF-8, ZIF‐10, ZIF‐68, and ZIF‐69) were 

fabricated from different imidazole moieties as ligand 

and a zinc-metal [72]. 

ZIFs are a class of imidazole zeolite frameworks with 

three-dimensional porous structures that arise from 

imidazole derivatives’ interaction with the tetrahedral 

metal ions, like zinc or cobalt. The fact that the angle 

between the metal-imidazole-metal corresponds to the 

angle of zeolites (–Si–O–Si–, 145°) has led to more 

interest in this class [1, 2]. ZIFs are characterized by 

ease of preparation, high porosity, and considerable 

thermal and chemical stability; these qualities make 

them candidates for adsorption and gas storage 

applications. Although ZIFs have a unique advantage 

over zeolites, the hybrid system frameworks of ZIFs 

are supposed to have more surface modification 

flexibility and often allow surface properties to be 

rationally built [73-75]. The ZIF-8 (Figure 2) 

framework (Zn (MeIM)2), one of representative 

MOFs, was used as a support; it holds an intersecting 

three-dimensional structural feature, large pore size 

(diameter of 11.6 Å), large surface area, and high 

thermal stability (over 500 °C) [76]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Graphic diagram presented two strategies of 

the summarized 5-Fu released from ZIF-8. C = grey, 

N = blue, O = red, F = light blue, Zn = green, [77]. 

 

3. Carbon Quantum dots 

Due to quantum dots’ advantages such as low cost, 

excellent sensitivity, fast response time, fluorescence 

(FL) based sensing, quantum dots have attracted a lot 

of attention [78]. Carbon materials and their 

derivatives always find their way to be in the focus of 

scientists’ interest, as they can be found in many 

configurations with unique chemical and physical 

properties such as diamond, nano-diamond graphite, 

activated carbon, charcoal, carbon nanotubes, 

fullerene, and more recently, graphene and quantum 

dots (CQDs). Quantum dots (QDs) are semiconductor 

nanocrystals with dimensions smaller than the exciton 

Bohr radius, and carbon dots (CDs) generally refer to 

small carbon nanoparticles, in a broad definition of 

aqueous or other suspensions. CDs are new forms of 

discovered fluorescent nanomaterials that have 

emerged to be extremely common in the last decade 

due to their unusual optical properties, low toxicity, 

biocompatibility, high aqueous stability, rapid 

synthesis, etc. [78-80] (Figure 3).  

 

 

 

 

 

 

 

 

 

 

Figure 3. Preparation of fluorescent carbon dots and 

the sensing of methylmercury [81]. 
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The CQDs were discovered by accident during the 

separation and purification of single-walled carbon 

nanotubes (SWCNTs) by Xu et al. in 2004 [82]. That 

caused the following surveys to utilize CQDs’ optical 

properties and generate a new category of applicable 

fluorescent nanomaterials. Fluorescent carbon 

nanomaterial was termed “carbon quantum dots” by 

Sun in 2006, who submitted a synthesis technique via 

surface passivation to generate CQDs with higher 

fluorescence emissions [83]. The top-down method 

[82-84] and the bottom-up methods were used to 

synthesize CQDs  [85-87] (Figure 4). 

  

 

 

 

 

 

 

 

 

 

Figure 4. Different approaches of CD synthesis [88]. 

 

3.1. Top-down approaches for fabricating carbon 

dots 

 

3.1.1. Arc-discharge method 

Xu et al. [82] note that by using the electrophoresis 

method (using an electric current to move particles 

inside a porous gel, where the function of the pores in 

the gel is to sift these particles to allow the smaller 

ones to pass more quickly than the rest of the particles) 

to purify single wall-carbon nanotube soot. The 

authors notice a faster-moving layer than long 

nanotubes and shorter tube materials, and they named 

it nanodots. The nanodots were distinguished by light 

emission when they were excited at 365 nm, and 

elution light emission could be separated into four 

bands (green, blue, yellow, and orange) (Figure 5). 

The nominal molecular weight limit (NMWL) was 3–

10 K, 10–30 K, 30–50 K NMWL, and their 

composition was 55.93%-carbon, 2.65%-hydrogen, 

1.2%- nitrogen, and 40.33%-oxygen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (A) Fractions of fluorescent carbon under 36 

nm, (B) TEM tubule carbon, (C) purified SWNTs, and 

(D) chopped SWNTs [80]. 

 

3.1.2. Laser ablation/irradiation approach 

Sun et al. [89] proposed a new approach for 

preparing carbon-based fluorescent nanomaterials and 

labeling them with carbon dots. Carbon dots were 

obtained by laser ablation of a carbon target in the 

presence of inert gas (argon) and water vapor as 

carriers. The graphite powder and cement were hot-

pressed to obtain the carbon target, then a gradual 

treatment of baking and annealing under an argon flow 

was performed. The resulting carbon sample was 

refluxed in 2.6 M nitric acid for 12 h. The surface 

passivation of the carbon sample with poly (ethylene 

glycol) diamine compound 

(H2N(CH2CH2O)nCH2CH2NH2, n ∼ 35) resulted in 

photoluminescence. This was followed by the 

reporting of other techniques, including the 

combination of laser ablation and simultaneous 

surface passivation processes (a single process) [90-

92]. Pulsed Nd: YAG laser was used to irradiate 

graphite-organic solvents, achieving the simultaneous 

synthesis of surface passivated carbon dots. The 

researchers also suggested that the emission properties 

of carbon dots can be adjusted by properly selecting 

the organic solvent, such as different molecular weight 

poly(ethylene glycol) diamine, diethanolamine, etc. 

[93]. 

3.1.3. Electrochemical approach 

For the first time, Ding and coworkers introduced 

a new approach to preparing carbon blue dots from 

multi-walled carbon nanotubes using an 

electrochemical approach [94]. MWCNTs were 

prepared by a chemical vapor deposition method, and 

CDs were designed in a mixture of acetonitrile and 
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tetra-ammonium perchlorate as the supporting 

electrolyte solution. After a certain number of cycles, 

the mixture solution turned dark brown due to carbon 

dots’ formation.  The purified CDs’ size was 2.8 nm 

with a lattice spacing of 3.3, characterized by emitting 

bright blue light when excited by a 340 nm light 

source. Li et al. [95] also use an electrochemical 

approach to obtain carbon dots using anode and 

cathode made of graphite. The authors note that carbon 

dots are successfully formed in the basic electrolyte 

(NaOH/EtOH) and cannot be obtained in an acidic 

electrolyte (H2SO4/EtOH) (Figure 6). Carbon dots 

have a diameter of less than 4 nm with a lattice spacing 

of about 0.32 nm. Similarly, carbon dots can be 

obtained from graphene films and carbon fibers [95-

97]. 

 

 

 

 

 

 

 

 

 

 

Figure 6 (a,b). TEM images of as‐prepared GQDs 

[95]. 

 

3.1.4. Chemical exfoliation method 

Liu et al. [98] report on preparing, purifying, and 

characterize fluorescent, multicolored carbon 

nanoparticles with a size less than 2 nm. The carbon 

nanoparticles were prepared from the combustion 

candle soot’s oxidation (using 5 M HNO3) as a 

common carbon resource. Polyacrylamide gel 

electrophoresis was utilized to purify and separate the 

particle size of the resultant carbon material. The 

resulting material was fluorescent by excitation with 

ultraviolet rays of a single wavelength (312 nm). Peng 

et al. [99] prepared graphene quantum dots, GQDs, 

with great optical and electronic properties. The 

quantum dots are fabricated from the chemical 

exfoliation (using a mixture of H2SO4 and HNO3) of 

cheap and commercially available material, pitch-

based carbon fibers (Figure 7). The as-produced 

GQDs had a 2D zigzag edge morphology with a 

narrow size of 1-4 nm. by changing process 

parameters, the PL of the GQDs can be detailed by 

resizing the GQDs. Ye et al. [100] have reported an 

easy approach to assemble tunable GQDs from 

different types of coals. It has been demonstrated that 

the unique coal structure has been shown to have the 

unique advantage of producing GQDs over other sp2-

carbon allotropes. Oxidation makes it easier to 

displace the crystalline carbon within the coal 

structure than the pure sp2-carbon structures, resulting 

in nanometer-sized quantum dots with amorphous 

carbon available at the edges (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Oxidation cutting scheme of CF to 

GQDs. (a) b) the GQD’s TEM photos (synthesised 

temperature of the reaction at 120 °C) and (b) the 

GQD’s HRTEM. (c) GQD AFM photo. (d) GQDs 

distribution of size and height. (e) GQD Edge HRTEM 

graphic, 2D FFT Edge in inset in (e). (f) Schematic 

diagram illustrating the alignment and the relatively 

zigzag and armchair paths of the hexagonal graph 

network. (g) Schematic diagram of the HRTEM image 

edge termination in (e). (h) Described GQD chemical 

oxidation process for CF [99]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a) Simplified macro image. (b) SEM 

representation of coal (c) The b-GQD synthesis 

schematic illustration. (d) B-GQDs TEM (e) the 

HRTEM image of b-GQDs representative. (f) b-GQD 

b-AFM [100]. 
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3.2. Bottom-up approaches for fabricating carbon 

dots 

3.2.1 Thermal pyrolysis approach 

Giannelis et al. [101] documented the pyrolysis 

method for producing nano-carbon materials. The 

authors used ammonium citrate as a carbon source to 

fabricate carbon dots, while the ammonium 

counterpart was a modifier. The physical properties of 

the carbon surface’s nature, whether hydrophilic or 

hydrophobic, can be controlled by changing the 

carbon source. For example, octadecyl ammonium 

citrate (C60H125N3O7) was used to produce a 

hydrophobic surface nature, and 2-(2-aminoethoxy) 

ethanol (C4H11NO2) used to denature the surface of a 

hydrophilic. In both types, the ammonium carboxylate 

thermal dehydration leads to the formation of covalent 

amide bonds, taking into account the different sample 

preparation pathways. Organophilic surface carbon 

dots fabricated from ramping calcination of carbon 

source (e.g., citric acid) in the air (300 °C), while 

hydrophilic carbon dots fabricated from the 

hydrothermal of a mixture of citric acid and 2-(2-

aminoethoxy) ethanol. The organophilic carbon dots 

showed a sharp monodispersed size of 7 nm than the 

hydrophilic carbon dots. The effect of temperature 

change on carbon points’ nature resulting from the 

pyrolysis process citric acid and citric acid – 

ethanolamine was studied by Giannelis et al. [102]. 

The authors showed that pyrolysis at 180 ° C for half 

an hour leads to carbon dots’ production, whose 

particles cannot be observed by DLS or TEM analyses. 

They have a strong excitation-independent PL 

emission arising from organic fluorophores. More 

specifically, the amide bonds contributed to the 

emission of carbon dots. With an increase in 

temperature to 230 °C, spherical carbon dots of 19 nm 

in size were formed to be observed with TEM. The 

authors explained that the temperature increased the 

entanglement between the carbon dots formed by 

increasing the synthesis of covalent amide bonds. 

Increasing the temperature to 300 °C led to the 

formation of carbon dots with an average size of 8 nm. 

The small size of the carbon dots, in this case, is 

produced from the emission of carbon dioxide during 

the pyrolysis process. Irregular particles of carbon dots 

appeared by increasing the degree of the pyrolysis 

process to 400 °C due to the aggregation of carbon 

dots; however, these carbon dots retained their optical 

properties. Wang et al. [103] have documented an easy 

chemical method for synthesizing highly efficient 

carbon dots by surface passivation of crude carbon 

dots (CDs) with poly(ethylene glycol) that, when 

irradiating with 407 nanometers-light, emit white light 

from solution and film. The carbon dots are 

synthesizing through the thermal oxidation in molten 

lithium nitrate under inert gas. The choice of nitrate 

counter anion is due to nitrate’s ability to serve as 

oxidizing media, forming O2− or O. The carbon dots 

are will-dispersed in different solvents and had stable 

PL at different pH values. The surface passivation 

carbon dots with poly (ethylene glycol) showed a 

broad visible spectrum emission when excited with 

blue light (Figure 9).  Guo et al. [104] prepared carbon 

dots from unzipping of as-prepared epoxy-enriched 

surface polystyrene colloidal crystal with the desired 

size through the calcination process (200, 300, and 400 

°C for 2 h under inert gas). Upon UV-irradiation, the 

carbon dots calcined at 200 °C showed bright blue 

fluorescence while calcined at 300 and 400 °C showed 

orange and white fluorescence (Figure 9).  Liu et al. 

[105] used a green route to fabricate fluorescent 

carbon dots using a one-step pyrolysis process of hair 

as a new precursor of carbon dots. This strategy was 

characterized by using non-toxic solvents or expensive 

raw materials and providing an effective way to take 

advantage of the hair waste. The as-prepared carbon 

dots showed high compatibility with hydrophobic 

polymer (poly (methyl methacrylate)) and hydrophilic 

polymer (polyvinylpyrrolidone) that exhibit blue 

fluorescence when irradiated with UV-light. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Optical photograph of the FCDs solution 

and film excited by (a) 5 mm commercial UV LED 

(375 nm), (b) 407 nm laser and (c) corresponding 

absorption and emission spectra of the FCDs solution 

and film excited at 407 nm [103], (d) Schematic 

illustration of the pyrolysis of photonic crystals 

production of carbon dots [104]. 

 

3.2.2. Hydrothermal method 

 The hydrothermal method’s manufacture of carbon 

dots was reported in 2011 [106] by dissolving 

monopotassium phosphate and glucose at specific 

molar ratios in water. Next, the mixture was 

transferred, after deoxygenation, to a Teflon-lined 
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autoclave and heated at 200 ° C for half a day. After 

separating the sediment using centrifugation, the upper 

layer was freeze-dried and re-dispersed with ethanol to 

form a suspension.   The advantage of this approach 

from others is that the formation of carbon points and 

their surface treatment occur simultaneously. The 

variation of glucose/to KH2PO4 molar ratio resulted in 

turning the PL properties; for example, when carbon 

dots resulted from glucose:26- KH2PO4 excited by 

UV-irradiation, the carbon dots showed green 

emission. In addition to glucose, other natural 

resources could be used to manufacture carbon dots at 

low temperatures (150 °C), such as orange juice. The 

authors suggested that the carbon dots resulted from 

the hydrothermal carbonization of the orange juice’s 

organic components. Carbon dots were rich in –OH 

and –COOH function groups, giving carbon dots 

excellent water solubility [107] (Figure 10). The 

carbon dots were spherical with a diameter ranging 

from 1.5 and 4.5 nm. This strategy has resulted in 

further work on biotic resource modules for carbon 

dots synthesis [108]. 

Hsua and  Chang [109] proved that carbon dots 

with hydrophilic surface nature and photo-active 

properties could be prepared from different organic 

compounds containing carboxyl and amine groups. 

The authors used glycine, 2-amino-2-hydroxymethyl-

propane-1,3-diol, cadaverine (NH2(CH2)5NH2), and 

ethylenediaminetetraacetic acid by one-pot 

hydrothermal synthesis at 300 °C for 2 h. The authors 

suggested the carbon dots prepared through multi-

steps, including water elimination, enable 

polymerization, carbonization, and surface 

passivation. The carbon dots morphology was 

spherical (2.6 ± 0.5, glycine; 3.3 ± 0.4, 2-amino-2-

hydroxymethyl-propane-1,3-diol; 3.0 ± 0.5, 

ethylenediaminetetraacetic acid; and 7.9 ± 0.8 nm, 

cadaverine, with a lattice spacing distance of 3.4 Å. 

All carbon dots showed blue PL as excited by 365 nm 

light. By selecting the appropriate organic molecules 

and controlling the reaction conditions of pH, 

temperature, and molar concentration, it is possible to 

obtain carbon dots covering the visible range [110-

112]. 

 

 

 

 

 

 

 

 

 

Figure 10. (a) TEM images of C-Blue and C-Green 

[106], (b) Illustration of formation of CDs from 

hydrothermal treatment of orange juice [107]. 

3.2.3 Microwave heating method 

Zhu et al. [113] first discovered the method of 

microwave pyrolysis to prepare carbon dots. They 

considered this method comfortable and clean, and the 

possibility of using it on an industrial scale is great. 

The authors have used poly (ethylene glycol) (Mn 200) 

and polysaccharides such as glucose as feedstock. The 

ingredients were dissolved in water and heated in a 

microwave oven (500 watts) for a period of 2-10 

minutes. It was observed that at the end of the reaction, 

the color of the mixture changed from transparent to 

dark brown, expressing the formation of carbon dots 

(Figure11). The resulting carbon dots were well 

dispersed in water, as XPS analysis showed that they 

are rich in different oxygen groups (hydroxyl and 

carbonyl), which are expected to have application in 

biotechnology. The resulting carbon dots were 

characterized by a size proportional to the reaction 

time, meaning that it was easy to control the resulting 

size of carbon dots, for example, heating for 5 minutes 

resulted in a volume of 2.57 ± 0.45 nm, while heating 

for 10 minutes produced a size of 3.65 ± 0.6 nm. Zhai 

et al. [114]   made carbon dots, which have low 

cytotoxicity, by microwave-assisted pyrolysis of citric 

acid in the presence of different amine molecules (1,2-

ethylenediamine), as the passivation agents. Upon 

excitation, the 1,2-ethylenediamine-carbon dos (EDA-

CDs) at 300 nm, a bright blue PL-emission observed 

at 460 nm. The EDA-CDs have shown high 

dispersibility in water and had a particle size of 2.2-3 

nm (Figure12). Chandra et al. [115] used a one-step to 

manufacture highly fluorescent crystalline carbon 

nanoparticles by microwave-irradiating sucrose and 

phosphoric acid solution at 100 watts for 3 minutes 40 

seconds. The authors consider this method to be very 

simple, fast, and economical, and it can be used for 

industrial preparation to manufacture fluorescent 

crystalline carbon nanoparticles. The carbon 

nanoparticles (3-10 nm) emit bright green 

fluorescence under UV-light irradiation and can be 

used in bioimaging and drug delivery. the authors 

increased the fluorescence property of carbon 

nanoparticles by the addition of dyes (rhodamine B 

and α-naphthylamine). Dyed-carbon showed a 

maximum fluorescence intensity at an excitation 

wavelength of 225 nm, and at any other excitation 

wavelength, the peak positions were exactly the same 

as those of the carbon nanoparticles themselves.  

Likewise, Qu et al. [116] have reported the synthesis 

of water-soluble green luminescent carbon dots from 

citric acid and urea in a simple and low-cost 

microwave one-step method and their application as a 

new bio-compatible fluorescent ink. The most 

important characteristic of these carbon dots is that 

they are zero-toxicity to plants and animals.  Sun et al. 

obtained red emissive ((λmax ≈ 640 nm) and low 
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cytotoxicity carbon dots prepared by microwave 

approach. The carbon dots showed 43.9 % 

photothermal conversion upon laser irradiation (631 

nm).  

 

 

 

 

 

 

 

Figure 11.  Microwave pyrolysis approach to CNPs 

[113] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. (a) UV-Vis and PL emission spectra of the 

CDs aqueous solution (λex = 360 nm). (b) HRTEM 

graphic of CDs with a scale bar of 10 nm. (c) CD 

photoluminscence emission spectra (the inset is the 

normalised PL emission spectra). (d) PL spectra of 

CDs produced by various amine molecules (excited at 

360 nm) (the inset is the normalised PL spectra) [114]. 

 

3.2.4 Anchor/support-based approach 

Liu et al. [117] developed a chemical synthesis 

method that was easy to manufacture multi-colored 

photoluminescent amorphous carbon dots Carbon dots 

with sizes ranging from 1.5-2.5 nm in diameter were 

obtained using silica colloidal modified with 

surfactant (triblock copolymer, F127), which was 

considered as a binder that locates between the silica 

spherand the carbon feedstock (resols, phenol-

formaldehyde resin) . The F127-polymer has been 

found to be the critical factor in the formation of the 

satellite-like composite. The resulting carbon dots 

have a tiny size (1.5–2.5 nm), and acid treatment and 

surface passivation are critical to achieving water‐

soluble and multicolor photoluminescent carbon dots 

(Figure13). Wang et al. [118] reported the preparation 

of carbon dots from N-methyl piperidine occluded in 

a CHA zeolite with different luminescence;  cyan, 

blue, and green luminescent be separated from the as-

prepared as prepared carbon dots. Bourlinos et al. 

[119] fabricated carbon dots using the 2,4-

diaminophenol dihydrochloride exchanged cations in 

NaY zeolite. The carbon dots emission shifts to longer 

wavelengths as the visible excitation wavelength 

increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Assembly diagram for multicolored carbon 

dot synthesis [117]. 

 

Most of the applications that had been tested or 

suggested for CQDs depended on the photo-

luminescence of CQDs, such as bioimaging 

application, disease detection, and drug delivery [79, 

120, 121], disease detection, and drug delivery [122]. 

And the susceptibility of the Photoluminescence of 

CQDs to the external environment allows them to be 

used as passive or active Nanosensors. Moreover, 

CQDs are used to detect metal ions, Organic 

compounds, inorganic compounds, and visualization 

[123]. Carbon dots are used for self-targeted 

bioimaging and diagnosis of tumor cells and tumor 

theragnostic [121, 124, 125]. 

                                       

3.2.5 MOF template-based approach 

To obtain carbon dots of very small size, MOF 

compounds with small pores with a pore size of 1-2 

nm can be used as a template for preparing carbon 

dots. Gu et al. [126] used HKUST-1 MOF loaded with 

glucose to synthesize photoluminescent carbon dots. 

The MOF was soaked with a mixture of glucose and 

ethanol (1:9) followed by very gentle evaporation of 

ethanol, and the weight difference MOF weight 

confirmed the success of filling the MOF pore with 

glucose, where it became 1.3 g. By heating the 

glucose-laden MOF at 200 ° C (below the temperature 

needed to break down the MOF structure), glucose 

begins to decompose. The authors noticed a change in 

the color of the MOF material from blue to green, 

which the authors considered the change as evidence 
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of the formation of carbon dots. To reinforce this idea, 

the authors measured the nitrogen adsorbed of MOF 

before and after calcination, as the ability of the 

substance towards nitrogen adsorption decreased from 

130 to 5 cm3 g-1. To release the carbon points formed 

from MOF pores using a potassium hydroxide solution 

(Figure 14). The purified carbon dots showed an 

average diameter of 1.5 nm, matching the diameter of 

the HKUST-1 pores. The researchers attributed this 

behavior to the nucleation of the carbon feedstock in 

the larger pores.  Different sizes of carbon dots are 

produced by choosing the pore sizes of other MOF 

materials. For example, ZIF-8 and MIL-101 were used 

to produce carbon dots with 2.0 and 3.4 nm sizes, 

respectively. The carbon dots showed red-shift 

photoluminescence as the particle size of the carbon 

dots increases when excited by UV light  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Mechanism of preparation carbon dots 

prepared using MOF as templates [126, 127]. 

 

Xu et al. [128] achieved carbon dots using MOF 

(0.25 g of ZIF-8C) as a starting material loaded on the 

porous silica griddle of a glass steamer. The material 

is transferred to an autoclave filled with 2 ml nitric 

acid. The autoclave was heated to 160 °C for 5 h. The 

produced nitrogen-doped carbon dots were separated 

from a glass steamer in water and harvested by 

filtration. The formed carbon dots’ size distribution 

was narrow (1.3-2.7 nm) with an average diameter of 

2 nm and crystalline. (Figure 15). The nitrogen-doped 

carbon dots successes as a selective fluorescent probe 

for the ferric detection  

 

 

 

 

 

 

Figure 15.  (a, b) A typical TEM image of the N-

GQDs.; (c) UV-vis of the N-GQDs. (d) PL of the N-

GQD at different excitation wavelengths from 290 to 

410 nm. [128]. 

Yang et al. [129] used mesoporous silica (Santa 

Barbara, SBA-15) as a template for synthesizing 

photoluminescent carbon dots (soft-hard template 

approach). The carbon dots sources were 1,3,5-

trimethylbenzene, diaminebenzene, pyrene and 

phenanthroline.  The average carbon dots diameter 

was nm. 

4. The removal of dye pollutants from the aqueous 

system. 

  Different treatment processes, such as oxidation, 

coagulation, filtration, ozonation, membrane filtration, 

reverse osmosis, ion exchange, electrochemical 

degradation, adsorption, and photodegradation, are 

used to remove dyes, especially MB, from wastewater 

[130-137]. 

4.1. photocatalysis  

Photocatalysis is a phenomenon dating back nearly 

200 years, and it can be described as an advanced 

oxidation process in the presence of a catalyst whose 

activity depends on the formation of pairs of electronic 

holes, which in turn generate free radicals such as 

hydroxyls that are able to undergo other secondary 

reactions [138, 139]. Due to the abundance of solar 

light (as an inexpensive energy source and light 

source), semiconductor-based heterogeneous 

photocatalysis is one technique that received 

extraordinary attention in recent times. Photocatalysis 

has focused on solving environmental pollution 

problems, which has become one of the most 

important global issues of concern to governments and 

their people. The photocatalysis concept was 

attributed to Edmund Becquerel in 1839 [140, 141]; 

however, this research did not receive appropriate 

attention until the late 1960s. Thanks to our pioneers 

in this field, Budi [142], Honda, and Fujishima [143], 

who have enriched this branch of science.  

The concept of photocatalysis has also been used in 

the literature for two completely different processes 

[144]. Strictly speaking, the driving 

thermodynamically uphill reaction (Gibbs free energy 

change; ΔG > 0) using a material activated by light 

energy is called photosynthesis. A material used in 

such a case can be considered a “photocatalyst” only 

if the photon is considered to be a reactant. An 

example of these states is chemical transformation, 

water splitting, and carbon dioxide reduction [145, 

146]. Conversely, some materials may use light energy 

to easier thermodynamic downhill reactions (ΔG < 0). 

In this case, the material is only changing the 

reaction’s kinetics and does not change the 

thermodynamics of the reaction, and it is called a 

photocatalyst. For example, phenol oxidation (ΔG° = 

−167.96 kJ/mol) [147]. The IUPAC definition of 

photocatalyst is a “catalyst able to produce, upon 

absorption of light, chemical transformations of the 

reaction partners. The photocatalyst’s excited state 
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repeatedly interacts with the reaction partners forming 

reaction intermediates and regenerates itself after each 

cycle of such interactions [148]. 

Photocatalysts can be divided into six general 

categories, including (a) molecular photocatalysts (in 

this class of photocatalysts, the molecular orbital 

theory would be best suited to describe the system), 

Where the alignment of HOMO (highest occupied 

molecular orbitals) or LUMO (lowest occupied 

molecular orbitals) of the catalyst with the reactants 

molecular orbitals is more relevant; (B) Conventional 

semiconductor photocatalysts (the band theory is most 

suitable to describe the system);  (c) quantum point 

photocatalysts (the optical and electrical behavior of a 

catalyst is sensitive to the size of the catalyst); (d) two-

dimensional photocatalysts, and (f) semiconductor 

photocatalysts. 

Several semiconductor photocatalysts (e.g., metal 

oxides, chalcogenides, and metal salts and their 

composites) have been developed for dye degradation. 

Still, photo corrosion, which is related to the oxidation 

of sulfide ions by photogenerated holes, often results 

in secondary contamination of heavy metal ions  [149]. 

MOFs also have conduction and valence bands 

identical to semiconductors, relating to the center 

metal’s empty outer orbitals and the organic 

component’s outer orbitals, respectively [150, 151]. 

Compared to regular inorganic photocatalysts, photo-

sensitive MOFs’ light absorption ability is more 

adjustable due to the wide variety of organic linkers 

and metal centers during the construction of MOF 

structures and functionality. 

MOFs are classified as semiconductors based on 

their optical transitions and their electrochemical, 

chemical, and photoelectric activities. Yet, these 

activities do not necessarily imply that it is a 

semiconductor material. Semiconductors have a 

delocalized valence and conduction bands range 

within which the charge carriers are mobile. Organic 

semiconductors typically have delocalized orbitals 

(conjugate bonds), facilitating charge carrier mobility. 

MOFs’ degradation of organic contaminants during 

photocatalysis processes should be viewed as MOF is 

assembled molecular catalysts rather than 

conventional semiconductors. Consequently, 

photocatalytic pathways can be described by the term 

HOMO-LUMO gap [152]. 

Organic linkers (ligands) in MOFs can be thought 

of as light-harvesting units, as they transfer the energy 

of excited states to inorganic metallic clusters 

consisting of a few metal atoms. The photogenerated 

electrons will then be migrated from the highest 

occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO) of the MOFs 

and then transferred to the metal-oxo cluster surface 

(known as the Ligand-to-Metal Charge Transfer 

(LMCT) mechanism) [153]. In addition to the most 

widely employed LMCT mechanism, ligand-to-ligand 

transfer, metal-to-ligand transfer, and metal-to-metal-

to-ligand transfer mechanisms have also been used to 

explain various photocatalytic mechanisms [154]. The 

metal-based MOFs can also be directly photo-excited 

to create electrons and holes [155]. Oxygen molecules 

will then absorb electrons generated by photo (e−) to 

form superoxide radicals (. O –O−). Photo-generated 

(h+) in the HOMO orbital could immediately oxidize 

organic molecules due to their strong oxidizing 

capability and can also react with water molecules to 

form hydroxyl radicals (.OH) [156]. 

4.1.1. CQDs as photocatalyst: 

Lu et al. [157] synthesized photocatalytic 

ZnFe2O4/TiO2/CDs nanocomposite hydrothermally, 

the photocatalytic activity under solar-spectrum 

irradiation of photocatalyst enhanced when a low 

content of  CDs 3 wt % used where the CDs can 

efficiently develop the ability of electron transfer and 

separate the electron-hole pairs. Radical .OH and .O2 

radical were confirmed to be involved in the 

photocatalytic degradation of RhB. 

Zhang et al. [158]  investigate the simple 

fabrication of Ag3PO4, CQDs/Ag3PO4, Ag/Ag3PO4, 

and CQDs/Ag/Ag3PO4 photocatalysts., The 

photocatalysts complexes, CQDs/Ag3PO4 and 

CQDs/Ag/Ag3PO4 exhibit enhanced photocatalytic 

behavior and structural stability over the 

photodecomposition of organic compounds (methyl 

orange) under visible light irradiation due to the 

insoluble, photoinduced electron transfer, 

upconversion luminescence, and electron reservoir 

properties of CQDs. Furthermore, the catalytic 

performance of CQDs/Ag/Ag3PO4 is the highest 

among Ag3PO4 and the related complex 

photocatalysts due to the synergistic effect of CQDs 

and the intense surface plasmon resonance of Ag. 

   Zhang et al. [159] prepared N-doped carbon 

quantum dots/TiO2 (NCQDs/TiO2) hybrid composites 

by using a low-temperature technique and 

photocatalytic behavior of the NCQDs/TiO2 hybrid 

composites was investigated using methylene blue 

(MB). The photodegradation efficiency of MB over 

1NCQDs/TiO2 hybrid composites was 86.9% within 

420 minutes, which was significantly higher than that 

of pristine TiO2 (53.8%). The 10 NCQDs/TiO2 hybrid 

composites had the lowest photodegradation rate 

(49.3% removal efficiency), indicating that the 

excessive NCQDs minimize MB adsorption on the 

TiO2 surface. The MB dye molecules were stimulated 

to create excited states (MB*) as visible light was 

absorbed. The electrons in the MB* can be excited to 

the conductive band (CB) of TiO2, transforming the 
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MB* into MB+•, which is needed for further 

photocatalytic reactions. The NCQDs facilitated 

electron transfer, resulting in effective electron -MB+• 

pair separation and improved photocatalytic activity, 

as showing in (Figure 16). The NCQDs’ electrons 

could react with oxygen in the solution to create a 

radical. Oxygen. The radical .O2 produced would play 

an important role in the photodegradation process, 

resulting in dramatic photocatalytic efficiency. As a 

result, the work of NCQDs should be credited for the 

significantly improved visible photocatalytic 

performance of NCQDs/TiO2, not only the 

sensitization effect of MB to TiO2. 

 

 

 

 

 

 

 

 

 

Figure 16.  The important roles of NCQDs for 

enhancing the photocatalytic activity of TiO2 with the 

separation and transfer of photogenerated charges in 

the NCQDs/TiO2 hybrid composites under visible 

light irradiation [159]. 

 

Kannan et al. [160] Attempt to enhance the 

photocatalytic efficiency of cerium oxides (CeOx) by 

adding an in-situ produced heteroatom (-N and -S) 

doped carbon quantum dots/reduced graphene oxide 

(HDCQD@RGO) nanohybrid catalyst for organic 

pollutant degradation A simple, one-pot hydrothermal 

eco-friendly method was used to produce the CeOx-

HDCQD@RGO nanohybrid catalyst (Figure 17). The 

HDCQD is essential for improving CeOx-RGO 

interaction and acting as a sensitizer for the electron-

transfer process with CeOx. Multiple oxygen 

vacancies exist in the nanostructured CeOx, which 

assists in the generation of active oxygen and hydroxyl 

radicals. The photocatalytic method using 

nanostructured CeOx to generate active hydroxyl 

radicals results in improved organic pollutants 

photodegradation. Furthermore, the prepared CeOx-

HDCQD@RGO nanohybrid catalyst has a better water 

oxidation reaction. The CeOx-HDCQD@RGO 

nanohybrid works well as a bifunctional catalyst in 

both energy and environmental applications. The 

process described by kennan et al. [160] is  easy, 

environmentally sustainable, scalable synthesis of the 

highly effective catalyst. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. HRTEM micrographs of (a) HDCD@RGO 

and (b and c) CeOx-HDCD@RGO nanohybrid 

catalyst. (d) The synthesis process of CeOx-

HDCD@RGO nanohybrid catalyst [160]. 

 

Atkin et al. [161] synthesized two-dimensional 

(2D) tungsten disulfide (WS2) nanoflakes and 

hybridized them with carbon dots (CDs) using a 

simple two-step process that included exfoliation of 

bulk tungsten disulfide and microwave irradiation of 

nanoflakes in a citric acid solution. Compared to the 

pristine 2D WS2, the hybrid content photodegraded 

roughly 30% more of the model organic dye in one 

hour. 

 Qu et al. [162] prepared (CQDs)/KNbO3 

composite successfully via hydrothermal and mixed-

calcination methods. CQDs/KNbO3 composites’ 

photocatalytic behavior is evaluated via degradation of 

crystal violet dye as a target organic pollutant under 

visible-light irradiation. CQDs’ presence as a co-

catalyst on the surface of KNbO3 particles is due to the 

creation of several more active sites for trapping 

electrons and facilitating the separation of 

photogenerated electron-hole pairs. Furthermore, 

CQDs can absorb visible light and emit ultraviolet 

lights to activate the wide band-gap KNbO3. 

ReddyPrasad et al. [163] prepared the Carbon dots 

(C-dots)/Copper tungstate (CuWO4) heterostructure 

via a simple reflux method after synthesis of high 

fluorescent C-dots from dextrose via a simple 

ultrasonic wave supported reaction. Using rhodamine 

B as a model organic pollutant, the photocatalytic 

property of heterostructure nanocomposite was also 

examined. The photocatalytic activity of the 

heterostructure nanocomposite with 5.0 wt% C-dots is 

around three times that of pure CuWO4. 

Li et al. [164] used A basic one-step ultrasonic 

treatment to create a carbon quantum dots 

(CQDs)/Cu2O composite with protruding 

nanostructures on the surface. The organic pollutant 

methylene blue was used to investigate the 

photocatalytic behavior of (CQDs)/Cu2O under (N)IR 

light.  The protruding nanostructures support different 

reflections of (N)IR light between the available space 

of these protruding particles, which can create 

excellent use of the source light and therefore deliver 

an enhanced photocatalytic activity, and CQDs can 

absorb (N)IR light (>700 nm), and then generate 
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shorter wavelength light (390–564 nm) as a result of 

up-conversion, which in turn motivates Cu2O to form 

electron/hole (e−/h+) pairs (Figure18). The adsorbed 

oxidants/reducers (usually O2/OH) react with the 

electron/hole pairs to create active oxygen radicals 

(e.g., O2, OH), which induce the degradation of 

organic dyes (MB). 

 

 

 

 

 

 

 

 

 

 

Figure 18. The schematic photocatalytic mechanism 

for the CQDs/Cu2O composite under (N)IR light 

irradiation [164]. 

         

 Pan. et al. [165] manufactured The CQDs modified 

granular SnO2 nanotubes using a simple technical 

procedure in which SnO2 nanotubes are distributed in 

CQDs solution and then dried at 80°C. It shows that 

the photocatalytic efficiency of these composites is 

greatly improved by the degradation of Rhodamine B 

under visible light irradiation. Furthermore, the 

remarkable granular, tube-shaped structure of the 

SnO2 and the carbon dots’ unusual up-converted 

photoluminescence activity is thought to be the main 

reasons for this improvement. 

4.1.2 Metal-organic framework (MOFs) as 

photocatalyst for removing organic dyes: 

The photodegradation of organic molecules by 

MOFs has been thoroughly studied in recent years. 

Generally, three important steps are involved for the 

degradation of dyes by MOF-photocatalysts; (1) the 

photosensitizers of the organic bonds are activated to 

create an electron-hole pair, (2) the electrons and holes 

are migrated to the reactive centers, (3) the reduction 

and oxidation of the half-reactions induce redox 

equivalents (electrons and holes) in the photocatalytic 

center [166, 167]. MOFs’ major advantage for dye 

degradation compared to regular inorganic 

semiconductors is the outstanding optical properties 

adjustment by modifying or manipulating the organic 

linker and the metal centers [168, 169]. 

Lan et al. [170] studied the efficiency of 

synthesized cluster-based organic-inorganic hybrid 

material ([NiL4VIVWVI 10WV 2O40(VIVO)2], L is  

1,4-bis(imidazol-1-yl methyl)benzene) on 

photodegradation of MB and RhB. The results showed 

that the photodegradation rate curve is almost linear, 

achieving about 32% and 29.3% per hour under UV 

light. The authors hypothesized that VO2+ groups 

would enhance photocatalytic activity. Furthermore, it 

is highly stable and easily separated from the 

photocatalytic system for reuse again.  Du et al. [171] 

have used MIL-(M) (where M = Al, Cr, Fe) for the 

photodegradation of MB dye. Photocatalytic tests 

were performed under ultraviolet and visible light 

irradiation. The result showed that MIL-53(Fe) 

achieved similar activity with TiO2 in the MB dye’s 

photodegradation under both UV and visible 

irradiation. The catalyst has achieved a 

photodegradation efficacy 11% and 3% under UV- 

and light irradiation, respectively. The low efficiency 

is attributed to fast electron-hole recombination.  

Wang et al. [172] report the synthesis of UiO-

66(Ti) through the post-grafting method. UiO-66(Ti) 

nanocomposites’ photocatalytic performance was 

evaluated in removing MB dye under sunlight 

irradiation. The authors reported that MB’s adsorption 

during the first half-hour was very high and began to 

decrease until an hour elapsed, achieving 46.3%. The 

titanium content affects the adsorption of MB dye, 

where increasing titanium content leads to increasing 

adsorption of the dye. Like the UiO-66containing 

titanium, it was the only one that gave light activity 

(compared to the UiO-66), achieving 82% 

photodegradation. 

Ai et al. [173] studied MIL-53 (Fe) efficiency in 

activating hydrogen peroxide to enhance RhB dye’s 

photolysis under visible light irradiation. The 

hydrogen peroxide achieved 17.6% removal of the 

dye, while the dye was completely removed in the 

presence of the MIL-53 (Fe) photocatalyst. The 

authors considered this enhanced catalytic activity to 

be arising from synergistic effects by combining MIL-

53 (Fe) and H2O2 under visible light irradiation, 

facilitating the generation of hydroxyl radicals. 

Zhang et al. [174] described Fe3O4@C/Cu and 

Fe3O4@CuO composites. The composite was 

prepared via direct calcination of magnetic 

Fe3O4@HKUST-1 under air and N2 conditions and 

used as a photocatalyst to degrade MB dye. The 

Fe3O4@C/Cu photocatalyst showed low activity in the 

absence of H2O2, and the photocatalytic activity 

increased with the addition of hydrogen peroxide. It 

was reported that Cu NPs have a low Fermi level, 

which can be a good receiver for electrons, which 

facilitates electron transfer from Fe3O4 under visible 

light irradiation. Consequently, the probability of 

photoinduced holes to a recombined excited electron 

is decreased.  

The g-C3N4 coated MIL-100(Fe) composite 

through chemical protonation of g-C3N4 powder, and 

sol dip-coating was synthesized by Huang et al. [175] 

and used for the photocatalytic degradation of RhB 
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and MB. The results indicate that the protonated g-

C3N4 was equally coated with good interaction along 

the MIL-100(Fe) framework, and the composite 

kept the advantages of the two parent materials. The 

composite exhibits an improved photocatalytic 

efficiency for RhB and MB degradation under visible 

light irradiation compared to the parent materials. The 

g-C3N4 achieved 53.4% removal for MB, and the 

protonated g-C3N4 gives lower removal, while that    

MIL-100(Fe) exhibited no photodegradation activity 

for MB. Despite the weak catalytic activity, MIL-

100(Fe) achieved an adsorption rate of 85% of MB. 

The protonated g-C3N4 materials showed the 

advantage of photodegradation of MB dye compared 

with virgin MIL-100(Fe) as it acts as an adsorbent for 

MB only. 

According to technology derives from coating 

MOFs with MOFs,  Abdelhameed et al. [176] were 

post-synthetically a modified metal-organic 

framework (MIL-125-NH2) with various ratios of 

zeolitic imidazolate framework-67 (ZIF-67). In visible 

light irradiation, the nanocomposite was used for 

selective photocatalytic removal of nitro-phenols. In 

comparison to P25, the nanocomposite demonstrated 

high photocatalytic activity as well as selectivity. 

Mahmoodi et al. [177] synthesized three metal-organic 

frameworks (Materials of Institut Lavoisier: MILs-100 

(Fe)) as porous nanomaterials using FeCl3, Fe(NO3)3 

and Fe2(SO4)3 and denoted as MIL-100-1, MIL-100-

2, and MIL-100-3, respectively. The photocatalytic 

dye degradation potential of the synthesized metal-

organic frameworks was investigated using Basic Blue 

41 (BB41) as a model dye. The nanomaterials 

decolorized BB41, according to the findings. MIL-

100-1 had a higher photocatalytic capacity, according 

to the results. For three cycles, MIL-100’s catalytic 

performance did not decrease significantly. It can be 

inferred that MILs-100 (Fe) synthesized could be used 

as an alternate catalyst for photocatalytic 

decolorization of colored wastewater. 

Abdelhameed et al.[178] reduced The band gap of  

NH2‐MIL‐125 by a suitable post‐synthetic 

modification of the nanochannels using conventional 

organic chemistry methods. NH2‐MIL‐125 is a highly 

porous metal-organic framework (MOF) with a band 

gap lying within the ultraviolet region at about 2.6 eV. 

Post-synthetic change accompanied by Cr (III) 

complexation increases the photocatalytic behavior of 

NH2‐MIL‐125 in methylene blue degradation under 

visible light. The last metal ion transfers the absorption 

from the UV to the visible area of light (band gap 2.21 

eV). The photogenerated holes move from the MOF 

valence band to the Cr (III) valence band, promote 

hole and electron separation and increase the recovery 

time. Furthermore, doping with Ag nanoparticles, 

which are formed by the reduction of Ag+ with the 

acetylacetonate pendant groups, significantly 

improves the MOF’s photocatalytic activity (the 

resulting MOF band gap is 2.09 eV) (Figure 19). The 

nanoparticles Ag could be able to accept 

photogenerated electrons from the MOF, thereby 

preventing recombination of electron-hole. In 

photocatalytic conditions, all Cand Ag‐bearing 

materials are stable. These results open up new ways 

in which photocatalytic MOFs can be improved.  

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Schematic illustrations of the charge 

separation in Cr‐MIL‐125‐AC (left) and the possible 

role of silver nanoparticles in trapping the 

photogenerated electrons (right) [178]. 

 

5. Summary and perspective 

Organic mineral frameworks are easy to control 

their morphology by selecting the appropriate organic 

compound. They have a large surface area, controlled 

pore size, and good optical properties to be exploited 

in water treatment. The metal-organic framework’s 

effectiveness is due to the promotion of the separation 

of electron-hole pairs and the suppression of the 

charge’s recombination. These photocatalysis studies 

provide reliable and valuable principles for designing 

a highly effective photocatalyst from organic mineral 

frameworks and facilitating green chemistry and clean 

energy development. 

MOFs have been effectively used for photocatalytic 

degradation of a large variety of organic pollutants in 

water. The dye degradation performance of MOF-

based materials is strongly influenced by the optical 

absorption and charge separation efficiency 

properties, as well as the number of catalytic sites, 

which are connected to the central metals, the MOF 

structures, the intensity of conjugation, the 

coordinated atmosphere, and the steric hindrance 

around the active metal centers. Metal-based MOFs 

can be photo-excited directly to generate electrons and 

holes. The electrons produced by photo (e-) would 

then be absorbed by oxygen molecules, resulting in 

superoxide radicals (.O-O-). Because of their good 

oxidizing potential, photogenerated (h+) in the HOMO 

orbital can instantly oxidize organic molecules and can 

also react with water molecules to form hydroxyl 

radicals (•OH), The reactive transit species (e.g.,  •O2 
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and •OH) used in dye photodegradation. Thus, 

adsorption with photocatalytic degradation under 

sunlight irradiation is a novel concept because it 

provides a comprehensive solution to pollutant 

removal from wastewater and safe remediation 

through environmentally benign organisms. MOFs 

and their composites seem to be suitable for these 

purposes. 

Carbon dots as a new type of carbon-based 

fluorescent material have sparked in many 

publications. Various breakthroughs were 

documented, from basic photophysical properties to 

potential applications as photocatalysts. The positive 

role that carbon dots play in the charge transfer 

mechanism is very good, and it could be exploited to 

develop carbon dots-based photocatalysts. The means 

for preparing carbon dots and the proposed mechanism 

for photodegradation of some water-polluting organic 

dyes are also discussed briefly in this review. Looking 

at future carbon dot projections could play an 

important role in addressing environmental water 

pollution issues. But there is a need for a deeper 

understanding of surface activity relationships in 

carbon point-based systems, which is also highlighted 

in this review.  
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