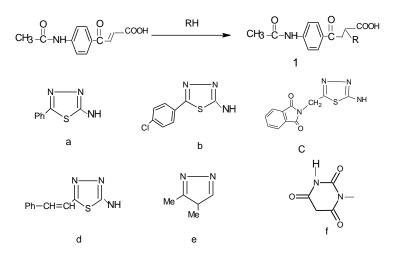
Utility of *p*-Acetamidobenzoyl Prop-2-enoic Acid in the Synthesis of New α -Amino Acids and Using Them as Building Blocks in Heterocyclic Synthesis

M.A.El-Hashash, S.A. Rizk[#] and M.M. Aburzeza*

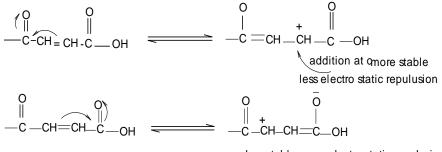
Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt and *Chemistry Department, Faculty of Science, Elmargeb University, Zliten, Libya.

THE PRESENT work deals with the generation and synthesis of different unnatural amino acid derivatives *via* treatment of 3-(4-acetamidobenzoyl)-prop-2-enoic acid with 5-aryl-2- amino 1, 3, 4 thiadiazole, 3, 5-dimethyl pyrazole and barbituric acid to afford the product of conjugate addition acids (1) respectively. Additionally, the adduct 1 are used as key starting materials to synthesize some heterocycles include pyridazene , furanone and oxazine derivatives. The antimicrobial screening of some of the synthesized compounds was done using the agar diffusion assay

Amino acids are the smallest unit of protein and are useful components in a variety of metabolisms. There are more than advantages of taking amino acids dietary supplements come from their many useful biological activities. In vitro data⁽¹⁾ about amino acids include muscle protein maintenance, potentiation of immune function, affecting neuronal activities in the brain, tissue repair acceleration, protecting liver from toxic agents, pain relief effect, lowering blood pressure, modulating cholesterol metabolism, stimulating insulin of growth hormone secretion and so on . It is important to be aware that they are part of complex pathway and biological systems. Amino acids have proven to play a significant role in the synthesis of novel drug candidate with the use of nonproteinogenic and unnatural amino acids⁽²⁻⁹⁾. Thus, we reported the reactions of 3(p-acetamidobenzoyl) 2-(2-amino 5-aryl thiadiazole) propionic acids 1 with N₂H₄, phenylhydrazine, hydroxyl amine and acetic anhydride to give the corresponding pyridazinone, oxazinone and furanone derivative, respectively aiming to afford some interesting heterocyclic compounds with non-mixing and mixing system.


21

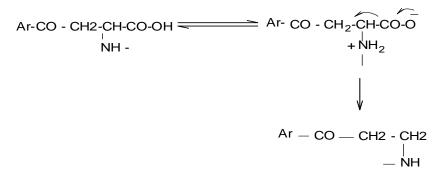
Keywords: 3-Acetamidobenzoyl prop-2-enoic acid, Pyrazole thiadiazole , Phthalimide , Barbituric acid, Furanone, Pyridazine and Oxazine.


[#]Corresponding author: Samehrizk2006@gmail.com .

Results and Discussion

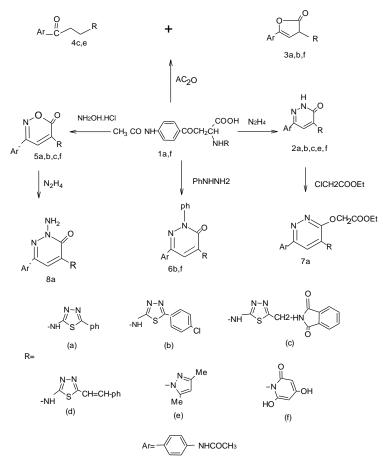
When 3 (*p*-acetamidobenzoyl) prop -2- enoic acid was allowed to react with 2-amino 5-aryl thiadiazole derivatives, it afforded the product of conjugate addition , 3 (*p*-acetamidobenzoyl) -2-(5-aryl 2-thiadiazolyl amino) propanoic acids as α -amino acid types that differ in biological activity by differing the aryl groups (Table 1) (Scheme1). IR spectra of acids 1 exhibit strong absorption at (1695 – 1630) cm⁻¹ CO for acid and ketone groups in addition to ν CO in case of 1_c and 1_f at (1770 – 1712) and (1615) corresponding to phthalimido and barbiturate moieties, respectively.

Moreover, reactivity of C₂ in 3-aroyl propio-2-enoic acids⁽¹⁰⁻¹¹⁾ allows azamichael addition by 2ry amine, *e.g* 4,5-dimethyl pyrazole and barbaturic acid . The preference for nucleophilic addition at C₂ is discussed in terms of a) stability of resonance forms of the acrylic starting material . The relative stabilities of the alternative structures of the primary zwitter ionic adduct indicate that the negative charge on the enolate moiety resulting from addition at C₂ to be more delocalized than C₃ as below:


less stable more electro static repulusio

Egypt. J. Chem. 54, No.3 (2011)

b) An electronic influence of the *p*-acetamidophenyl group on C3 may be present, the activating acetamido group in *p*-position may be made to prefer attack at C3. c) steric hindrance of *p*-acetamidophenyl group to addition at C3 may also play a role.


Since the entering nucleophile attacks C2 at expence of C3, so reasons 1 and 3 outweigh reason 2, in the preference of addition of an amino group to C2 of acids 1. The acids 1 are confirmed by spectroscopic tools, EIMS for acids 1 are 1a m/z 377 (M⁺ - CO +H₂), 1_b m/z 358 (M⁺ -(CO₂ +CH₂= CO) , 1c m/z; 446 (M^+-CO_2) , 1e m/z:307 (M^+-H_2O) . The explanation of one ¹HNMR spectrum for acids 1,e.g., 1_b in DMSO exhibits signals at 2.5 (s,3H,CH₃CO),3.4 (2 dd , $CH_{2}C=O J=15.2$, J=7.7) (diastereotopic protons) adjacent to ketonic group are non equivalent and each proton appears as douplet (4 lines, dd, J=15.2), each line couples with methine proton J=7.7 and gives two douplet of douplets (8 lines, 2 dd)), 4.2 (dd,CH-COOH,methine proton) 6.7 (s,NH),7.6-8.1 (m,8H,ArH) ArH),8.2 (s,1H,COOH),8.6 (s,1H,C=O-NH). It was reported⁽¹²⁾ that the pyridazinone substituted 1,3,4- thiadiazolene were shown to be fungicidally active and their activity was influenced by the nature of the substituents. Thus, when acids 1 a-c were allowed to react with hydrazine hydrate in boiling ethanol, they afforded 6- acetanilido- 4 (5-aryl-2-amino 1,3,4 thiadiazole) 2,3 dihydro 3(2H) pyridazinones (2_{a-c}) , not tetrahydropyridazinones⁽²⁰⁾. The authors can explain auto-oxidation of initially formed tetrahydropyridazinones results dihydropyridazinone 2 due to the presence of activating aromatic moieties in enhancing the dehydrogenation of initially position 4 formed tetrahydropyridazinones, formation of extra conjugating system afforded more thermodynamic stable 2. IR spectra of 2 a-c reveal strong absorption bands at 1630 cm⁻¹ for vCO cyclic carboxamide and (3260 - 3270) for vNH whatever v CO in phthalimido moiety in 2. EIMS for $2_a m/z$:404 (M⁺), $2_b m/z$: 403 (M⁺-Cl), $2_{c} m/z$: 426(M⁺- (CH₃+ H₂). The explanation of one ¹HNMR spectrum for Compounds 2, e.g., 2_a revealed singlet at 2.5 assigned to methyl group, multiplet at 7.4 - 7.8 assigned for aromatic protons, singlet at 7.2 ppm for protons of pyridazinone, singlet at 10.2 assingned for two acidic protons of acetamido and pyridazinone moieties and singlet broad band at 6.5 ppm assigned for NH of thiadiazole moiety. Substituted pyrazole and barbiturate moieties constitute an important class of compounds in the field of agricultural and medicinal chemistry because of their broad spectrum biological activities $^{\left(13\right) }$. Since, the combination of two or more heterocyclic and nonheterocyclic⁽¹⁴⁾ systems enhances the biological profile more fold than their parent nuclei, so we considered to synthesize ; the pyridazinone has pyrazolyl and / or barbituryl groups in position 4 . Treatment of the acids 1_{e,f} with N₂H₄ in boiling ethanol, afforded 6-(p-acetamido phenyl)-4 (3,5-dimethyl pyrazolyl) and / or 2,4 dihydroxy pyrimidinyl 6-one) 2,3,4,5 tetrahydro 3(2H) pyridazinone (2_{d,e}) . IR spectra of $2_{d,e}$ reveal strong absorption bonds at (1640 cm⁻¹) for v CO of pyridazinone, EIMS for 2_d m/ z : 325 (M⁺). Recently⁽¹⁵⁾ 2 (3H) furanone exhibit rich photochemistry, furthermore, due to their common occurrence in nature, oxygen containing heterocyclic are frequent and important target, for synthesis

either as final products or as useful synthetic intermediate. Thus, when acids 1 was allowed to react with Ac2O on heating water bath for 1hr , they have 5(*p*-acetamido phenyl)-3-(5-aryl-2-1,3,4 thiadiazolylamino)-2-(3H) furanone (3 _{a-b}) and/or 5(*p*-acetamidophenyl) -3 (2,4,6 dihydroxy pyrimidinyl -6-on)-2- (3H) furanone (3_f) . Their structures 3_{a,b,d} were inferred from IR spectra which exhibit strong absorption bands at (1767-1755 cm⁻¹) attributable to v CO (lactonic) in addition to other carbonyl of acetamido gp at 1693 cm⁻¹. The ¹ H NMR spectrum of compound 3a in DMSO exhibits signals at δ 2,1 (s, 3H, CH₃, CO), 4, (dd 1H,- C<u>H</u>-NH J=8.5), 12.7 (s,1H –C=O-N<u>H</u>) acidic protons exchangeable in D₂O. EIMS for compound 3_f m/z:343 (M⁺). But interaction of acids 1_{c,e} with acetic anhydride afforded ketones 4. Formation of ketones 4 is due to the decarboxylation of acid 1_{c,e} via its heating at high temperature⁽¹⁶⁾ presented as follow.

Here, the authors offer a speculation that stability of a zwitter ionic intermediate facile decarboxylation takes place in acids 1_{c,e}. The presence of phthalimido and pyrazolyl groups which contain basic nitrogen enhances formation of a zwitter intermediate. IR spectra of 4 revealed absorption bands at (1706 cm^{-1}) corresponding to v CO of ketones . EIMS for compound 4c, m/z; 423 (M⁺- CO). On the other hand, oxazinone derivatives are an important clan of heterocyclic compounds, since many of their heterocyclic system exhibit biological activity ⁽¹⁷⁾. This promoted us to synthesize 1,2 oxazine derivatives incorporating with heterocyclic moieties in the position-5. Thus, the reaction of acids 1 with hydroxyl amine in refluxing pyridine, gave 3- (p-acetamido phenyl)-5- (5 aryl-2-amino-1,3,4thiadiazole and \or 2,4-dihydroxy-6-oxo pyrimidin-yl) 1,2 oxazin -6-one 5. Their structures were inferred from IR spectra which exhibit strong absorption bands at 1712-1703 cm^{-1} corresponding υ CO of azalactone irrespective CO for phthalimido and pyrimidinone moieties. EIMS for 5c m/z at 271 (M^+ -(Co₂+CH₂=C=O)) .The one of ¹H-NMR for oxazinone derivatives, 5_f in DMSO exhibits signals at 2.45 (s,3H,CH₃-C=O-), 7.0-7.4 (dd, 4H, phenyl group), 8.0 (s,1H,oxazin (H 4)), 6.9(s,2H, -C=O-CH₂-C=O- in barbiturate),8.3 (s,1H, pyrimidine moiety 1:1), 9.9 (s,1H,(OH NH) in pyrimidine = barbiturate equilibrium),12.5 (s,1H,-C=O-NH) of acetamido moiety. In the present work, treatment of acids 1 with phenyl hydrazine in boiling ethanol yielded 2-phenyl- 4- (5-

[*p*-chlorophenyl) 1,3,4 thiadiazol-2-amino] and/or 2,4-dihydroxy-6- oxopyrimidinyl) -6- (*p*-acetanilido) 3 (2H) pyridazinone 6. IR spectra reveal strong absorption bands at (1632 cm⁻¹) corresponding to vCO in 6a and 1694-1650 cm⁻¹ corresponding to two vCO of carbonyl of oxopyrimidinyl and pyridazinone moieties, respectively. Pyridazinone derivative 2a reacts with ethyl acetoacetate in the presence of potassium carbonate in dry acetone^(18,19) to give 3(ethoxycarbonyl methoxy)-4- (5-phenyl–1,3,4 thiadiazol-2- amino)-6- acetanilido- 4,5- dihydro pyridazine 7. Its IR spectrum reveals strong absorption band for ester group , EIMS for compound 7 m/z: 492 corresponding to M⁺. Hydazinolysis of oxazinone derivative 5a by hydrazine hydrate in boiling ethanol afforded 2-amino- 4(5-phenyl 1,3,4 thiadiazol - 2-amino) -6- (*p*-acetamidophenyl) 2,3dihydropyridazin-3-one 8. IR spectra reveals strong absorption band at 1671 cm⁻¹ corresponding to ν CO of carbonyl of pyridazinone moiety . The ¹H-NMR for compound 8 in DMSO exhibits signals at 2.5 (s,3H,CH3CO), 5.9-6.5 (m,3H,NH2&NH, which disappear in D₂O) ,6.9 – 7.6 (m,9H, Aromatic protons), 8.1 (s,1H, proton of pyridazine moiety), 12.5 (s,1H,CO-NH) which disappears by D₂O.

Egypt. J. Chem. 54, No.3 (2011)

Experimental

All melting points are uncorrected.Elemental analyses were carried out at the Microanalytical Center, Cairo, Egypt. By Elementar Viro El Microanalysis, IR spectra (KBr) were recorded on infrared spectrometer ST-IR DOMEM Hartman Braun, Model: MBB 157, Canada and H-NMR spectra recorded on a varian 300MHz (Germany 1999) using TMS as internal standard. The mass spectra were recorded on Shimadzu GCMS-QP-1000 EX mass spectrometer at 70 e.v. Homogeneity of all compounds synthesized was checked by TLC.

General procedure of starting material

Anhydrous aluminium chloride (200 g) was added portionwise to a stirred solution of Maleic anhydride (100 g) in aromatic hydrocarbon, namely acetanilide (200 ml) in an ice bath. The whole mixture was stirred at room temperature for further 2 hr and refluxed for 3hr on water bath, then left to stand overnight. The participated solid after addition of ice cold hydrochloric acid (25 ml) was filtered off, dried and the crude product was crystallized form ethanol to give 3-*p*-acetamidobenzoyl-prop-2-enoic acid.

Formation of 3(p-acetamidobenzoyl)2-(5aryl 2-thiadiazolyl amino)propanoic acids (1a-d)

A solution of 3-(4-acetamidobenzoyl)-prop-2-enoic acid (0.01 mol) and 5aryl-2-amino 1,3,4-thiadiazole (0.016 mol) in 30 ml ethanol was refluxed for 3hr. The crude product was washed by petroleum ether (b.p 40- 60° C), and then, crystallized from ethanol to give compounds 1a,1b,1c or1d

Formation of 3-(p-acetamidobenzoyl)2-(5-(3,5 dimethyl)pyrazolo/or barbituro propanoic acid (1e,f)

A solution of 3-(4-acetamidoobenzoyl)-prop-2-enoic acid (0.01 mol) (2.55g) and 3,5 dimethyl pyrazole and /or barbituric acid 0.01 mole (1 g) in 30 ml ethanol in and then refluxed for 5 hr. The mixture was washed by light petroleum ether (b.p 40- 60°C), and the solid was crystallized

Formation of 6-acetamidophenyl-4(5-aryl thiazolylamino, 3 5 dimethyl pyrazolyl and /or burbituryl)-4,5-dihydro-3(2H)pyridazinones (2)

A solution of 1(0.01 mol) in ethanol (30 ml) was treated with hydrazine hydrate (0.75ml) and then refluxed for 4 hr. The solid that separated after concentration and cooling was recrystallized.

Formation of 5-acetamidophenyl-3-(5-aryl thiazolylamino, and /or burbituryl) furan-2-one (3 a,b,d,f)

A solution of $1_{a,b,f}$ (0.01 mol) and acetic anhydride (0.01 mol) (1 ml), was heated on water path for 1 hr. The product that separated on cooling was recrystallized from suitable solvent to give compounds 3a,b,d,f.

Egypt. J. Chem. 54, No.3 (2011)

304

Formation of β -(5-phthalimido methyl thiazolylamino and/or 3,5 dimethyl pyrazolyl- 5-acetamido propiophenone (4 c,e)

A solution of $1_{c,e}$ (0.01 mol) and acetic anhydride (0.01 mol) (1 ml), was heated under reflux for 1 hr. The product that separated on cooling was recrystallized from ethanol to give compound 4c,e.

Formation of 3-acetamidophenyl-5(5-aryl thiazolylamino,3 5 dimethyl pyrazolyl and /or burbituryl)-4,5,6-trihydro-1,2-oxazine-6-one (5)

A solution of $1_{a,b,c,f}$ (0.01 mole) in pyridine (0.01 mol) (10 ml), was refluxed with hydroxylamine hydrochloride (0.01 mol) for 3 hr. The reaction mixture was left to cool then poured into cold water/HCl. The participated solid was filtered off and recrystallized from the suitable solvents to give compounds 5.

Formation of 6-acetamidophenyl-4(5-(4-chloro phenyl thiazolyl amino, and /or burbituryl)-1-phenyl-2,3-dihydro-3 (2H) pyridazinone (6 b,f)

A solution of 1b,f (0.01 mol) in ethanol (30 ml) was treated with phenyl hydrazine hydrate (1.4 ml) and then refluxed for 4 hr. The solid that separated after concentration and cooling was recrystallized from ethanol to give compounds 6.

Formation of 6-acetamidophenyl-4(5-phenyl thiazolylamino)-2-ethoxycarbonylmethyl-2,3 – di hydropyridazine-3-one (7)

A solution of 2_a (0.01 mol) and ethylchloroacetate (0.01 mol) in dry acetone (20 ml), in the presence of potassium carbonate (3 g) was refluxed for 24 hr. The reaction mixture was concentrated, cooled and poured into ice cold water. The participated solid was filtered off, washed, dried and recrystallized from ethanol to give compound 7.

Formation of 1-amino -6-acetamido phenyl-4(5-phenyl thiazolylamino)- -2,3 - di hydro-3 (2H) pyridazinone (8a)

A solution of 5a (0.01 mol) and hydrazine hydrate (0.01 mol) ,was boiled in butanol (10 ml) for 3 hr. The reaction mixture was left to cool, then poured into cold water . The participated solid was filtered off and recrystallized from ethanol to give compound 8a.

Comp.	M.P.	Solvent		Analysis % calcd/found				
No	°C.	of Cryst.	Formula M.W.	С	н	Ν	Cl	S
1 _a	190	Ethanol	$C_{20}H_{18}N_4O_4S(410)$	58.5 58.4	4.4 4.25	13.7 13.9	-	7.8 7.9
1 _b	250	Ethanol	C ₂₀ H ₁₇ N ₄ O ₄ SCl(445)	53.9 53.7	3.8 3.7	12.5 12.7	8.00 8.23	7.4 7.4
1 _C	210	Ethanol	$C_{23}H_{19}N_5O_6S(493)$	55.9 55.6	3.9 3.7	14.2 14.3	-	6.6 6.4
1 _d	255	Ethanol	$C_{22}H_{20}N_4O_4S(436)$	60.5 60.4	4.6 4.5	12.8 12.7	-	7.3 7.3
1 _e	254	Ethanol	$C_{17}H_{19}N_3O_4(329)$	62.0 62.2	5.9 5.7	12.9 12.8	-	-
$1_{\rm f}$	300	Dioxan	C ₁₆ H ₁₅ N ₃ O ₇ (360)	53.3 53.2	4.3 4.2	11.7 11.7	-	-
2 _a	190	Ethanol	$C_{20}H_{18}N_4O_4S(410)$	58.5 58.4	4.5	13.7 13.6	-	7.8 7.7
2 _b	300	Ethanol	C ₂₀ H ₁₇ N ₆ O ₂ SCl(441)	54.4 54.4	3.9 3.8	19.0 18.8	8.00 7.87	7.3 7.5
2 _c	270	Ethanol	$C_{23}H_{19}N_7O_4S(489)$	56.4 56.2	3.9 3.9	20.0 19.7	-	6.5 6.3
2 _e	300	Ethanol	$C_{17}H_{19}N_5O_2(325)$	62.8 62.5	5.8 5.6	21.5 21.3	-	-
2 _f	225	DMF	$C_{16}H_{15}N_5O_5(357)$	53.9 53.6	4.2 4.5	19.6 19.5	-	-
3 _a	210	Dioxan	$C_{20}H_{17}N_4O_3S(391)$	61.5 61.4	4.3 4.2	14.3 14.3	-	8.3 8.2
3 _b	300	Ethanol	$C_{20}H_{15}N_4O_3Cl(427)$	56.2 56.1	3.5 3.7	13.1 13.4	8.31 7.97	-
3 _f	302	Ethanol	C ₁₆ H ₁₃ N ₃ O ₆ (346)	55.7 55.4	3.8 3.7	12.0 11.9	-	-
4 _c	270	Dioxan	$C_{22}H_{20}N_5O_4S(450)$	58.7 58.4	4.4 4.2	15.5 15.2	-	7.1 6.8
4 _e	280	Ethanol	$C_{16}H_{19}N_3O_2(285)$	67.3 67.1	6.7 6.4	14.7 14.3	-	-
5 _a	255	Ethanol	$C_{20}H_{16}N_5O_3S(406)$	59.1 59.5	3.9 3.5	17.2 16.9	-	7.9 7.5
5 _b	140	Ethanol	C ₂₀ H ₁₅ N ₅ O ₃ SCl(441)	59.4 59.7	3.4 3.6	15.9 15.5	8.05 7.78	7.3 7.5
5 _c	282	Dioxan	C ₂₃ H ₁₈ N ₆ O ₅ S(490)	56.3 56.3	3.6 3.4	17.1 16.8	-	6.5 6.4
5 _f	305	Ethanol	$C_{16}H_{13}N_4O_6(357)$	53.9 53.4	3.6 3.5	15.8 15.4	-	-
6 _b	162	Ethanol	$C_{26}H_{20}N_6O_2S(516)$	60.5 60.2	3.9 4.2	16.4 16.7	-	6.2 6.3
6 _f	220	Ethanol	C ₂₂ H ₁₉ N ₅ O5(433)	61.0 61.5	4.5	16.3 16.5	-	-
7 _a	250	Ethanol	$C_{24}H_{24}N_6O_4S(392)$	58.5 58.8	4.9 4.3	10.3 17.1 17.4	-	6.5 6.2
8 _a	302	Ethanol	$C_{20}H_{19}N_7O_2S(421)$	57.0 57.4	4.5	23.5 23.1	-	7.6 7.4

TABLE 1. Characterization and physical data for synthesized compound.

Biological Screening

The antimicrobial screening of all the synthesized compounds was done using the agar diffusion assay. This screening was performed against the Grampositive bacteria, Gram-negative bacteria, *Staphylococcus aureus* Atcc 06538, *Escherechia coli* Atcc 10536, pathogenic fungi *Candida albicans* Atcc 1023 and *Aspergills flavus*. A moderate activity was observed with compounds which proved to possess marked activity against *E. coli, S. aureus* and *C. albicans*. The strong activity was observed with compound 6c. The inhibitory concentration was determined for each of the active compounds along with Tetracycline and Amphotericin as positive control. Activity was detected for the synthesized compounds except 1e, 3d and 4c toward *Aspergillus flavus*. Results are shown in the Table 2.

Sample		Escherichia coli (G ⁻)	Staphylococcus aureus (G ⁺)	Aspergillus flavus Fungus	Candida albicans Fungus	
Contr	ol : DMSO	0.0	0.0	0.0	0.0	
Stan- dard	Tetracy- cline Anti- bacterial	32	30	_	_	
	Ampho- tericin B Antifungal	_	_	16	18	
	1 _a	14	14	12	10	
	1 _b	14	14	14	12	
1 _c		15	14	14	12	
1 _d		14	13 14		11	
1 _e		14	13	0.0	0.0	
3 _b		13 13 13		13	10	
3 _d		14 15 0.0		0.0	10	
4 _c		13	14	0.0	0.0	
5 _b		13	12	13	12	
6 _c		16	16	13	12	

TABLE 2. Antibacterial and antifungal activities of some selected compounds.

M.A.El-Hashash et al.

Comp. No	IR	NMR.(DMSO)
1 _a	υOH3410 υNH 3297- 3031,3050- 2892 (C-H 1710) and (1680 cm ⁻¹) acid and ketone groups	2.5(s,3H,CH ₃ CO),3.4(oct,CH ₂ .C=O J= 15.2,J=7.7) (diastereotopic protons) 4.2(dd,CH-COOH, methin proton J=7.7) 6.7 (s,NH),7.4-7.8 (m,9H,ArH), 8.2 (s,1H,COOH),8.6 (s,1H,C=O-NH)
1 _b	vNH or OH 3150-3320 , 3050-2905 (C-H) 1710)and (1680 cm ⁻¹) acid and ketone groups	2.5(s,3H,CH ₃ CO),3.4(oct,CH ₂ . C=O J=15.2 J=7.7)(diastereotopic proton) 4.2 (dd,CH-COOH, methin proton J=7.7) 6.7(s,NH),7.6-8.1 (m,8H,ArH), 8.2(s,1H,COOH), 8.6 (s,1H,C=O-NH)
1 _c	vNHor OH 3327-3031,3055- 2912(C-H (1770 – 1712 cm ⁻¹) vCO phthalimido moiety, (1710) and (1680 cm ⁻¹) corresponding to acid and ketone groups	2.45(s,3H,CH ₃ CO), 3.4(oct,CH ₂ C=O J=15.2,J=7.7) (diastereotopic protons) 4.1(dd,CH-COOH, methinproton J=7.7) 5.2 (s,2H,CH2) 6.2 (s,NH),7.4-7.8 (m,8H,ArH), 8.2 (s,1H,COOH), 8.6(s,1H,C=O-NH)
1 _d	vNHor OH 3031-3297, 3022-2912 (C-H (1710) and (1680 cm ⁻¹) corresponding to acid and ketone group respectively.	2.5(s,3H,CH ₃ CO),3.4(oct,CH ₂ . C=O J=7.7) (J=15.2,diastereotopic protons) 4.2(dd,CH- COOH, methinproton J=7.7)5.3(d,1H,Ph- CHa=),5.6 (d,=CHb) 6.5(s,NH),7.4-7.8 (m,9H,ArH), 8.2(s,1H,COOH), 8.6 (s,1H,C=O-NH)
1e	vNHor OH 3031-3297 (NH),3029- 2892C-H (1710) and (1680 cm ⁻¹) corresponding to acid and ketone group respectively.	2.7(s,9H,3CH ₃),3.4(oct,CH ₂ . C=O J=7.7) (diastereotopic protons) ,4.2(dd,CH-COOH, methinproton J=7.7) 6.7(s,NH),7.2- 7.6(m,5H,ArH), 8.2 (s,1H,COOH), 8.6(s,1H,C=O-NH)
1 _f	vNHor OH 3450-3130, 3050-2900 (C-H (1710) and (1680 cm ⁻¹) corresponding to acid and ketone group respectively and (1615) corresponding to barbiturate moiety.	2.5(s,3H,CH ₃ CO),3.4 (oct,CH ₂ . C=O J=7.7) (diastereotopic protons J=15.2) 4.2(dd,CH-COOH, methinproton J=7.7) 6.7(s,NH),7.1-7.5(m,6H,ArH), 8.2(s,1H,COOH),8.6 (bs,2H,C=O-NH) Acetamido and barbiturate moieties
2 _a	υNH 3297-3125, 3055-2900 C-H (1640 cm ⁻¹) for 2υ CO of amide group	2.5 (s,3H,CH3), 6.7 (s,NH) 7.4 – 7.8 (m,9H,ArH) 7.2 (s,1H,proton of pyridazinone, 10.2 (s,2H,NH acidic protons),
2 _b	υNH 3270-3150, 3047-2882 C-H (1640 cm ⁻¹) for 2υ CO of amide group	2.5 (s,3H,CH3), 6.7 (s,NH)7.4 –8.05 (m,8H,ArH) 7.2 (s,1H, proton of pyridazinone, 10.2 (s, 2H, NH acidic protons),
2 _c	υNH 3300-3080, 3022-2912 C-H (1640 cm ⁻¹) for 2υ CO of amide group (1772-1712)υ CO in phthalimido moiety	2.5 (s,3H,CH3), 6.7 (s,NH),6.8 – 7.9 (m,8H,ArH) 5.2 (s, 2H, CH2) , 7.2 (s,1H,proton pyridazinone), 10.2 (s,2H,NH acidic protons),

Comp. No	IR	NMR. (DMSO)
2 _e	υNH 3297-3031 , 3060-2905 C-H (1640 cm ⁻¹) for 2υ CO of amide group of pyridazinone and acetamido moietes	2.6 (s,9H,3CH3), 6.8 – 7.2 (m,4H,ArH) 7.5-7.6 (s,2H, protons of pyrazole and pyridazinone), 10.2 (s,2H,NH acidic protons),
2 _f	vNH 3297-3120, 3050-2912 C-H (1640 cm ⁻¹) for v CO of amide of pyrimidinonyl and pyridazinone moieties	2.3 (s,3H,CH3), 6.8 –7.3 (m,4H,ArH)7.5- 7.8 (m,3H,protons of pyridazinone and pyrimidine moieties), 10.2 (s, 2H, NH acidic protons), 11.2(s,2H, OH)
3 _a	vNH 3297-3100, 3055-2890 (C-H) 1767cm ⁻¹ attributable to v CO lactonic and acetamido gp at 1693 cm ⁻¹	$\begin{array}{l} \delta \ 2,1 \ (\ s \ 3H, \ CH_3CO \), \ 4(dd \ 1H, \ - \ C\underline{H}-NH \\ J=8.5), \ 6.7(bs,NH), 7.5-7.9 \ (m,9H \ of \ Ar) \ , \\ 6.9 \ (d \ ,1H,CH \ furanone \ moiety \ J=8.5) \ ,12.7 \\ (s,1H \ -C=O-N\underline{H}) \ acidic \ protons \ are \\ exchangeable \ in \ D_2O, \end{array}$
3 _b	vNH 3297-3031, 3022-2900 (C-H (1755 cm ⁻¹) attributable to v CO (lactonic) and acetamido gp at 1693 cm ⁻¹	δ 2,1 (s 3H, CH ₃ CO), 4,(dd 1H, - C <u>H</u> -NH J=7.8),6.3(s,NH)7.0-7.9 (m,8H of Ar), 6.7 (d,1H,CH furanone moiety J=7.8), 12.2 (s,1H -C=O-N <u>H</u>) acidic protons
3 _f	vNH 3297-3150, 3050-2912 (C-H (1760 cm ⁻¹) attributable to v CO (lactonic) and acetamido gp at 1693 cm ⁻¹	$\begin{array}{l} \delta \ 2,1 \ (\ s \ 3H, \ CH_3CO \), \ 4.3(dd \ 1H, \ - \ C\underline{H}-\\ NH), \ 6.7(s, NH), 7.5-7.9 \ (m, 6H \ of \ Ar) \ , \ \ 6.7\\ (d \ ,1H, \ CH \ furanone \ moiety) \ , \ 12.2 \ \ (s, 1H \ - \\ C=O-N\underline{H}) \ , \ 13.1(s, 2H, \ OH) acidic \ protons \ exchangeable \ D_2O, \end{array}$
4 _c	υNH 3300-3100 , 3050-2910 CH (1706 cm $^{-1}$) corresponding to υ CO of ketones	2.5 (s,3H,CH ₃ CO),3.4(t,CH ₂ C=O J=7.7) 4.1 (t,CH ₂ .N J=7.7), 6.7 (bs,NH),7.0-7.8 (m,8H,ArH), 8.6(s,1H,C=O-NH)
4 _e	ν NH 3297 -30150, 3020-2912 (C- H3031-3297 ,3022-2912 (C-H (1706 cm ⁻¹) corresponding to ν CO of ketones	2.4 (s,9H,3CH ₃), 3.4 (t,CH ₂ C=OJ=7.7) (4.1 (t,CH ₂ N J=7.7), 6.7(bs,NH), 7.4-7.8 (m,5H, ArH and pyrazole moiety), 8.6 (s,1H,C=O-NH)
5 _a	υNH 3297-3031, 3052-2912 (C- H1712-1703 cm ⁻¹ corresponding υ CO of azalactone	2.5 (s,3H,CH ₃ CO), 6.5 (s,NH),7.1-8.2 (m,10H, ArH and oxazine proton), 8.6 (s,1H,C=O-NH)
5 _b	υNH 3240 -3111,3022-2912 (C- H1712-1703 cm ⁻¹ correspondin υ CO of azalactone	2.5(s,3H,CH ₃ CO), 6.7(s,NH),7.1-7.9 (m, 9H, ArH and oxazine proton), 8.6 (s,1H, C=O-NH)
5 _c	ν NH 3270-3030, 3060-2912 (C-H), ν CO of azalactone 1712-1703 cm ⁻¹ , ν CO at1772-1712 for phthalimido moieties	2.5(s,3H,CH ₃ CO), 5.2 (s,2H,CH2), 6.7 (s,NH), 7.1-7.9 (m,9H,ArH and oxazine proton), 8.6(s,1H,C=O-NH)
5 _f	υNH 3290-3100, 3050-2912(C-H) 1712, 1703,1683 cm ⁻¹ υ CO of azalactone, υ CO barbituro and pyrimidinone moieties	2.5(s,3H,CH ₃ CO), 6.7(s,NH),6.9-8.3 (m,8H, ArH Pyrimidine and oxazine protons),), 9.9 (bs,1H,OH acidic proton and 12.4 (s,1H,C = ONH are exchangeable in D_2O_2)

M.A.El-Hashash et al.

Comp. No	IR	NMR. (DMSO)
6 _b	vNH3131-3410,CH 3022-2912, v CO 1632 cm ⁻¹) and 1694-1650 corresponding to v CO of carbonyl pyridazinone moieties.	2.5 (s,3H,CH3), 6.5(s,NH)6.8 – 7.9 (m,13H, ArH) ,8.2(s,1H,proton of pyridazinone, 10.2 (s,1H,NH acidic protons),
6 _f	vNH3031-3297),CH 3022-2912, 1694-1650 cm ⁻¹ corresponding to 2v CO of carbonyl of pyrimidinonyl and pyridazinone moieties	2.3 (s,3H,CH3), 7.0 –7.8 (m, 9H, ArH) 8-8.2(s,3H,protons of pyridazinone and pyrimidine moieties, 10.2 (s,1H,NH acidic protons), 11.2 (s,2H, OH)
7 _a	υNH 3031-3297, CH 3022-2912 υ CO 1741 cm ⁻¹ of ester	1.3(t,3H,CH3,J=7.4), 2.5 (s,3H,CH ₃ CO), 3.4 (q,2H, CH ₂ , J=7.4), 4.8 (s,2H,CH2 6.7 (s,NH), 7.0-7.8 (m,10H,ArH and proton of pyridazinone) 8.2 (s,1H,COOH),8.6 (s,2H,NH-C=O)
8 _a	υNH 3031-3297 , 3022-2912 (C- H1671 cm ⁻¹ corresponding to υ CO of carbonyl of pyridazinone moiety	2.5 (s,3H,CH3CO), 5.9-6.5 (m,3H, NH2 & NH, disappear in D_2O), 6.9 – 7.6 (m, 9H, aromatic protons), 8.1 (s,1H, proton of pyridazine moiety), 12.5 (s,1H,CO-NH) disappears by D_2O .

References

1. Toshikazu, K., Tukuba Research Lab.Food, Food Ingredients J.Japan, 206 (2002).

- Barrett, D., Tanaka, A., Harada, K., Ohki, H., Watabe, E., Maki, K. and Ikeda, F., Bioorg. Med. Chem. Lett. 11, 479-482 (2001).
- 3. Kovalainen, J.T., Christains, J.A.M., Kotisaati, S., Laitinen, J.T. and Mannisto, P.T., J. Med. Chem. 42, 1193 (1999).
- 4. El-Faham, A., Elmassry, A.M., Amer, A. and Gohar, Y.M., Lett. Pept. Sci. 9, 49 (2002).
- a) Polyak, F. and Lubell, W.D., J.Org. Chem. 63, 5937 (1998); b) Roy, S., Lombart, H.G., Lubell, W.D., Hancock, R.E.W. and Farmer, S.W., J. Peptide Res. 60, 198 (2002).
- 6. Okada, Y., Tsukatani, M., Taguchi, H., Yakai, T., Bryant, S.D. and Lazarus, L.H., *Chem. Pharm. Bull.* 46, 1374 (1998).
- Sun, G., Uretsky, N.J., Wallace, L.J., Shams, G., Weinstein, D.M. and Miller, D.D., J. Chem. 39, 4430 (1996).
- 8. Marsham, P.R., Wardleworth, J.M., Boyle, F.T., Hennequin, L.F., KBrown, M. and Jackman, A.L., Med. Chem. 42, 380 (1999).
- Xia, Y., Yang, Z.V., Xia, P., Bastow, K.F., Nakanishi, Y. and Lee, K.H., *Bioorg. Med. Chem. Lett.* 10, 699 (2000).

- El-Hashash, M.A., Abdel-Mageid, G.A., El-Kady, S.S. and Mohammed, S.A., 1,4-Thioarialkylation and/or amination of E-3-(4-bromo benzoyl) acrylic acid and some studies with the products. *Egypt. J. Chem.* 51(1), 103-112 (2008).
- 11. a) Rizk,S.A., El-Hashash, M.A. and Mostafa, K.K., Utility of β-aroyl acrylic acid in heterocyclic synthesis. *Egypt, J. Chem.* **51** (5), 116-121 (2008); b) Rizk, S.A., El-Hashash, M.A. and Aburzeza, M.M., 1,4-Arylation of β-(4-acetylaminobenzoyl) acrylic acid with activated aromatic hydrocarbons under Fridel-Crafts conditions and some studies with the products. *Egypt. J. Chem.* **54** (1), (2011).
- 12. Xia-Juan Zou, Lu-Hua Lai, Gui-Yu Jin and Zu-Xing Zhang , J. Agric. Food. Chem. 50 (13), (2002).
- a) Daidone, G., Maggio, B., Plescia, S., Raff, D., Musiu, C., Milia, C., Perra, G. and Marong-iu, M. E., *Eur. J. Med. Chem.*, 33, 375 (1998); b) Singh, N., Sangwan, N.K. and Dhindsa, K.S., *Pest Manage .Sci.* 56, 284 (2000); c) Daidone, G., Raffa, D., Plescia, F., Maggio, B.R. and Occaro, A., *Arkivoc (xi)* 227 (2002); d) Migliara, O., Plescia, S., Diana, P., Distefano, V., Camarda, L. and Dall, Olio, R., *Arkivoc (v)*, 44 (2004); e) Kataritzky, A.R., Vakulenko, A.V., AkueGedu, R., Gromove, A.V., Witek, R. and Rogers, J.W., *Arkivoc (i)*, G. (2007).
- 14. Kesharwani, K., Sahu, N. K. and Kohli, D.V., J. Pharma. Chem. 43, 6 (2009).
- 15. Jacob, A.M., Thumpakkara, R., Prathapas, S. and Jose, B., Tetrahudron, 61, 4601(2005).
- 16. Mohamed, M.M., El-Hashash, M.A.I. and Abo-Baker, O.A., Rev. Roum. Chim. 27, 865 (1982).
- 17. a) Patel, M., Mc-Hvgh, R.J. Jr, Cardova, B.C., Klabe, R.M., Ericksonviitanen, S., Trainor, G.L. and Ko, S.S., Bioorg. Med. Chem. Lett., g, 3221 (1999); b) EL-Shafei, H.A. and Badr-Eldin, S.M., Egypt. J. Micobiol. 27, 353 (1994); c) Svgimoto, Yon ago, M., Karibe, N., Limure, Y., Nagato, S., Sasaki, A. and Yamanishi, Y., Patent Appl. EP. 468,187 (1992) Chem. A bstr.116, 235643 (1992); d) Waxman, L. and Darke, P.L., Antiviral Chem.ch-emother. 11,1 (2000); e) Girgis, A.S., Pharmazie, 466 (2000).
- 18. EL-Hashash, M.A. and EL-Nagdy, S.I., J. Chem. Eng. Data 29.
- Ayed, G.H., Ismail, A.A., Rohat, F., EL-Mobayed, M. and Mohamed, S.M., Comac. Sci. Univ, Ankarar, B. Chem. Eng. 36, 53 (1990), Chem. Abst, 123, 25662 SV (1995).

(Received 4/1/2011; accepted 8/1/2012)

استخدام البارا اسيتاميدوبنزويل حمض البروبينويك في تحضير احماض امينية جديدة و استخدامها لتحضير مركبات غير متجانسة الحلقة

ماهر عبد العزيز الحشاش ، سامح احمد محمد رزق و مختار المبروك أبورزازه* قسم الكيمياء – كلية العلوم – جامعة عين شمس – القاهرة – مصر و "قسم الكيمياء – كلية العلوم – جامعة المارجب – زليتن – ليبيا .

يتضمن هذا البحث 1- تحضير بعض الاحماض الامينية الصناعية التى لها نشاط بيولوجى. وذلك من خلال معالجة حمض 3-(4-اسيتاميدو بنزويل)-2-البروبينويك مع 5-اريل-2-امينو-1,3,5 اثياديزول و 2,5-ثنائى الميثيل البيرازول و حمض البربيتيوريك للحصول على ناتج الاضافة (1). الذى يستخدم لتحضير العديد من المركبات الغير متجانسة الحلقة هثل البيريدازينون و الاكزازينون والفيور انون . 2-اجراء بعض التحاليل البيولوجية لاثبات فاعلية هذة المركبات ضد بعض الامراض البكتيرية و الفطرية .3-اثبات المركبات المحضرة بأجهزة التحاليل الدقيقة مثل الاشعة تحت الحمراء والرنين المغاطيسى والكتلة الاكترونى.