Synthesis, Anti-Proliferative Activity and SAR Studies of Novel 5-(3-indolyl)-5H-thiazolo[4,3-b][1,3,4]thiadiazoles Tethered with Steroid Moieties

Heba M. Abo-salem*a, Dina S. El-kadyb, Mervat M. Abd-Elhalimb, Ahmed A.F. Soliman*, Manal S. Ebaida, Eslam R. El-Sawy*a

aChemistry Department of Natural Compounds, National Research Centre, 12622Dokki, Giza, Egypt
bHormones Department, National Research Centre, 12622Dokki, Giza, Egypt.
cPharmacognosy Department, National Research Centre, 12622Dokki, Giza, Egypt.

Abstract
A new series of the fused thiazolo[4,3-b]-1,3,4-thiadiazoles 2a-e have been synthesized via one-pot reaction of N-substituted indole-3-carboxaldehydes 1a-e with thioglycolic acid and thiosemicarbazide under grinding condition. Condensation reaction of 2a-e with acetylated epiandrosterone and progesterone afford the corresponding Schiff’s bases 3a-e and 4a,b, respectively. Besides, the chloroacetylation of 2a-e in situ by chloroacetyl chloride yielded the chloroacetamidines 5a-e. The reaction of 5a-e with 3-aminopyrazolopyridine derivative 6 provided the goal 2-[(steroids)-2H-pyrazolo[3,4-b]pyridin-3-ylamino]-5-(indoles)-thiazolo[4,3-b][1,3,4]thiadiazol-2-ylacetamides 7a-e. The analytical and spectral data of the entire target compounds 3a-e, 4a,b, and 7a-e were compatible with their structures. Compounds 3a-e, 4a,b, and 7a-e were selected to be screened in vitro against different cancer cell lines, namely A-549, HC-T116, MCF-7, and PC3 using MTT assay. The anti-proliferative activity results implied that compounds 3a-e, 4a, and 7e showed excellent growth inhibitory activity toward the human colon cancer cell (HCT-116) with IC50 value ranging from 7.25-38.92 μM/ml in comparison to the reference drug doxorubicin with IC50 of 48.02 μM/ml. Interestingly, compound 3e found to be the most active one towards A-549, HCT-116, and PC3 cancer cell lines with IC50 of 27.05, 12.69, and 24.61μM/ml in comparison with doxorubicin of IC50 39.74, 48.02, and 34.77μM/ml, respectively. In addition, molecular docking studies helped to rationalize the binding interaction of the most active compounds toward human colon cancer cell (HCT-116) 3a-e, 4a and 7a with the anti-apoptotic Bel-2 and the result revealed that the docking of compounds was more potent compared co-crystalline ligand.

Keywords: Indol-3-carboxaldehyde; fused thiazolo[4,3-b][1,3,4]thiadiazoles; steroids anticancer; SAR; molecular docking.

1. Introduction
Cancer is a group of aggressive diseases and the topmost killer worldwide, which is recognized by the abnormal cell growth and metastasis to other parts of the body [1]. There are different ways of cancer treatments; however, chemotherapy remains a mainstay of treatment [2-4]. Due to the high prohibition for cancer disease and the rapid growing of drug resistance for anti-cancer drugs intense research are carried out worldwide in order to overcome this aggressive disease [1, 5].
Thiadiazole is a widespread and significant five membered heterocyclic system with two nitrogen atoms and a sulphur atom [6]. Thiadiazole has many isomers including 1,2,3 thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, and 1,3,4-thiadiazole. The latter isomer has investigated more than others [6]. 1,3,4-Thiadiazoles show a wide range of biological activities such as anti-cancer, antioxidant, anti-inflammatory, antimicrobial, antituberculosis, anticonvulsants, and anti-hypertensive, and antidepressant [7-14]. 1,3,4-Thiadiazole are found in various marketed drugs example acetazolamide that act as carbonic anhydrase inhibitor for treatment of glaucoma, high-altitude diseases, idiopathic intracranial hypertension, hemiplegic migraine, obstructive sleep apnea, and sulfamethizole used as an antibacterial agent [6-15]. On the other hand, steroids are a diverse set of biologically active polycyclic compounds. Steroids play an essential role in regulating normal physiological processes and are the mainstay for

*Corresponding author e-mail: hb_abosalem@yahoo.com
Receive Date: 12 August 2020, Revise Date: 22 September 2020, Accept Date: 04 October 2020
DOI: 10.21608/ejchem.2020.38975.2800
©2021 National Information and Documentation Center (NIDOC)
treatment of various diseases, including cancer [16,17]. Steroidal heterocycles have drawn great attention due to their interesting structural features as well as their biological profiles [18]. Progesterone, dehydroisoandrosterone, epandrosterone, and 3-hydroxy-5a-androstan-17-one are some of the steroids that are widely used as a pharmaceutical prototype for constructing various biologically active compounds [19-23].

Furthermore, indole is a well-known natural compound attracts massive interest of researchers in the field of organic and medicinal chemistry, having a broad spectrum of pharmaceutical activities comprise antitumor, antimicrobial, anti-inflammatory, antiviral [24-26]. Scientific research studies revealed that a combination of two different bioactive molecules is of great medicinal interest [27]. These bioactive molecules can efficiently overcome most of the pharmacokinetic disadvantage of classical drugs where they can launch two or more mode of action in parallel to restrain tumor growth [27]. Based on the information provided and as our work continues to synthesize new anticanicenger agents [25, 26, 28-30], our efforts in this work have directed to synthesize a new series of thiazolo[4,3-b]-1,3,4-thiadiazoles united to steroid moieties to be exploited for further diversification and screened for anti-proliferative activity.

2. Experimental

2.1. Instruments and reagents

Solvent and reagents are of commercial grade. Melting points measured on the melting digital device; 9100-Electrothermal, serial No. 8694, Rochford, United Kingdom, and are uncorrected. The reaction advance was observed by TLC; thin layer chromatography using silica gel plates (POLYGRAM SILG/UV254, 0.20 mm), which were seen under ultra violet light 254 and 365 nm. Elemental analyses have been carried out on a Perkin-Elmer analyzer 2400 (USA), and were originated inside the range of ±0.4 % of the calculated values. The infrared spectra (IR) realized by Beckman infrared spectrophotometer (PU 7712) using potassium bromide disc. The 1H NMR and 13C NMR spectra were performed on Mercury Varian and BrukerAvance spectrometer (300, 400 & 100 MHz) using TMS as the internal standard at Microanalytical Center, Cairo and Ain Shams University, Egypt. Mass spectra (EI) were recorded by Jeol JMS-AX 500 spectrometer, 70ev (Japan).

2.2. Chemistry

Synthesis of 2-amino-5-(N-substituted-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiadiazoles (2a-e)

1H-Indole-3-carboxaldehyde 1a-e (20mmol) and thioglycollic acid (1.84 ml, 20 mmol) were ground in a mortar with a pestle at room temperature (10-15min). To the reaction mixture, thiosemicarbazide (20mmol) was added with milling, and then (10 ml) of concentrated H2SO4 under cooling and milling was added in a small quantities. The reaction mixture was homogenized, and then left for 24h at -20 °C. The mixture was transferred by ice-water to a beaker of 250 ml. The neutralization of the formed suspension takes place using aqueous solution of sodium hydroxide (40 %) to pH 7-8. The precipitate was filtered, dried, and re-crystallized from dioxane : H2O (1:1).

2-Amino-5-(N-benzoyl-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiadiazole (2a)

Yield 65%, m.p. 215-7°C; IR (KBr, cm-1): 3365 (NH2), 1705 (C=O), 1633 (C=N), 1575 (C=C); 1H NMR (DMSO-d6, 400 MHz) δ: 11.21 (s, NH2), 8.38 (s, 1H, H-2 indole), 8.33 (s, 1H, CH thiazole), 8.25 (d, 1H, Ar-H), 8.15 (d, 1H, Ar-H), 8.06 (d, 1H, Ar-H), 7.83-7.43 (m, 5H, Ar-H), 7.21-7.14 (m, 2H, Ar-H). 13C NMR (DMSO-d6, 100 MHz) δ: 184.96 (CO), 138.47, 137.04, 124.07, 123.40, 112.07, 120.78, 118.09, 112.43 (Ar-C); EI-MS: m/z (%) =378 [M+2, 22]; Anal Calcd for C19H14N2O2S (378.47): C, 60.30; H, 3.73; N, 14.80; found: C, 60.16; H, 3.64; N, 14.71.

2-Amino-5-(N-(2-chloro-benzoyl)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]Thiadiazole (2b)

Yield 56%, m.p. 224-6°C; IR (KBr, cm-1): 3369 (NH2), 1705 (C=O), 1628 (C=N), 1575 (C=C), 755 (C=Cl); 1H NMR (DMSO-d6, 400 MHz) δ: 11.20 (s, NH2), 8.31 (s, 1H, H-2 indole), 8.23 (d, 1H, Ar-H), 8.04 (s, 1H, CH thiazole), 7.28 (d, 1H, Ar-H), 7.43 (d, 2H, Ar-H), 7.25-7.12 (m, 5H, Ar-H); 13CNMR (DMSO-d6, 100 MHz) δ: 176.40 (CO), 140.80, 137.00, 130.98, 123.98, 123.91, 122.61, 122.14, 122.12, 120.55, 111.71, 111.07 (Ar-C); Anal Calcd for C19H12ClN2O2S (412.92): C, 55.27; H, 3.17; N, 13.57; found:, 55.01; H, 3.00; N, 13.31.

2-Amino-5-(N-(4-chloro-benzoyl)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]Thiadiazole (2e)

Yield 62%, m.p. 205-7°C; IR (KBr, cm-1): 3312 (NH2), 1721 (C=O), 1622 (C=N), 1522 (C=C), 755 (C=Cl); 1H NMR (DMSO-d6, 400 MHz) δ: 11.17 (s, NH2), 8.30 (s, 1H, H-2 indole), 8.21 (d, 1H, Ar-H), 8.00 (s, 1H, CH thiazole), 7.94 (d, 2H, Ar-H), 7.80 (d, 1H, Ar-H), 7.57 (d, 2H, Ar-H), 7.20-7.13 (m, 3H); 13C NMR (DMSO-d6, 100 MHz) δ: 176.40, 166.45, 140.81, 138.47, 137.01, 130.99, 123.44, 122.61, 122.11, 120.80, 120.60, 112.41, 111.73, 111.08 (Ar-C); EI-MS: m/z (%) =412/414 [M+M+2, 21/11]; Anal Calcd for C19H12ClN2O2S (412.92): C, 55.27; H, 3.17; N, 13.57; found: C, 55.05; H, 3.01; N, 13.34.

2-Amino-5-(N-(methanesulphonyl)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]Thiadiazole (2d)

Yield 53%, m.p. 198-200°C; IR (KBr, cm-1): 3405 (NH2), 1628 (C=N), 1577 (C=C), 1365 & 1136 (N-SO2); 1H NMR (DMSO-d6, 400 MHz) δ: 11.26 (s,
N\text{H}_2), 8.32 (s, 1H, H-2 indole), 8.29 (d, 1H, Ar-H), 8.05 (s, 1H, CH thiazole), 7.82 (d, 1H, Ar-H), 7.43 (d, 1H, Ar-H), 7.20-7.13 (m, 2H), 3.77 (s, 3H, CH\text{CH}_2); 13\text{C} NMR (DMSO-\text{d}_6, 100 MHz) \delta: 152.41, 145.81, 140.81, 137.0, 130.98, 130.13, 128.77, 122.60, 122.13, 120.05, 111.72, 111.08 (Ar-C); EI-MS: m/z (%) = 352 [M*, 22]; Anal Calcd for C\text{H}_3\text{H}_2\text{N}_2\text{O}_5\text{S}_2 (352.45): C, 44.30; H, 3.43; N, 15.90; found: C, 44.12; H, 3.25; N, 15.75.

2-Amino-5-[(4-bromo-benzenesulphonyl)-1H-indol-3-yl]-5H-thiazolo[4,3-b][1,3,4]Thiadiazole (2e)

Yield 65\%, m.p. 235-7°C; IR (KBr, cm\text{-1}): 3423 (N\text{H}_2), 1628 (C=O), 1586 (C=C), 1345, 1123 (N-SO\text{\textsubscript{2}}), 781 (C-Br); \text{H} NMR (DMSO-\text{d}_6, 400 MHz) \delta: 11.21 (s, N\text{H}_2), 8.33 (s, 1H, H-2 indole), 8.23 (d, 1H, Ar-H), 8.06 (s, 1H, CH thiazole), 7.96 (d, 2H, Ar-H), 7.83 (d, 1H, Ar-H), 7.58 (m, 3H), 7.21-7.14 (m, 2H); 13\text{C} NMR (DMSO-\text{d}_6, 100 MHz) \delta: 156.81, 140.52, 137.25, 130.47, 130.01, 123.04, 122.61, 122.01, 120.51, 120.11, 112.61, 111.71, 111.09 (Ar-C); EI-MS: m/z (%) = 492494 [M* + 2, 12/12]; Anal Calcd for C\text{H}_8\text{Br}_2\text{N}_2\text{O}_5\text{S}_2 (494.42): C, 43.82; H, 2.66; N, 11.35; found: C, 43.61; H, 2.43; N, 11.04.

Synthesis of Schiff’s base 3a-e

A mixture of 2a-e (10mmol) and acetylated epiandrosterone (10mmol) was milled in a mortar with a pestle at room temperature for 10-15 min, and then transferred by 25 ml of ethanol 99% to a round bottomed flask. The reaction mixture was heated under reflux for 6-8 h. After completion of the reaction, the reaction mixture was cooled to room temperature, and the formed solid was collected by filtration, dried, and re-crystallized from ethyl acetate: cyclohexane (1:1).

(35,8R,9S,10S,13S,14S,E)-17-(5-(1-benzoyl-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiadiazol-2-yl)-imino)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (3a)

Yield 54\%, m.p. 175-7°C; IR (KBr, cm\text{-1}): 1711 (2C=O), 1618 (C=\text{N}), 1596 (C=C), 1126, 1053 (C-O); \text{H} NMR (DMSO-\text{d}_6, 400 MHz) \delta: 8.36 (s, 1H, H-2 indole), 8.31 (d, 1H, Ar-H), 8.23 (d, 1H, Ar-H), 7.81-6.91 (m, 9H, Ar-H), 4.13 (m, 1H, CH-3), 2.38 (s, 3H, CO\text{CH}_3), 1.44 (s, 3H, CH\text{CH}_2), 2.33-0.85 (m, 22H, steroid moiety), 0.84 (s, 3H, CH\text{CH}_2); EI-MS: m/z (%) = 692 [M* + 0.13]; Anal Calcd for C\text{H}_{38}\text{O}_4\text{N}_2\text{S}_2 (692.94): C, 69.33; H, 6.40; N, 8.09; found: C, 69.01; H, 6.21; N, 7.90.

(35,8R,9S,10S,13S,14S,E)-17-(5-(1-(2-chloro benzoyl)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiadiazol-2-yl)-imino)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (3b)

Yield 57\%, m.p. 152-7°C; IR (KBr, cm\text{-1}): 1704 (2C=O), 1618 (C=\text{N}), 1590 (C=C), 742 (C-Cl); \text{H} NMR (DMSO-\text{d}_6, 400 MHz) \delta: 8.44 (s, 1H, H-2 indole), 8.29 (d, 1H, Ar-H), 7.81-6.44 (m, 9H, Ar-H), 4.60 (m, 1H, CH-3), 2.92 (s, 3H, CO\text{CH}_3), 1.20 (s, 3H, CH\text{-}18), 2.07-0.85 (m, 22H, steroid moiety), 0.84 (s, 3H,CH\text{-}19); Anal Calcd for C\text{H}_{38}\text{Br}_2\text{Cl}_2\text{N}_2\text{O}_5\text{S}_2 (727.25): C, 66.05; H, 5.96; N, 7.70; found: C, 66.10; H, 5.77; N, 7.75.

Egypt. J. Chem. 64, No. 2 (2021)
10,13-Dimethyl-17-((E)-1-(5-(N-benzoyl-1H-indol-3-yl)-5H-thiazolo[4,3-b])1,3,4)thiazol-2-ylmino)ethyl)-7,8,9,11-tetrahydro-1H-cyclopenta[a]phenan-thren-3(2H,6H,10H,13H,14H,15H,16H,17H)-ylidine)-5-(N-benzyl-1H-indol-3-yl)-5H-thiazolo[4,3-b]1,3,4)thiazol-2-amine (4a)

Yield 54%, m.p. 290-2°C; IR (KBr, cm-1): 1717 (C=O), 1629 (C=N), 1596 (C=C). 1H NMR (DMSO-d6, 400 MHz) δ: 8.57-8.36 (m, 3H, Ar-H), 8.23-8.07 (m, 4H, Ar-H), 7.97-6.65 (m, 17H, Ar-H); 5.62 (s, 1H, CH3), 1.23 (s, 3H, CH3-19), 2.49-1.13 (m, 20H, steroid moiety), 1.01 (s, 3H, CH3-18); Anal Calcd for C50H45N3O14S (1034.33): C, 68.44; H, 5.26; N, 10.82; found: C, 68.21; H, 5.04; N, 10.62.

10,13-Dimethyl-17-((E)-1-(5-(N-(4-bromo-benzene sulfonil)-1H-indol-3-yl)-5H-thiazolo[4,3-b])1,3,4)thiazol-2-ylmino)ethyl)-7,8,9,11-tetrahydro-1H-cyclopenta[a]phenanthren-3(2H,6H,10H, 12H,13H,14H,15H,16H,17H)-ylidine)-5-(N-(4-bromo-benzene sulfonil)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-2-chloro-acetamide (5a-e)

Synthesis of N-(5-(N-Substituted-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-2-chloroacetamides (5a-e)

A solution of the chloroacetyl chloride (5 ml, 40 mmol) in dimethylformamide (20 ml) was added slowly to a stirred solution of compound 2a-e (20 mmol) in dimethylformamide (60 ml) at 0-5 °C. After complete addition, the reaction mixture was refluxed for 3h. After completion of the reaction, the reaction mixture was quenched with cold water, and then neutralized with sodium hydrogen carbonate (5%). The formed solid was filtered off, washed with water, dried, and re-crystallized from chloroform.

N-(5-(N-benzoyl-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-2-chloroacetamide (5a)

Yield 65%, m.p. 110-2°C;IR (KBr, cm-1): 3175 (N-H), 1707, 1688 (C=O), 1620 (C=N), 1562 (C=C), 775 (C=Cl); 1H NMR (DMSO-d6, 300 MHz) δ: 9.07 (s, NH), 8.21 (s, 1H, H-2 indole), 7.81(d, 2H, Ar-H), 7.45-7.40 (m, 4H, Ar-H), 7.28-7.09 (m, 5H, Ar-H), 4.27 (s, 2H, CH2); EI-MS: m/z (%) =454/456 [M]+2/ 29/11; Anal Calcd for C26H25ClN2O4S2 (454.95): C, 55.44; H, 3.32; N, 12.31; found: C, 55.30; H, 3.25; N, 12.19.

N-(5-(N-(2-chlorobenzoyl)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-2-chloroacetamide (5b)

Yield 60%, m.p. 164-6°C; IR (KBr, cm-1): 3240 (N-H), 1710, 1696 (C=O), 1618 (C=N), 1545 (C=C), 757 (C=Cl); 1H NMR (DMSO-d6, 300 MHz) δ: 9.72 (s, NH), 8.33 (s, 1H, H-2 indole), 8.12 (d, 1H, Ar-H), 7.92 (m, 2H, Ar-H), 7.52-7.11 (m, 7H, Ar-H), 4.05 (s, 2H, CH2); Anal Calcd for C21H18Cl2N4O3S2 (489.40): C, 51.54; H, 2.88; N, 11.45; found: C, 51.41; H, 2.69; N, 11.27.

N-(5-(N-(4-chlorobenzoyl)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-2-chloro-acetamide (5c)

Yield 51%, m.p. 82 dec.; IR (KBr, cm-1): 3302 (N-H), 1697, 1686 (C=O), 1620 (C=N), 1577 (C=C), 772 (C-Cl); 1H NMR (DMSO-d6, 300 MHz) δ: 10.02 (s, NH), 8.02 (s, 1H, H-2 indole), 7.82 (dd, 2H, Ar-H), 7.71-7.65 (m, 4H, Ar-H), 7.45 (s, 1H), 7.35-7.18 (m, 3H, Ar-H), 4.15 (s, 2H, CH2); EI-MS: m/z (%) =489/490/492 [M'+M+2/4, 2011/2]; Anal Calcd for C27H22Cl3N4O3S2 (489.40): C, 51.54; H, 2.88; N, 11.45; found: C, 51.37; H, 2.70; N, 11.24.

N-(5-(N-(4-methylene sulphonil)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-2-chloroacetamide (5d)

Yield 49%, m.p. 96-8°C; IR (KBr, cm-1): 3175 (N-H), 1688 (C=O), 1618 (C=N), 1553 (C=C), 725 (C-Cl); 1H NMR (DMSO-d6, 300 MHz) δ: 8.95 (s, NH), 7.84 (d, 1H, Ar-H), 7.78 (d, 1H, Ar-H), 7.75 (s, 1H, H-2 indole), 7.45-6.91 (m, 4H, Ar-H), 4.17 (s, 2H, CH2), 3.92 (s, 3H, SO2CH3); EI-MS: m/z (%) =428/430 [M'+M+2/ 12/4]; Anal Calcd for C24H20Cl2N3O3S2 (428.94): C, 51.54; H, 2.88; N, 11.45; found: C, 51.31; H, 2.57; N, 11.06.

N-(5-(N-(4-bromo-benzene sulfonil)-1H-indol-3-yl)-5H-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-2-chloroacetamide (5e)

Yield 45%, m.p. 117-9°C; IR (KBr, cm-1): 3215 (N-H), 1687 (C=O), 1617 (C=N), 1577 (C=C), 782, 757 (C-Br; C-Cl); 1H NMR (DMSO-d6, 300 MHz) δ: 9.56 (s, NH), 7.82 (d, 1H, Ar-H), 7.78 (s, 1H, Ar-H), 7.75-7.21 (m, 8H, Ar-H), 4.07 (s, 2H, CH2); Anal Calcd for C26H18Br2ClN4O3S2 (569.90); C, 42.15; H, 2.48; N, 9.83; found: C, 42.01; H, 2.30; N, 9.64.

Synthesis of 2-(6-(10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecacydro-1H-cyclopenta[a]phenanthren-17-yl)-2H-pyrazolo[3,4-b]pyridine-3-ylamino)-5-(N-substituted-1H-indol-3-yl)-thiazolo[4,3-b][1,3,4]thiazol-2-yl)-acetamide (7a-e)

The appropriate of 5a-e (1 mmol) and the 3-amino-pyrazolopyridine derivative 6 (0.40 g, 1 mmol) was fused for 30 min, and then transferred by 25 ml of absolute ethanol to a round flask. The reaction mixture was heated under reflux for 6-8 h. The reaction mixture was cooled to room temperature. The separated solid was collected by filtration, washed with water, air dried and crystallized from ethyl acetate–cyclohexane (1:1).

Egypt. J. Chem. 64, No. 2 (2021)
2-6-(10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yi)-2H-pyrazolo[3,4-b]pyridin-3-ylamino)-5-((N-benzoyl-1H-indol-3-yl)-thiazolo[4,3-b][1,3,4]thiadiazol-2-yl)acetamide (7a)

Yield 62%, m.p. 265-7°C; IR (KBr, cm⁻¹): 3265, 3196 (N-H), 1714, 1705, 1698 (C=O), 1633, 1628 (C=O), 1592 (C=O), 1322 (N-H) NMR (DMSO-d₆, 300 MHz) δ: 12.40, 11.07 (s, 2H, 2NH), 8.42 (s, 1H, H-2 indole), 8.15-7.52 (m, 5H, Ar-H), 7.45 (d, 2H, 2CH=pyridine), 7.43-6.92 (m, 6H, Ar-H), 5.05 (s, 1H, CH=4), 4.12 (s, 2H, CH₂), 1.59 (s, 3H, CH₃-19), 2.50-1.03 (m, steroid moiety), 0.90 (s, 3H, CH₃-18); EI-MS: m/z (%) = 822[M⁺, 14]; Anal Caled for C₉H₁₀N₂O₅S₂ (822.31): C, 67.13; H, 5.63; N, 13.61; found: C, 66.93; H, 5.42; N, 13.44.

2-6-(10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yi)-2H-pyrazolo[3,4-b]pyridin-3-ylamino)-5-((N-(2-chloro-benzoyl)-1H-indol-3-yl)-thiazolo[4,3-b][1,3,4]thiadiazol-2-yl)-acetamide (7b)

Yield 40%, m.p. 213-5°C; IR (KBr, cm⁻¹): 3320, 3242 (N-H), 1724, 1711, 1695 (C=O), 1628 (C=O), 1575 (C=C), 775 (C=C); EI-MS: m/z (%) = 857.85 [M⁺+2, 24/8]; Anal Caled for C₁₈H₁₆ClN₄O₅S (856.5): C, 64.43; H, 5.29; N, 13.07; found: C, 64.21; H, 5.06; N, 12.87.

2-6-(10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yi)-2H-pyrazolo[3,4-b]pyridin-3-ylamino)-5-((N-(4-aminobenzoyl)-1H-indol-3-yl)-thiazolo[4,3-b][1,3,4]thiadiazol-2-yl)-acetamide (7c)

Yield 46%, m.p. 141-3°C; IR (KBr, cm⁻¹): 3287, 3145 (N-H), 1712, 1696 (C=O), 1623 (C=O), 1587 (C=C), 752 (C=O); 1H NMR (DMSO-d₆, 300 MHz) δ: 11.62, 10.01 (s, 2NH), 8.25 (s, 1H, H-2 indole), 8.00 (d, 2H, Ar-H), 7.92 (d, 1H, CH=pyridine), 7.85-7.71 (m, 3H, Ar-H), 7.57 (d, 1H, CH=pyridine), 7.35-6.87 (m, 5H, Ar-H), 5.68 (s, 1H, CH=4), 3.95 (s, 2H, CH₂), 2.50-1.26 (m, steroid moiety). 1.12 (s, 3H, CH₃-19), 1.09 (s, 3H, CH₃-18); Anal Caled for C₁₈H₁₆N₆O₅S (856.5): C, 64.43; H, 5.29; N, 13.07; found: C, 64.25; H, 5.11; N, 12.90.

2-6-(10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yi)-2H-pyrazolo[3,4-b]pyridin-3-ylamino)-5-((N-(methanesulphonyl)-1H-indol-3-yl)-thiazolo[4,3-b][1,3,4]thiadiazol-2-yl)-acetamide (7d)

Yield 51%, m.p. 162-4°C; IR (KBr, cm⁻¹): 3224, 3167 (N-H), 1705, 1687 (C=O), 1629 (C=N), 1565 (C=C); 1H NMR (DMSO-d₆, 300 MHz) δ: 12.28, 9.92 (2s, 2NH), 8.25 (d, 1H, Ar-H), 8.01 (s, 1H, H-2 indole), 7.89-7.80 (d, 2H, 2CH=pyridine), 7.62 (d, 1H, Ar-H), 7.42-6.91 (m, 4H, Ar-H), 5.50 (s, 1H, CH=4), 4.07 (s, 2H, CH₂), 3.75 (s, 3H, SO₂CH₃), 1.29 (s, 3H, CH₃-19), 1.05-2.50 (m, steroid moiety), 0.95 (s, 3H, CH₃-18); EI-MS: m/z (%) = 797 [M⁺, 12]; Anal Caled for C₂₀H₁₈N₄O₅S (796.26): C, 60.28; H, 5.56; N, 14.06; found: C, 60.04; H, 5.47; N, 13.86.

SYNTHESES, ANTI-PROLIFERATIVE ACTIVITY AND SAR STUDIES OF NOVEL . .

Egypt. J. Chem. 64, No. 2 (2021)
inhibition. Dimethylsulfoxide (DMSO) was the vehicle used for dissolution of the testing compound and its final concentration on the cells was less than 0.2%.

2.3.3 Determination of IC_{50} values:
The concentration required for 50% inhibition of cell viability (IC_{50}) of the potent compounds that showed cytotoxic effect towards the cancer cell lines under study was calculated using the probit analysis using a simple test (SPSS statistical analysis software package/version 9.0, 1989SSPS Inc., Chicago, USA).

2.4. In silico molecular docking
In silico molecular docking of the most anti-proliferative active compounds 3a-e, 4a and 7a toward Bcl-2 (PDB ID: 2O2F) were performed using MOE program (Molecular Operating Environment, 2008.10). The computational experiments were performed on a Windows 10 pro with Intel R CoreTM i5-3210M CPU@4.00GHz processor and 12 GB RAM. The 3D structure of Bcl-2 protein was downloaded from RCSB Protein Data Bank in complex with 4-(4-benzyl-4-methoxyperipedin-1-yl)-n-[4-[[1,1-dimethyl-2-(phenylthio)ethyl]amino]-3-nitrophenyl)sulfonyl]benzamide (1L0) [32]. The protein structure was prepared for docking process and the co-crystalline ligand was re-locked into the active pocket to validate the docking protocol with RMSD value less than 2Å. The 2D structure of 3a-e, 4a and 7a were generated using ChemDraw Ultra 12.0 and converted into 3D by MOE program. Hydrogen atoms was added, then partial charges was applied (based on MMFF94x force field), and minimized using the MMFF94x force field (eps= r, Cutoff until the RMS gradient of 0.01 kcal/mol/Å was achieved) [33]. Docking process was performed using the Triangle Matcher docking algorithm and London dG scoring function. A total of 30 most favorable binding sites and orientations were generated for each compound. The best docked pose was selected based on the docking score and binding interactions with the target. MOE program utilizing rigid/flexible (receptor/ligand) technique with five energy maps including H-bond interaction, electrostatic, two Van der Waal parameters and hydrophobicity.

3. Results and discussions
3.1. Chemistry
Aiming to synthesis of 5-(3-indoly1)-5H-thiazolo[4,3-b][1,3,4]thiadiazoles integrated with the steroid moieties, the starting materials N-substituted-1H-indole-3-carboxaldehydeys 1a-e were prepared as reported [34,35]. A one-pot reaction of 1a-e with thioglycolic acid and thiosemicarbazide under grinding led to the formation of 5H-thiazolo[4,3-b][1,3,4]thiadiazole derivatives 2a-e (Scheme 1). The 1H-NMR spectra lack the singlet signal of the aldehydic protons of N-substituted indole-3-carboxaldehydes and revealed a new singlet signals at δ ranging from 11.17 - 11.26ppm, and 8.00 - 8.33ppm characteristic for NH2 proton and methane proton of thiazoline ring, beside the other methane proton of the thiazoline ring within the aromatic protons (Experimental part).

Condensation of 2a-e with the carbonyl group of steroid moieties, namely acetylated epiandrosterone and progesterone under grinding then reflux in absolute ethanol afforded Schiff's base 3a-e and 4a,b, correspondingly (Scheme 1). The 1H NMR spectra of the new Schiff’s base 3a-e lack the singlet signal of two proton of NH2 group and displayed a new multiple signals at δ 4.60- 4.13 for CH-3. Also, showed three singlet signals for 3 methyl group at δ ranging from 3.39 to 0.81ppm, beside multiple signals of the other steroid protons from 2.33-0.82ppm (Experimental part). The 1H NMR spectra of the new Schiff's base 4a and 4b showed the absence of the singlet signal of NH protons, and revealed a new singlet signals at δ 5.62, 5.81ppm for CH-4. Additionally revealed three new singlet signals for 3 methyl group at δ ranging from 1.94-1.01ppm, beside multiple signals of the other steroid protons from 2.49-1.13 and 2.41-1.17ppm, respectively (Experimental part).

Furthermore, the chloroaacetylation of 2a-e with the aid of chloroaocetyl chloride under reflux in dimethylformamide for about 3h yielded the resultant chloroaacetamide derivatives 5a-e. Heating of compounds 5a-e with 3-aminopyrazolo pyridine of progesterone 6 [27] under reflux in absolute ethanol furnished the consequent 2-[(steroids)-2H-pyrazolo[3,4-b]pyridin-3-ylaminol]-5-(indoles)-thiazolo[4,3-b][1,3,4]thiadiazol-2-yl]-acetamides 7a-e (Scheme 2). The 1H NMR spectra of compounds 7a-e revealed a new singlet signals at δ ranging from 5.68 to 5.05ppm for CH-4, two singlet signals for two methyl groups at δ from 1.59-0.95ppm, besides multiple signals of the other steroid protons from 2.50-1.05ppm (Experimental part).

Heba Abo-Salem et al.
3.2. In vitro anti-proliferative activity evaluation

Assessment of in-vitro anti-proliferative activity

Anti-proliferative activity of the newly synthesized compounds 3a-e, 4a,b, and 7a-e were evaluated against A-549 (lung cancer), HCT-116 (colon cancer), MCF-7 (breast cancer), and PC3 (prostate cancer) at a single dose of 100 µg/ml using MTT assay. The growth inhibition (%) results and the half-maximal inhibitory concentration (IC50) values were recorded in Table 1 and 2. Results referred that compounds 3a, 3c, 3d, 3e, 4a, and 7e shown to be more potent towards HCT-116 cancer cell line than the reference drug doxorubicin of IC50 =48.02 µM/mL. Their activity was in order as follows of 3e > 3a > 4a > 3c > 3d > 3b with IC50 of 7.25, 8.58, 8.6, 12.69, 15.88, 22.2 and 38.92µM/mL, respectively. Interestingly, the results implied that the 17-[5-(4-bromo-benzenesulphonyl)-1H-indol-3-yl]-thiazolo[4,3-b][1,3,4]-thiadiazol-2-ylmino]-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-3-ol (3e) was found to be the most active one towards the three studied cancer cell line; A-549, HCT-116, and PC3 with IC50 of 27.05, 12.69, and 24.61µM/mL, respectively. None of the test compounds showed anti-proliferative towards MCF-7 cancer cell line.

Table 1: Anti-proliferative activity of the newly synthesized compounds against human carcinoma cell lines at 100µg ml\(^{-1}\)

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Inhibition growth (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-549</td>
</tr>
<tr>
<td>3a</td>
<td>58.6</td>
</tr>
<tr>
<td>3b</td>
<td>51.6</td>
</tr>
<tr>
<td>3c</td>
<td>56.3</td>
</tr>
<tr>
<td>3d</td>
<td>24.4</td>
</tr>
<tr>
<td>3e</td>
<td>75.1</td>
</tr>
<tr>
<td>4a</td>
<td>0</td>
</tr>
<tr>
<td>4b</td>
<td>0</td>
</tr>
<tr>
<td>7a</td>
<td>22.7</td>
</tr>
<tr>
<td>7b</td>
<td>35.2</td>
</tr>
<tr>
<td>7c</td>
<td>36.5</td>
</tr>
<tr>
<td>7d</td>
<td>5.7</td>
</tr>
<tr>
<td>7e</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Table 2: IC50 of the highly anti-proliferative active compounds against human cancer cell lines

<table>
<thead>
<tr>
<th>Compd.</th>
<th>A-549 IC50 µM/ml</th>
<th>HCT-116 IC50 µM/ml</th>
<th>PC3 IC50 µM/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>81.44</td>
<td>8.58</td>
<td>67.59</td>
</tr>
<tr>
<td>3b</td>
<td>110.76</td>
<td>38.92</td>
<td>113.48</td>
</tr>
<tr>
<td>3c</td>
<td>63.30</td>
<td>15.88</td>
<td>106.47</td>
</tr>
<tr>
<td>3d</td>
<td>-</td>
<td>22.2</td>
<td>-</td>
</tr>
<tr>
<td>3e</td>
<td>27.05</td>
<td>12.69</td>
<td>24.61</td>
</tr>
<tr>
<td>4a</td>
<td>-</td>
<td>8.6</td>
<td>67.21</td>
</tr>
<tr>
<td>7a</td>
<td>-</td>
<td>54.11</td>
<td>-</td>
</tr>
<tr>
<td>7b</td>
<td>-</td>
<td>46.58</td>
<td>-</td>
</tr>
<tr>
<td>7d</td>
<td>-</td>
<td>72.33</td>
<td>64.42</td>
</tr>
<tr>
<td>7e</td>
<td>-</td>
<td>7.25</td>
<td>80.34</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>39.74</td>
<td>48.02</td>
<td>34.77</td>
</tr>
</tbody>
</table>

\(^a\) Results are the mean of three independent experiments.

3.3. Structure activity relationships

By checking the above-mentioned biological data, we can depict the structure activity relationships. The nature of substituent at N-position of 1H-indole moiety might play a vital role in the anti-proliferative activity. Meanwhile the existence of Schiff’s bases bridge (CH=N) which characterize the most active anti-proliferative compounds against the HCT-116 cancer cell line, namely 3a, 3c, 3d, 3e, and 4a. Regarding compound 3a with N-benzoyl substituent at indole moiety was the most active member against the HCT-116 cancer cell line (IC50 of 8.58µM/mL) with 5.6-fold increased activity as compared to the reference drug doxorubicin of IC50 = 48.02µM/mL. It appears that electron withdrawing Cl substituent at p-position of the N-benzoyl 3c decrease the activity than the un-substituted one 3a, with keeping its activity towards HCT-116 cancer cell line (IC50 of 15.88µM/mL, 3.0-fold) than doxorubicin of (IC50= 48.02µM/mL). Compounds 3d and 3e with sulphonyl substituent at the N-position of indole moiety revealed high anti-proliferative activity (IC50=22.2, and 12.69µM/mL) with 2.16-, and 3.8-fold than doxorubicin (48.02µM/mL), and less than compound 3a. Further observation of the effect of substitution pattern at N-indole of 4a and 7a with progesterone moiety are considered. Compounds 4a substituted with N-benzoyl and 7a substituted with N-(p)bromobenzene sulphonyl caused increase of activity against HCT-116 cancer cell line IC50 of 8.6 and 7.25 µM/ml, with 5.6-, and 6.6- fold than doxorubicin (48.02µM/mL).
In general, the epiandrosterone Schiff’s base 3e of N-(p)bromobenzene sulphonyl at the N-position of indole moiety was the most active among the tested compounds. It has excellent anti-proliferative activity towards A-549, HCT-116, and PC3 cancer cell lines with IC\textsubscript{50} of 27.05, 12.69, and 24.61µM/ml, than the doxorubicin (IC\textsubscript{50} = 39.74, 48.02 and 34.77µM/ml), respectively.

3.4. In silico molecular docking study

Bcl-2 belongs to proteins families that regulate programmed cell death or apoptosis and includes both death antagonists such as Bcl-2 and Bcl-xL and agonists as Bax, Bak, Bid, and Bad [36]. These proteins associate at least one of four homologous regions called Bcl homology (BH) domains (BH1 to BH4). High levels of Bcl-2 gene expression can be found in several different forms of human cancers [37]. Furthermore, Bcl-2 is involved in chemoresistance, since Bcl-2 overexpression can prevent the cell death effect of several anticancer drugs by stopping the apoptotic pathway. The levels of expression of Bcl-2 proteins are associated with relative tolerance to a wide variety of chemotherapeutic drugs and γ-irradiation [36]. Consequently, inhibiting the defensive role of overexpressed Bcl-2 protein in tumour cells is an enticing technique for either restoring the usual apoptotic mechanism or rendering these cells more responsive to traditional chemotherapy or radiotherapy. In this respect, Bcl-2 is a promising therapeutic target in the development of potential anti-cancer agents.

We have performed molecular docking studies to investigate the binding affinity of the most active anti-proliferative compounds toward human colon cancer cell (HCT-116) 3a-e, 4a and 7a with target human Bcl-2 anti apoptotic protein (PDB ID: 2O2F) using program MOE 2008.10.

The data obtained (Table 3) revealed that all studied compounds 3a-e, 4a, and 7a exhibited better docking score ranging from -22.98 to -29.57kcal/mol, compared to L10 of -25.71kcal/mol and RMSD 1.71 (Table 3). Also, all compounds showed effective fitting inside the protein active pocket via electrostatic, and H-bond interaction with Tyr105 and the same amino acid residue Arg134 as the co-crystalline ligand (L10) (Table 3, Fig 1). Epiandrosterone derivative 3e with powerful anti-proliferative activity towards the three studied cancer cell lines exhibited better docking score of -24.13 kcal/mol with good fitting inside the Bcl-2 active pocket via formation of H-bon acceptor and electrostatic interactions between SO group, indole moiety and the amino acid residue Tyr105, Arg134, respectively (Table 3, Fig 2).

Moreover, progesterone derivatives 4a exhibited best docking score of -29.57 kcal/mol, higher than L10 (-25.71 kcal/mol), and displayed good fitting inside the Bcl-2 active site via H-bond acceptor with the amino acid residue of Arg134 (Table 3). While, the compound 7e display good docking score of -23.50 kcal/mol, with excellent fitting inside the Bcl-2 active site via the two H-bonds acceptor and the two arene-cation interaction with the amino acid residue of Arg134 (Table 3).

<table>
<thead>
<tr>
<th>Compd. No.</th>
<th>Binding Energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L10</td>
<td>-25.71</td>
</tr>
<tr>
<td>3a</td>
<td>-22.98</td>
</tr>
<tr>
<td>3b</td>
<td>-24.86</td>
</tr>
<tr>
<td>3c</td>
<td>-24.60</td>
</tr>
<tr>
<td>3d</td>
<td>-23.88</td>
</tr>
<tr>
<td>3e</td>
<td>-24.13</td>
</tr>
<tr>
<td>4a</td>
<td>-29.57</td>
</tr>
<tr>
<td>7e</td>
<td>-23.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main atoms from the compound(s)</th>
<th>Amino acid residue</th>
<th>Type of interaction and bond length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indole moiety</td>
<td>Tyr105</td>
<td>H-acc (2.45)</td>
</tr>
<tr>
<td>Phenyl ring</td>
<td>Arg143</td>
<td>Arene-Cation</td>
</tr>
<tr>
<td>Indole moiety</td>
<td>Tyr105</td>
<td>Two Arene-Cation</td>
</tr>
<tr>
<td>Phenyl ring</td>
<td>Arg143</td>
<td>Arene-Cation</td>
</tr>
<tr>
<td>CO of benzoyl moiety</td>
<td>Tyr105</td>
<td>H-acc (2.45)</td>
</tr>
<tr>
<td>benzoyl moiety</td>
<td>Arg143</td>
<td>Two Arene-Cation</td>
</tr>
<tr>
<td>SO</td>
<td>Tyr105</td>
<td>H-acc (2.45)</td>
</tr>
<tr>
<td>Indole moiety</td>
<td>Arg143</td>
<td>Two Arene-Cation</td>
</tr>
<tr>
<td>C=N</td>
<td>Arg143</td>
<td>H-acc (2.70)</td>
</tr>
<tr>
<td>SO</td>
<td>Arg104</td>
<td>H-acc (2.71)</td>
</tr>
</tbody>
</table>

Table 3: Docking results of the most active compounds 3a-e, 4b and 7a-d into the active site of Bcl-2 (PDB ID: 2O2F).

Fig 1a: The 2D binding mode of L10 into the active site of Bcl-2 (PDB ID: 2O2F).
4. Conclusion

To develop potent anti-proliferative agents, the indole and steroid moieties have been adopted to synthesize of novel series of N-substituted-3-indolyl-5H-thiazolo[4,3-b][1,3,4]thiadiazoles integrated with steroid moieties. Two new series of the Schiff’s bases 3a-e and 4a,b have been synthesized via condensation reaction of the amino 5H-thiazolo[4,3-b]-1,3,4-thiadiazole derivatives 2a-e with the acetylated epipandrosterone, and the progesterone. On the other hand, acetamide derivatives 7a-e have been obtained through the reaction of chloroacetamides 5a-e with the 3-aminopyrazolo pyridine of progesterone 6. The anti-proliferative activity of the target compounds screened towards A549, HCT-116, MCF-7, and PC3 cancer cell lines have been studied. Cytotoxicity results indicated that the 17-[5-(N-(4-bromo-benzensulphonyl)-1H-indol-3-yl)-thiazolo[4,3-b][1,3,4]-thia-diazol-2-ylimino]-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthrene-3-ol (3e) emerged as a lead anti-proliferative agent among the examined series towards A-549, HCT-116, and PC3 cancer cell lines with IC₅₀ of 27.05, 12.69, and 24.61µM/ml, respectively compared to the reference drug doxorubicin. In addition, molecular docking studies used for rationalize the binding interaction of the most active compounds 3a-e, 4a, and 7a toward human colon cancer cell (HCT-116) with the anti-apoptotic Bcl-2. The result revealed that all docked compounds exhibited better docking score ranging from -22.53 to -29.57 kcal/mol, and showed effective fitting inside the protein active pocket via electrostatic and H-bond interaction with the same amino acid residue (Arg134) as the co-crystalline ligand L10 of -25.71 kcal/mol.

References

Fig 1b: The 3D docked confirmation of of L10 into the active site of Bcl-2 (PDB ID: 2O2F).

Fig 2a: The 2D binding mode of 3e into the active site of Bcl-2 (PDB ID: 2O2F).

Fig 2b: The 3D docked confirmation of 3e into the active site of Bcl-2 (PDB ID: 2O2F).

Conflicts of interest

The authors declare no conflict of interests, financial or otherwise.

Egypt. J. Chem. 64, No. 2 (2021)