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Abstract 

One of the goals of this project was to utilize the hydrothermal method in preparation of α- MoO3 nano-belts as bluish power 

at 180oC for 5h. This nanomaterial was incorporated with rutile-TiO2 to produce a nanocomposite photocatalyst by a direct 

ultrasonic method in a ratio of 0.25(α-MoO3): 9.75(TiO2) as w/w ratio. The characterized of samples found by X-ray 

diffraction(XRD), scan electron microscopy(SEM), and ultraviolet-visible spectrophotometry. The XRD analysis and SEM 

image for prepared α-MoO3 are proved the α-MoO3 is prepared as a nano-belts, but its composite is being as spherical with 

elevated if roughness of its surface after incorporation. The bandgap of α-MoO3 nanobelts increased from 2.8 eV to 2.95 eV 

after fabrication it surfaces with rutile-TiO2 that attitude to the small Mo6+ ion incorporated with Ti4+ of TiO2 matrix and both 

ions have a coordination number equal to 6 that enhanced this incorporation. XRD data indicated to all samples are having a 

nanosize, but SEM analysis proved all samples are polycrystals. The photocatalytic efficiency and the quantum yield for 

Chlorazol black BH dye decolorization using α-MoO3 nano-belts were investigated under UV-A light and observed it elevated 

with using its nanocomposite. That is due to elevating the acidity of α-MoO3 nano-belts surface after incorporating it in a 

rutile-TiO2 crystal lattice, which decreases the recombination and increases the generalization of hydroxyl radical. The 

photoreaction for using α-MoO3 nano-belts and its composite obeyed pseudo-first-order kinetics. 

 Keywords: Nano-belts; nanocomposite; hydrothermal method; α-MoO3;  TiO2 and direct Blue 2. 

1. Introduction                                                    

Growing applications have expanded the use of 

photocatalysts in alcoholic or aqueous solutions in 

various areas of human life. The photocatalyst work 

relies on the creation of reactive oxygen species 

(ROSs) (such as superoxide anion, hydrogen 

peroxide, and the hydroxyl radical) under artificial or 

solar light illumination [1-3]. Molybdenum trioxide 

(MoO3) is known as a semiconductor of n-type, 

bluish-gray, or light yellow color, low cost, and has a 

direct bandgap(2.39-2.90) eV, which leads to being 

acted as a photocatalyst[4,5].In general, MoO3 is 

contained on three crystalline structures with high 

stability relative to other metal oxide compounds, 

such as the thermodynamically stable orthorhombic 

phase (α-MoO3), the metastable monoclinic phase 

(β-MoO3), and the hexagonal phase (h-MoO3). At  

400 °C, the  β-MoO3 can be converted to α-MoO3 

[6].MoO3 has gained a great deal of attention due to 

its various applications, such as gas sensing [7], 

catalyst [8], used in the manufacture of some organic 

photovoltaic cells[9], in the decolonization of 

dye[10,11], and used to improve the performance of 

lithium batteries [12]. Some researchers modified the 

surface of MoO3 by fabricating it with other 

semiconductors like TiO2 by physical mixing method 

then calcinated[13], via hydrothermal synthesis[14], 

via Microwave Method[15], and using sol-gel 

method[16]. This work proposes the synthesis of α-

MoO3 nano- belt using a hydrothermal method, and 

then incorporation with rutile- TiO2 as a 

nanocomposite. The structure, morphology, and 

optical properties of the α-MoO3-TiO2 

nanocomposite, and its use as a photocatalyst have 

also been investigated. 

2. Experimental 

Materials: 

 Rutile-TiO2 was supplied by Riedel-De-Haen AG, 

Seelze, Hannover, Germany. Sodium molybdate 

dihydrate(Na2MoO4.2H2O), and Chlorazol black BH 

dye were purchased from Merck, Germany. Some 
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important properties of  Chlorazol black BH dye 

(C32H21N6Na3O11S3) with Molecular weight 830.71 g 

mol-1 were shown in Table1. The rest chemical 

materials were used without any further purification 

processes. 

 

Table 1. Some properties of Chlorazol black BH dye[17]. 

    

A. Instruments 

The batch home-made reactor was used to 

perform the photoreaction experiments. The 

illumination was carried out high-pressure 

mercury lamp (HPML- Radium 400 W ) at 𝜆𝑚𝑎𝑥  

= 365 nm. 

 

Procedure 

Synthesis of MoO3 nanobelt  

α-MoO3 nanobelt was prepared using sodium 

molybdate dihydrate as a precursor with dilution 

HCl. This mixture was transferred to steeliness steel 

Teflon tube autoclave and put in the oven at 180 oC 

for 5 h. After cooling at room temperature, the 

product was filtered and washed with distilled water 

and absolute ethanol three times to ensure removing 

the non-reactive materials. The bluish-gray product 

was dried in an oven at 80 ºC for 1 h and then 

stored overnight in a desiccator. The step of α-

MoO3 synthesis using the hydrothermal method is 

shown in figure.1.  

 

 

 

 

 

 

 

 

 

 

Fig. 1. The schematic diagram for the steps of  α-

MoO3 synthesis using the hydrothermal method. 

The chemical equations of α-MoO3 Synthesis were 

followed below. 

 
    𝑁𝑎2𝑀𝑜𝑂4. 2𝐻2𝑂 + 2𝐻𝐶𝑙 →  𝐻2𝑀𝑜𝑂4 + 2𝑁𝑎𝐶𝑙 +  2𝐻2𝑂…(1) 

    𝐻2𝑀𝑜𝑂4 → 𝑀𝑜𝑂3 +  𝐻2𝑂                                     … (2)         

 

Synthesis of α-MoO3/TiO2 nanocomposite  

The 0.25(α-MoO3): 9.75(TiO2) nanocomposite was 

prepared as w/w ratio using ultrasonic wave. The α-

MoO3 solution and TiO2 solution were dispersed for 

3h at 70 oC using ultrasonic waves at 60 kHz. The α-

MoO3 solution was gradually added to TiO2 solution 

and going on for 1h at 70 oC to perform the binding 

process between Mo and Ti. The produced 

suspension was mixed on a magnetic stirrer at 70 oC 

until evaporating all ethanol. The precipitate was 

washed and filter with water and ethanol, then stored 

overnight in a desiccator. The steps of the composite 

are explained in figure 2. According to equation 3, 

the suggested chemical equation for the Synthesis of 

α-MoO3/TiO2 nanoparticles was obtained. 

 

𝑀𝑜𝑂3 + 𝑇𝑖𝑂2−−−−−−−−−−−→
𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐 𝑤𝑎𝑣𝑒𝑠    𝑀𝑜𝑂3 − 𝑇𝑖𝑂2      …  (3) 

                              

 
 

Fig. 2. The schematic diagram for the steps of  α-

MoO3/TiO2 composite using ultrasonic waves. 

 

photoreaction of Chlorazol black BH dye with 

synthesis photocatalysts 
The application of these catalysts was performed 

using in decolorization of Chlorazol black BH dye. 

IUPAC name 
Trisodium,5-amino-3-[[4-[4-[(7-amino-1-hydroxy-3sulfonatonaphthalen-2-

yl)diazenyl]phenyl]phenyl]diazenyl]-4-hydroxynaphthalene-2,7 disulfonate. 

Synonym Direct Blue 2 

Structure formula 

 
Class Azo dyes 

λmax 
500-550 nm 

 



 ONE-STEP HYDROTHERMAL SYNTHESIS OF Α- MOO3 NANO-BELTS…….. 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 64, No. 10 (2021) 

 

5727 

This photoreaction was applied using a homemade 

photoreactor in figure 3. This photoreactor consists 

of 400 watts Philips UV-A lamp with an intensity 

of light equal to 2.95 x10-7 Einstein.s-1
, the body of 

the reactor manufactures from a wooden box, which 

contains an inside magnetic stirrer, Pyrex glass 

beaker (500 mL), Teflon bar, and fan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Schematic diagram of Homemade  

Photocatalytic Reactor Unit. 

 

A 100 mg of studied photocatalysts was mixed with 

50 ppm of Chlorazol black BH dye at 18 oC and 

initial pH of dye 7.6. Without irradiation, the 

produced suspension solution was magnetically 

stirred for 30 min to allow for an equilibrium 

adsorption state to be reached. After the adsorption 

step, the UV-light was applied onto this suspension, 

and then about 3 mL aliquots were collected at 

intervals of time of irradiation until 100 min. The 

collected suspensions were separated twice times by 

centrifuge for 20 min, the absorption of the produced 

filters was recorded at 500 nm using Uv-Visible 

spectroscopy. The rate constant (kapp.)and photo-

decolorization efficiency percentage (PDE%) were 

determined depending on the initial concentration of 

dye (Co) at the adsorption process and residue dye 

concentration (Ct) under irradiation by the following 

equations[18-27]. 

 

    ln (
𝐶𝑜

𝐶𝑡
) = 𝑘𝑎𝑝𝑝𝑡                                           … (4) 

    𝑃𝐷𝐸 % =  
(𝐶𝑜−𝐶𝑡 )

𝐶𝑜
 × 100                           … (5) 

3.Results and Discussion  

A.Structural Properties 

Based on figure 4. For all photocatalyst samples, 

XRD analysis was performed to investigate the 

structure of samples using 2θ ranging from 20o to 80o 

using Lab X XRD 6000-Shimadzu. 

 
 

 

 

 

 

 

 

 

 

A 

 

 
B 

 
 

C 
 

Fig.  4. XRD patterns of α-MoO3(a), TiO2 (b), and α-

MoO3/TiO2 nanocomposite (c). 

 

The synthesis α-MoO3 is identified as 

orthorhombic(α- MoO3) in figure 4, and agrees with 

the standard diffraction data of α- MoO3 (JCPDS 

Card No. 005-0508)[28]. The essential diffraction 

peaks of orthorhombic MoO3 appear at 12.80◦, 

25.76◦, 27.35◦, 39.059◦, 58.906◦ and 67.630◦  with 

miller indicates (0 2 0), (0 4 0), (021),(0 6 0), (0 8 1) 

and (0 10 0) planes respectively, and they strongly 

agreement with results in references[28,29]. 

Moreover, the stronger intensity at 2θ for 12.8o, 

25.7o, and 39.0o of the reflection peaks of (0 k 0) 

with k  2, 4, 6 indicates the anisotropic growth of the 

nanobelts[29]. However, the rutile-TiO2 peaks 

appear at diffractions (110), (101), (111), (211), 

(220) and (301) with 2θ positions are 27.46°, 36.10°, 

41.26°, 54.34°, 56.32°, and 69.02° respectively, 

these results are agreement with the standard 

diffraction data (JCDS card No.00-021-

1276)[30,31]. When the α- MoO3and rutile TiO2 

incorporate as nanocomposite, some essential peaks 

are shifted toward the high 2θ   from 27.358o (α-

MoO3) and 27.475o (TiO2) to 27.480o,  from 36.118o 

(TiO2) to 36.122o, from 39.059o (α-MoO3) to 

39.230o, 41.279o (TiO2) to 41.287o. That attitude 

generates a metallic bond between two metals [32-
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34]. The Mo6+ is suitable to incorporate with Ti4+ in 

crystal lattice because both have a coordination 

number of 6 [13], Mo ion is small compared with Ti 

and has an ionic radii 0. 59 Ằ[35 ] and 0.67 Ằ[36] 

respectively. 

 On the other side, the mean crystal sizes (L) for all 

samples were calculated by utilizing Scherer’s 

equations [73-40]. Where k, λ,β and θ are indicated 

to shape constant, the wavelength of Cu, Bragg 

diffraction angle, and full width at half maximum 

intensity (FWHM). 
 

         𝐿 =
𝑘 𝜆 

𝛽 𝐶𝑜𝑠 𝜃
                                     …  (6) 

 

The results indicate to all samples are having a nano-

size, and the mean crystal size of α-MoO3 elevates 

with incorporating the TiO2  from 30.5511 nm to 

57.6063 nm, because the rutile-TiO2 has a maximum 

value of mean crystal size and equal to 72.3799 nm.  
 
 

B.Morphology of studied photocatalyst surfaces 

The morphology of the sample's surface was 

estimated using SEM analysis (FESEM FEI Nova 

Nano SEM 450). Figure 5 explains the SEM images 

for α-MoO3, TiO2, and its nano-composite surfaces 

and found that the shape of synthesis α-MoO3 is 

nano-belts, this result is in agreement with the result 

of XRD and works of literature [28,29]. The 

rutileTiO2 and composite appear spherical because 

the amount of TiO2 is very high compared with the 

amount of α-MoO3 to increase the lightness of α-

MoO3. The partial sizes of α-MoO3 and its composite 

are not in nano-size that refers to the poly-crystal. 

TiO2 is a commercial material with a micro-size 
 
 

 
A 

 
 

B 

 
C 

 

Fig. 5. SEM images of α-MoO3(a), TiO2(b), and α-

MoO3/TiO2 composite(c). 

 
 

C. Optical property of studied photocatalyst  

 

The optical energy bandgap ( Eg in eV) for all 

photocatalyst samples was measured with basing on 

Tauc equation[30,37]. Where 𝛼 , h, 𝑣, k, t, A, and m 

are absorption coefficient, Plank's constant the light, 

frequency, optical constant, thickness, the 

absorbance and constant value equal to ½ or 2 for 

direct and indirect transitions, respectively. 
 

         𝛼ℎ𝑣 = 𝑘(ℎ𝑣 − 𝐸𝑔)𝑚                      …  (7) 

 

        α = (2.3026 A)/t                               …  (8) 
 

According to the plotted Tauc equation in Figures 6, 

7, and 8,  that observed the bandgap for α-MoO3 is 

direct, but it is an indirect bandgap for the TiO2 and 

α-MoO3/TiO2 nanocomposite with magnitudes equal 

to 2.8 eV, 3 e V and 2.95 e V respectively. 
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A 
Fig.  6. Tauc plot for α-MoO3 as a direct bandgap. 

 
 
 

B 
Fig.  7. Tauc plot for TiO2 as an indirect bandgap. 

 
 

C 
Fig.  8. Tauc plot for (α-MoO3/ TiO2) nanocomposi-tes 

as an indirect band gap. 

 

D. Photo-decolorization of Chlorazol black BH dye  
 

After ensure from the prepared α-MoO3 nanobelt and 

its nanocomposite with rutile-TiO2 were applied in 

Chlorazol black BH dye solution to study the 

efficiency of. Figures 9 and 10 indicate the apparent 

rate constant and PDE% for Chlorazol black BH dye 

decolorization using α-MoO3 nanobelts elevate with 

incorporating it with TiO2. The PDE% of α-MoO3 

nanobelt increase from  46.29 % to 56 .54%  for its 

composite at 100 min irradiation for 50 ppm of dye 

with 100 mg of sample. That attitude increases the 

lightness of α-MoO3 nanobelts and elevates the 

acidity of its surface via the synthesis of its 

composite that leads to an increase in the adsorption 

of hydroxyl ions[30,33], which generate hydroxyl 

radicals under irradiation by UV light or visible 

light[41-43]. Moreover, this modification of the 

surface will increase the separation of changes on 

photocatalyst and increase the electron-hole 

recombination time [37]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The relation between the apparent rate 

constant for Chlorazol black BH dye decolorization 

in studied photocatalyst solution. 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig. 10. The relation between PDE% for Chlorazol black 

BH dye decolorization in studied photocatalyst solution 
 
 
 

E. Quantum yield of photo decolorization of 

Chlorazol black BH dye 

The quantum yield is expressed on the efficiency of 

photocatalytic reaction, which depended on the 

number of probe dye molecules that degrade per 

photon absorbed [44,45]. Under using UV-A lamp, 

the quantum yield (Φ ) can be determined using the 

kapp. (in sec-1) of the pseudo-first-order of Chlorazol 

black BH dye photodecolorization with light intensity 

(Io) via the following equation[46-48]. 
 

Φ =  
kapp.

2.303  Io ε l
                              … (9) 
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where: ε is the molar absorptivity of Chlorazol black BH 

dye (84.469 mol-1 L cm-1) and l is cell path length term 

(cm).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The relation between the quantum yield of 

Chlorazol black BH dye photodecolorization with 

studied samples.  
 

As seen in figure. 11, the quantum yield  of Chlorazol 

black BH dye decolorization is elevated to the 

following sequence: 

 Φ using α- MoO3/TiO2 naanocomposite > Φ  using  

α-MoO3 nanobelts > Φ using rutile-TiO2  

 

and equal to 0.010, 0.007and 0.003 respectively. The 

minimum quantum yields value is observed during 

using TiO2 and α-MoO3 nanobelts, that due to 

recombination processes that caused reversible 

reactions, may be produced quencher materials, a 

dimerization of dye molecules, and photophysical 

deactivation processes (ISC process) [45-47].  
 

 

E. Suggested Mechanism 

The proposed mechanism for any photocatalytic 

reaction is essentially dependent on products of the 

active species such as superoxide anion, peroxide 

radical, and hydroxyl radical in solution or on the 

surface of photocatalyst[48-52]. These species are 

altered in potential power to decolorize and 

disintegrate any organic colored materials. Hydroxyl 

radical is a more active species in an aqueous 

solution with 2.8 V, hence it acts as a powerful 

oxidant to attack the dye molecules [53-60]. The 

suggested chlorazol black BH decolorization was 

displayed in figure.12 that mention in reference [17]. 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Schematic diagram for decolorization and degradation of Chlorazol black BH dye in the photocatalytic 

system. 
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E. Conclusion 

The α-MoO3 was grown by the one-step 

hydrothermal method as nanobelts. The incorporation 

of α-MoO3 with rutile-TiO2 as nanocomposite was 

done using ultrasonic waves as an environment-

friendly method. The prepared photocatalysts were 

conformed with XRD analysis, SEM, and optical 

bandgap. The XRD patterns indicate the formation of 

α-MoO3 as an orthorhombic phase with nano size. 

SEM image obtained the synthesized α-MoO3 is 

nanobelts and agreement with the miller indicates in 

XRD analysis. The optical band gap of α-MoO3 

elevated with incorporating in rutile- TiO2 crystal 

lattice. The acidity of α-MoO3 surface elevates via 

incorporating with rutile- TiO2 crystal lattice and 

caused the increase in the photoreaction activity and 

quantum yield of Chlorazol black BH dye 

decolorization. 
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