Synthesis of New Dipyrimidine and Dialkyl Terephthalate Derivatives from 2,6-Diphenyl-sulphonyloxy-1H, 3H, 5H, 7H-pyrrolo [3,4-F] isoindole- 1, 3, 5, 7 -tetrone

A.M. Abo-Bakr ${ }^{\#}$, M.A. Hassan ${ }^{*}$, H.H. Temirek and A.M. Mosallam
Chemistry Department, Faculty of Science, South Valley University, Qena, 83523 and "Pharmaceutical Chemistry Department, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, North Sinai, Egypt.

> HE TITLE compound 2 was obtained by treatment of 2,6dihydroxypyromellitimide 1 with benzenesulphonyl chloride. Compound 2 was used as starting material for the synthesis of new dipyrimidine and dialkyl 2,5 -di [(alkoxycarbonyl) amino] terephthalate derivatives. The reaction of 2 with different amines was intensively investigated with respect to the probability of isomerization. Keywords: $\begin{aligned} & \text { 2,5-Diaminoterephthalic acid diesters, 2,6-Dihydroxy- } \\ & \begin{array}{l}\text { pyromellitic imide, } \\ \text { Pyrimidinediones. }\end{array}\end{aligned}$ Lossen degradation and .

The considerable biological activities of pyrimidine and their annulated systems ${ }^{(1-3)}$ as agrochemicals ${ }^{(4,5)}$, sedatives ${ }^{(6)}$, antibacterial ${ }^{(6-11)}$, and as anti-inflammatory ${ }^{(6,7,12)}$, anticonvulsant ${ }^{(13)}$, antipyretic ${ }^{(6)}$, antiparasitic ${ }^{(9)}$, antifungal ${ }^{(10,13,15)}$, antitoxic ${ }^{(16)}$, antiviral ${ }^{(14,17-19)}$ and their DNA-binding activities ${ }^{(20)}$ as well as their therapeutical uses ${ }^{(21)}$ stimulated our interest in the synthesis of several new pyrimidine derivatives starting with 2,6-diphenylsulphonyloxy-1H,3H,5H,7H-pyrrolo [3,4-f] isoindole- 1,3,5,7tetrone (2).

Results and Discussion

As a part of our program aimed at developing the synthesis of new pyrimidine derivatives as potential pharmaceuticals and/or agrochemicals, we reported here the synthesis of new pyrimidine and dialkyl 2,5-di[(alkoxycarbonyl) amino] terephthalate derivatives. Thus, the reaction of pyromellitic dianhydride with hydroxylamine hydrochloride in pyridine gave the previously prepared 2,6 dihydroxypyromellitimide $1^{(22)}$. Treatment of 1 with benzene-sulphonyl chloride affored 2,6-diphenylsulphonyloxy-1H,3H,5H,7H-pyrrolo[3,4-f]isoindole-1,3,5,7tetrone (2) ${ }^{(23)}$ as shown in Scheme 1.

[^0]

Scheme 1
Compound 2 was reacted with hydrazine hydrate giving a mixture of two isomers, namely 3,8-diaminopyrimidoquinazoline-2,4,7,9-tetrone (3a) and 3,7-diaminopyrimidoquinazoline-2,4,6,8-tetrone (4a) as indicated from TLC. Attempts to separate the two isomers using column chromatography and fractional crystallization were unsuccessful. The ${ }^{1} \mathrm{H}$-NMR spectrum of 3 a and 4 a confirms their assigned structures as shown in Fig. 1.

Fig. 1. The ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectrum in (DMSO-d6) of the two isomeric structures 3a and 4a.
Refluxing of compound 2 with phenylhydrazine gave 3,8-dianilinopyri-midoquinazoline-2,4,7,9-tetrone (3b). When a mixture of compound 2 and hydroxylamine hydrochloride in pyridine was refluxed, 3,8-dihydroxypyrimidoquinazoline (3c) was obtained as the sole product as shown in Scheme 2.

The reaction of compound 2 with different aliphatic, aralkyl, aromatic and heterocyclic amines was intensively investigated with respect to the two competing processes going on, which leading to isomerization. So, when compound 2 was allowed to react with ethylamine and/or propylamine in acetic $\mathrm{acid} /$ sodium acetate, a mixture of two isomers; 3 d and 4 b and/or 3 e and 4 c was obtained, respectively indicated by monitoring the reaction mixture using TLC. Separation of any mixture of them using column chromatography was unsuccessful owing to their comparable R_{F} values.

Using the fractional crystallization, 3d and 3e were separated in very pure state using hot acetic acid, both were found to be partially soluble, while $4 b$ and 4 c were completely soluble. Detection of the filtrate using TLC showed the presence of the two isomers in each case.

Structures $3 \mathrm{~d}, 3 \mathrm{e}$ and " $4 \mathrm{~b}, 4 \mathrm{c}$ in the reaction mixtures" were established by their spectral data ($c f$. Experimental Part).

Monitoring the reaction of 2 with butylamine in refluxing acetic acid using TLC revealed the formation of the two isomers $3 f$ and $4 d$, which are of comparable R_{F} values. All attempts to separate the two isomers using column chromatography, HPLC and fractional crystallization were unsuccessful.

Successively, we also investigated the behavior of compound 2 towards aralkylamines with respect to the probability of isomerization.

Refluxing of compound 2 with primary aralkylamine namely, benzylamine and/or 2-phenylethylamine in glacial acetic acid in presence of sodium acetate afforded only one product, 3 g and/or 3h , respectively as shown in Scheme 2.

3a

2

3i-n
$\mathbf{3 d} ; \mathbf{R}=\mathbf{C H}_{3}, \quad 3 \mathrm{e} ; \mathbf{R}=\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{2}, \quad \mathbf{3 f} ; \mathbf{R}=\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}}, \mathbf{3 g} ; \mathbf{R}=\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}}, \quad \mathbf{3 h} ; \mathbf{R}=\mathbf{C H}_{\mathbf{2}} \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}} ;$
$3 \mathrm{il} ; \mathbf{R}=\mathbf{H}, 3 \mathrm{3j} ; \mathbf{R}=\mathbf{O M e}, 3 \mathrm{k} ; \mathbf{R}=\mathbf{O H}, \quad 3 \mathrm{~L} ; \mathbf{R}=\mathbf{C H}, 3 \mathrm{~m} ; \mathbf{R}=\mathbf{B r}, 3 \mathrm{~B} ; \mathbf{R}=\mathrm{NO}_{2}$.
$\mathbf{4 b} ; \mathbf{R}=\mathbf{C H}_{3}, \mathbf{4 c} ; \mathbf{C H}_{3} \mathbf{C H}_{2}, \mathbf{4 d} ; \mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{C H}_{\mathbf{2}}$.
$3 \mathrm{o} ; \mathrm{Het}=\mathrm{C}_{\mathrm{N}}-2 \mathrm{p} ; \mathrm{Het}=$

Scheme 2

The formation of the two isomeric structures (a) and (b) in case of reaction of 2 with different amines is related to the simultaneous attack of the amine used at the two carbonyl groups in position 1 and 5 to give pyrimido[4,5-g]quinazoline derivatives (a) as shown in "mechanism 1" in Scheme 3, or attacking of the amine used at the two carbonyl groups in position 1 and 7 to give pyrimido[5,4g]quinazoline derivatives (b), according to "mechanism 2" in Scheme 3.

Mechanism 1

Mechanism 2

Scheme 3

Obviously, the chemoselectivity outcome of the reaction of aralkylamine with compound 2 to give only one product takes place through the cross-attack at the carbons C1 and C5 which seems to be connected with the relative stability between the two isomeric structures (a) and (b) in addition to the steric factor.

In conjunction with our current research with the action of amine on compound 2 , we studied the action of primary aromatic amines which have been found to be less basic than alkylamines and aralkylamines.

Due to the low solubility of compound 2 and the reaction mixture of the following reactions, compound 2 was refluxed in dimethylformamide with primary aromatic amine namely, aniline, p -anisidine, p -aminophenol, p -toluidine, p-bromoaniline and p-nitroaniline to give one product in each case assigned as 3,8-diaryl-1,6-dihydropyrimido[4,5-g]quinazoline-2,4,7,9(3H,8H)-tetrone 3i-n as shown in Scheme 2.

The configuration assigned to these proposed structures $3 \mathrm{i}-\mathrm{n}$ was based on their spectroscopic evidence. ${ }^{1} \mathrm{H}$ NMR confirmed the cross-attack of the used aromatic amine in which two identical aromatic protons appeared as a singlet (cf. Experimental Part).
${ }^{13} \mathrm{C}$ NMR (DMSO) of compound 3 k gave a convincing evidence to the crossattack of the aromatic amine in which nine different signals for nine different carbon atoms were observed as follows: 150.02, s, C-1; 115.39, d, C-2; 129.85, d, C-3; 113.68, s, C-4; 157.23, s, C-5; 163.11, s, C-6; 134.12, s, C-7; 126.50, s, C-8; 120.21, d, C-9.

In continuation of the previous study, also the action of some heterocyclic amines on compound 2 was investigated. When compound 2 was allowed to react with different heterocyclic amines namely, 2-aminopyridine, 4-aminopyridine, 2aminomethylpyridine, 2-amino-1,3,4-thiadiazole and/or 2-amino-1,3-thiazole in different media such as pyridine, acetic acid and/or DMF according to the solubility of the reaction mixture, 3,8 -disubstituted-pyrimido[4,5-g]quinazoline-$2,4,7,9$-tetrones 30 -s were afforded respectively as shown in Scheme 2. Elucidation of the chemical structures of compounds 30 -s were based on their spectroscopic data ($c f$. Experimental Part).

Refluxing of compound 2 with urea in acetic acid/ sodium acetate for 3 h gave compound 5 as shown in Scheme 2. The reaction of 2 with urea may proceed via a nucleophilic attack of urea to undergo ring enlargement to yield the pyrimidoquiazoline derivative as intermediate through "Lossen rearrangement" which reacts with urea followed by extra cyclization giving compound 5 as shown in Scheme 4.

Scheme 4

Boiling of compound 2 with alcohols such as methanol, ethanol, propanol, butanol, pentanol and/or isopropanol in presence of few drops of pyridine gave the corresponding dialkyl 2,5-di[(alkoxycarbonyl)amino]terephthalate derivatives 6a-f, respectively as shown in Scheme 5.

Scheme 5
Identification of the chemical structure of compounds 6a-f were based on their spectroscopic data ($c f$. Experimental Part), in which the reaction was found to proceed under basic condition through cross-attack giving only the terephthalate derivative.

Conclusions

In summary, the action of aliphatic amines, aralkyl amines, aromatic amines and heterocyclic amines on 2,6-diphenylsulphonyloxypyromellitimide 2 was studied. We found that; the probability of isomerization is related to the relative stability between the two produced isomeric structures. Mainly one isomeric product takes place through the cross-attack at the carbonyl groups in position 1 and 5 of compound 2 , which seems to be more stable than the other isomer produced through the other attacking of the amine used at the position 1 and 7 of compound 2.

Experimental

Melting points (uncorrected) were recorded on an Electrothermal melting apparatus. The IR spectra (KBr) were recorded on a Shimadzu 408 spectrometer. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded by 400 MHz Varian EM 390 spectrometer. The ${ }^{13} \mathrm{C}$ NMR spectra were measured on Avance 600 spectrometer; Chemical shifts are reported in ppm with TMS as an internal standard and are given in δ units. Electron impact mass spectra were obtained at 70 eV using a GCMS sp. 1000 Shimadzu. Elemental analyses and ${ }^{13} \mathrm{C}$ NMR spectra were carried out at Regensburg University.

3,8-Diaminopyrimido[4,5-g]quinazoline-2,4,7,9(1H,3H,6H,8H)-tetrone (3a) and

 3,7-diamino-pyrimido[5,4-g]quinazoline-2,4,6,8(1H,3H,7H,9H)-tetrone (4a)A mixture of compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ and hydrazine hydrate $(0.29 \mathrm{~g}, 6$ mmol) in toluene (30 ml) was heated under reflux for 2 hr . After cooling, the solid formed was filtered off, washed with water and recrystallized from DMF to give a mixture of 3a and 4a (in 3:2 ratio, respectively) as yellow crystals in 61% yield. Attempts to separate the two isomers using fractional crystallization or column chromatography were unsuccessful. $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$; IR (KBr): v $3450,3350 \mathrm{~cm}^{-1}$ $\left(\mathrm{NH}_{2}\right), 3250 \mathrm{~cm}^{-1}(\mathrm{NH}), 1700,1670 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 5.46(\mathrm{~s}$, $\left.8 \mathrm{H}, 4 \mathrm{NH}_{2}\right), 6.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Hc})$ for $4 \mathrm{a}, 7.70(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{Ha})$ for $3 \mathrm{a}, 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Hb})$ for 4 a and two singlets one at $11.69(2 \mathrm{H}, 2 \mathrm{NH})$ for 4 a and the other singlet at 11.82 $(2 \mathrm{H}, 2 \mathrm{NH})$ for 3a; MS: m/z 276. Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4}$. C, 43.48; H, 2.92; N, 30.43. Found; C, 43.53; H, 2.96; N, 30.34\%.

3,8-Dianilino-1,6- dihydropyrimido [4,5-g] quinazoline-2,4,7,9(3H,8H)-tetrone (3b)

Compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ and phenylhydrazine ($0.42 \mathrm{~g}, 4 \mathrm{mmol}$) in dimethylformamide (15 ml) were refluxed for 3 hr . After cooling, the solid crystals were filtered off, washed with water and recrystallized from DMF as yellow crystals in 66% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3300 \mathrm{~cm}^{-1}(\mathrm{NH}), 1740$, $1660 \mathrm{~cm}^{-1}$ (C=O's); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 6.67-7.17$ (m, 10H, arom. H), 7.82 (s, $2 \mathrm{H}, 2 \mathrm{Ha}$), 8.53 (s, 2H, $2 \mathrm{NH}(\mathrm{PhNH}-)$), 11.73(s, 2H, 2NH). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4}$. C, 61.68; H, 3.74; N, 19.63. Found; C, 61.60; H, 3.79; N, 19.66\%.

3,8-Dihydroxypyrimido[4,5-g]quinazoline-2,4,7,9(3H,8H)-tetrone (3c)
A mixture of compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ and hydroxylamine hydrochloride $(0.27 \mathrm{~g}, 4 \mathrm{mmol})$ in pyridine $(10 \mathrm{ml})$ was heated under reflux for 1 hr . After cooling, the reaction mixture was poured on cold dilute HCl (1:1) and the solid formed was filtered off, dried and crystallized from DMF as yellow crystals in 72% yield, $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$; IR (KBr): v $3300-2800 \mathrm{~cm}^{-1}$ (NH and OH), 1710$1660 \mathrm{~cm}^{-1}$ (C=O’s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.72$ ($\mathrm{s}, 2 \mathrm{H}$, two identical benzene protons), $10.93(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{OH}), 11.48(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{6}$. C, 43.17; H, 2.16; N, 20.14. Found; C, 43.20; H, 2.12; N, 20.15\%.

3,8-Diethyl-1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9(3H,8H)-tetrone (3d) and 3,7- diethyl-1,9-dihydropyrimido[5,4-g]quinazoline-2,4,6,8(3H,7H)-tetrone (4b)

A mixture of compound $2(1.2 \mathrm{~g}, 2 \mathrm{mmol})$ and ethylamine $(0.36 \mathrm{~g}, 4 \mathrm{mmol})$ in presence of anhydrous sodium acetate $(0.12 \mathrm{~g}, 1.5 \mathrm{mmol})$ in glacial acetic acid $(30 \mathrm{ml})$ was refluxed for 3 hr . A yellow precipitate was formed while hot, the reaction mixture was poured on ice-water and filtered off to give a mixture 3d and 4 b indicated from TLC $(0.44 \mathrm{~g}, 1.5 \mathrm{mmol} 73 \%$ yield in ratio $1: 1)$. Separation of this mixture using column chromatography was not possible owing to theIR comparable R_{F} values. Attempts to separate the two isomers using fractional crystallization, 3 d was separated ($0.15 \mathrm{~g}, 0.49 \mathrm{mmol}$) using acetic acid which was found to be partially soluble, while 4 b was completely soluble. The filtrate was detected by TLC which showed the presence of the two isomers. $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$. IR (KBr): v $3200 \mathrm{~cm}^{-1}(\mathrm{NH}), 2980$, $2860\left(\mathrm{CH}\right.$ aliphatic), $1700,1630 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$'s $)$; ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 1.15\left(\mathrm{t}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right) 3.89\left(\mathrm{q}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 6.86(\mathrm{~s}, 1 \mathrm{H}$, aromatic proton) for $4 \mathrm{~b}, 7.73$ (s, 2 H , two identical aromatic protons) for $3 \mathrm{~d}, 8.46$ (s, 1 H , aromatic proton) for 4 b , two singlets at $11.50(2 \mathrm{H}, 2 \mathrm{NH})$ and at 11.68 $(2 \mathrm{H}, 2 \mathrm{NH})$ for 3 d and 4 b . Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 55.63; H, 4.67; N, 18.53. Found; C, 55.58 ; H, 4.70; N, 18.55%.

3,8-Diethyl-1,6-dihydropyrimido[4,5-g]quinazoline-2,4,7,9(3H,8H)-tetrone (3d)
 Compound 3d was obtained in 34% yield, m.p>360 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3400 \mathrm{~cm}^{-1}(\mathrm{NH}), 2989$ (CH aliphatic), $1726,1645 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$'s $) ;{ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 1.20\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) 3.95\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.869(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons) and broad singlets at $11.34(2 \mathrm{H}, 2 \mathrm{NH}) ; \mathrm{MS}: \mathrm{m} / \mathrm{z} 302$. Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 55.63; H, 4.67; N, 18.53. Found; C, 55.65; H, 4.64; N, 18.54%.

3,8-Dipropyl-1,6-dihydropyrimido [4,5-g] quinazoline- 2,4,7,9 (3H,8H)-tetrone (3e) and 3,7- dipropyl-1,9-dihydropyrimido [5,4-g] quinazoline-2,4,6,8- (3H,7H)-tetrone (4c)

Compound $2(1.2 \mathrm{~g}, 2 \mathrm{mmol})$, propylamine $(0.47 \mathrm{~g}, 4 \mathrm{mmol})$ and anhydrous sodium acetate $(0.12 \mathrm{~g}, 1.5 \mathrm{mmol})$ were refluxed in glacial acetic acid (30 ml) for 3 hr . After cooling, the solid formed was filtered off to afford a mixture of 3 e and 4 c indicated from TLC $(0.41 \mathrm{~g}, 1.3 \mathrm{mmol} 62 \%$ yield in ratio 1:2, respectively) as yellow crystals. Attempt to isolate the two isomers using column chromatography

Egypt. J. Chem. 56, No. 2 (2013)
was unsuccessful. 3 e was separated in very pure state $(0.1 \mathrm{~g}, 0.3 \mathrm{mmol})$ using fractional crystallization from acetic acid, while 4 c was always found to be contaminated with 3 e detected by TLC. $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$; IR (KBr): v $3350 \mathrm{~cm}^{-1}$ $(\mathrm{NH}), 1730 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}{ }^{\prime} \mathrm{s}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 0.90\left(\mathrm{t}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.59(\mathrm{~m}, 8 \mathrm{H}$, $\left.4 \mathrm{CH}_{2}\right), 3.85\left(\mathrm{t}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 6.86(\mathrm{~s}, 1 \mathrm{H}$, aromatic proton) for $4 \mathrm{c}, 7.73(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons) for $3 \mathrm{e}, 8.45$ ($\mathrm{s}, 1 \mathrm{H}$, aromatic proton) for 4 c and two singlets one at $11.47(2 \mathrm{H}, 2 \mathrm{NH})$ for 3 e and the other at $11.66(2 \mathrm{H}, 2 \mathrm{NH})$ for 4 c . Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 58.17; H, 5.49; N, 16.96. Found; C, 58.15; H, 5.50; N, 16.98%.

3,8-Dipropyl-1,6-dihydropyrimido[4,5-g]quinazoline-2,4,7,9(3H,8H)-tetrone (3e)
Compound 3 e was obtained in 24% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3256 \mathrm{~cm}^{-1}$ (NH), 2965-2875 cm ${ }^{-1}$ (CH aliphatic), 1722, $1626 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 0.89\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.87\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.76(\mathrm{~s}$, 2 H , arom. H , two identical aromatic protons) and broad singlet at $11.47(2 \mathrm{H}$, 2NH); MS: m/z 330. Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 58.17; H, 5.49; N, 16.96. Found; C, 58.22; H, 5.51; N, 16.89\%.

3,8-Dibutyl-1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9(3H,8H)-tetrone (3f) and 3,7-dibutyl-1,9-dihydropyrimido[5,4-g]quinazoline-2,4,6,8(3H,7H)-tetrone (4d)

A mixture of compound $2(1.2 \mathrm{~g}, 2 \mathrm{mmol})$ and butylamine $(0.58 \mathrm{~g}, 4 \mathrm{mmol})$ in presence of anhydrous sodium acetate $(0.12 \mathrm{~g}, 1.5 \mathrm{mmol})$ in glacial acetic acid $(30 \mathrm{ml})$ was heated under and monitored using TLC. After 3 hr , the starting material had disappeared and the reaction mixture was poured onto ice- water and the solid formed was filtered off and crystallized from ethanol to give a mixture of 3 f and $4 \mathrm{~d}(0.46 \mathrm{mg}, 1.28 \mathrm{mmol} 64 \%$ yield in $2: 1$ ratio, respectively) as yellow crystals. $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$; IR (KBr): v $3350 \mathrm{~cm}^{-1}$ (NH), 2950, 2900, $2850 \mathrm{~cm}^{-1}$ (CH aliphatic), 1720, 1670, $1640 \mathrm{~cm}^{-1}$ (C=O's); ${ }^{1} \mathrm{H}$ NMR (DMSO): δ $0.87\left(\mathrm{t}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.32-1.51\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{CH}_{2}\right), 3.03\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.22(\mathrm{t}, 4 \mathrm{H}$, $\left.2 \mathrm{NCH}_{2}\right), 3.58\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{NCH}_{2}\right), 7.57(\mathrm{~s}, 1 \mathrm{H}$, aromatic proton) for $4 \mathrm{~d}, 8.19(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons) for $3 \mathrm{f}, 8.88$ ($\mathrm{s}, 1 \mathrm{H}$, aromatic proton) for 4 d and two broad singlets one at $10.60(2 \mathrm{H}, 2 \mathrm{NH})$ for 3 f and the other at $11.42(2 \mathrm{H}$, 2 NH) for 4d. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 60.32; H, 6.19; N, 15.63. Found; C, 60.41; H, $6.22 ; \mathrm{N}, 15.51 \%$.

3,8-Dibenzyl-1,6- dihydropyrimido [4,5-g] quinazoline- 2,4,7,9(3H,8H)-tetrone (3 g) and 3,8-di(2-phenylethyl)-1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9(3H,8H)tetrone (3h)

General procedure

A mixture containing compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$, primary aralkylamine, namely, benzylamine and/ or 2-phenylethylamine (4 mmol) in glacial acetic acid $(30 \mathrm{ml})$ in presence of anhydrous sodium acetate $(0.12 \mathrm{~g}, 1.5 \mathrm{mmol})$ was refluxed for 3 hr . The solid formed while hot was filtered off and crystallized from DMF to give one component only 3 g as greenish yellow crystals and/ or 3 h as yellow crystals, respectively.

3,8-Dibenzyl-1,6-dihydropyrimido[4,5-g]quinazoline-2,4,7,9(3H,8H)-tetrone (3g)
Compound 3 g was obtained in 78% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3250 \mathrm{~cm}^{-1}$ (NH), 1730, $1640 \mathrm{~cm}^{-1}$ (C=O's); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 5.12\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.32$ $(\mathrm{m}, 10 \mathrm{H}$, arom.H), $7.83(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), 11.78(s, 2 H , $2 \mathrm{NH})$; MS: m/z 426. Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 67.60; H, 4.25; N, 13.14. Found; C, 67.65; H, 4.22; N, 13.12\%.

3,8- Di (2-phenyleth -1- yl)- 1,6- dihydropyrimido [4,5-g] quinazoline-2,4,7,9 (3H,8H)- tetrone (3h)

Compound 3 h was obtained in 79% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3250 \mathrm{~cm}^{-1}$ (NH), 1730, $1650 \mathrm{~cm}^{-1}$ (C=O's); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.86\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.07(\mathrm{t}$, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.22-7.28(\mathrm{~m}, 10 \mathrm{H}$, arom.H), $7.71(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), 11.52 broad band ($2 \mathrm{H}, 2 \mathrm{NH}$); MS: m/z 454. Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 68.71 ; H, 4.88; N, 12.33. Found; C, $68.75 ; \mathrm{H}, 4.86 ; \mathrm{N}, 12.31 \%$.

Synthesis of 3,8-Diaryl-1,6-dihydropyrimido[4,5-g]quinazoline-2,4,7,9(3H,8H)tetrone 3(i-n).

General procedure
A mixture of compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ and primary aromatic amine, namely, aniline, p-anisidine, p-aminophenol, p-toluidine, p-bromoaniline and p nitroaniline (4.0 mmol) in DMF (15 ml) was heated under reflux for 2-5 hr. After cooling, the solid crystals was filtered off, washed with water and recrystallized from appropriate solvent to give 3i-n.

3,8-Diphenyl-1,6-dihydropyrimido[4,5-g]quinazoline-2,4,7,9(3H,8H)-tetrone (3i)
Compound 3 i was obtained in 81% yield, $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$; IR (KBr): v $3400 \mathrm{~cm}^{-1}$ (NH), 1720, $1660 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.33-7.57(\mathrm{~m}, 10 \mathrm{H}$, arom.H), 7.80 (s, 2 H , two identical aromatic protons), 11.62(s, 2H, 2NH). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 66.33; H, 3.54; N, 14.06. Found; C, 66.35; H, 3.51; N, 14.08\%.

3,8-Di [4-methoxyphenyl] -1,6-dihydropyrimido [4,5-g] quinazoline -2,4,7,9 $(3 H, 8 H)$ - tetrone (3j)

Compound 3 j was obtained in 76% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3250 \mathrm{~cm}^{-1}$ (NH), 2950, $2850 \mathrm{~cm}^{-1}\left(\mathrm{OCH}_{3}\right), 1730,1650 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): δ 4.2(s, $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$), 7.2-7.4 (dd, $\mathrm{A}_{2} \mathrm{~B}_{2}$ System, 8 H , arom.H), 7.9(s, 2H, two identical aromatic protons), 11.6 (s, $2 \mathrm{H}, 2 \mathrm{NH}$); MS: m/z 458. Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{6}$. C, 62.88; H, 3.96; N, 12.22. Found; C, 62.84; H, 3.98; N, 12.24\%.

3,8-Di [4-hydroxyphenyl] -1,6- dihydropyrimido [4,5-g] quinazoline -2,4,7,9 $(3 H, 8 H)$ - tetrone (3 k)

Compound 3 k was obtained in 58% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3400 \mathrm{~cm}^{-1}$ (NH), 1730, $1650 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 6.8-7.8$ (dd, $\mathrm{A}_{2} \mathrm{~B}_{2}$ system, 8 H , arom.H), 7.8 (s, 2H, two identical aromatic protons), 9.7 (s, 2H,2OH) 11.6 ($\mathrm{s}, 2 \mathrm{H}, 2 \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR (DMSO): 150.02 , s, C-1; 115.39, d, C-2; 129.85, d, C-3; 113.68 , s, C-4; 157.23, s, C-5; 163.11, s, C-6; 134.12, s, C-7; 126.50, s, C-8; 120.21, d, C-9. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}$. C, 61.40; H, 3.28; N, 13.02. Found; C, 61.38; H, 3.30; N, 13.01%.

3,8-Di [4-methylphenyl] -1,6- dihydropyrimido [4,5-g]quinazoline 2,4,7,9 (3H,8H) - tetrone (3L)

Compound 3L was obtained in 70% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3230 \mathrm{~cm}^{-1}$ (NH), 2950, $2800 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right), 1730,1670 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): δ 2.37 (s, 6H, $2 \mathrm{CH}_{3}$), 7.22-7.27 (dd, $\mathrm{A}_{2} \mathrm{~B}_{2}$ System, 8 H , arom.H), 7.79 (s, 2H, two identical aromatic protons), 11.57 (s, $2 \mathrm{H}, 2 \mathrm{NH}$). Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, $67.60 ;$ H, 4.25 ; N, 13.14. Found; C, 67.63 ; H, 4.27 ; N, 13.09%.

3,8-Di [4-bromophenyl] -1,6- dihydropyrimido [4,5-g] quinazoline-2,4,7,9 (3H,8H)-tetrone (3m)

Compound 3 m was obtained in 66% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3250 \mathrm{~cm}^{-1}$ $(\mathrm{NH}), 1730,1650 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.32-7.72$ (dd, $\mathrm{A}_{2} \mathrm{~B}_{2}$ System, 8 H , arom.H), $7.85(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), $11.51(\mathrm{~s}, 2 \mathrm{H}$, 2NH). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$. C, 47.51; H, 2.17; N, 10.07; Br, 28.73. Found; C, 47.49; H, 2.14; N, 10.11; Br, 28.75%.

3,8-Di[4-nitrophenyl]-1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9 (3H,8H)-tetrone (3n)

Compound 3 n was obtained in 68% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3250 \mathrm{~cm}^{-1}$ (NH), 1720, $1670 \mathrm{~cm}^{-1}$ (C=O's); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.68-7.83$ (dd, 8 H , arom.H), 8.33(d, $2 \mathrm{H}, 2 \mathrm{Ha}$ [Long rang zigzag coupling aromatic protons, NH , $\mathrm{J}=0.5 \mathrm{~Hz}]), 11.75(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{8} . \mathrm{C}, 54.11 ; \mathrm{H}, 2.48$; N, 17.21. Found; C, 54.14; H, 2.40; N, 17.25%.

3,8-Di(pyridin-2-yl)-1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9(3H,8H)-tetrone (3o) and 3,8-Di(pyridin-4-yl)-1,6-dihydropyrimido [4,5-g] quinazoline-2,4, 7,9 ($3 H, 8 H$)-tetrone ($3 p$)

A mixture of compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ and 2-aminopyridine and/ or 4aminopyridine $(0.37 \mathrm{~g}, 4 \mathrm{mmol})$ in pyridine $(15 \mathrm{ml})$ was heated under reflux for 1 hr . After cooling, the solid crystals was filtered off, washed with water and recrystallized from DMF to give 30 and/ or 3 p as yellow crystals.

3,8-Di (pyridin-2-yl)- 1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9 (3H,8H)tetrone (3o)

Compound 30 was obtained in 81% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3250 \mathrm{~cm}^{-1}$ (NH), 1720, $1650 \mathrm{~cm}^{-1}$ (C=O's); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.53-8.62$ (m, 10H, Py.H), 8.02(s, 2 H , two identical aromatic protons), $11.67(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{4}$. C, 60.00; H, 3.02; N, 20.99. Found; C, $60.10 ; \mathrm{H}, 2.90 ; \mathrm{N}, 21.01 \%$.

3,8-Di(pyridin-4-yl)- 1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9 (3H,8H)tetrone ($3 p$)

Compound 3 p was obtained in 78% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3400 \mathrm{~cm}^{-1}$ (NH), 1730, $1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O} ’ \mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.4$ (dd, 4H, Py.H-2,6), $7 . .88$ ($\mathrm{s}, 2 \mathrm{H}$, two identical aromatic protons), 8.75 (dd, 4 H , Py.H-3,5), broad singlet at $11.62(2 \mathrm{H}, 2 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{4}$. C, 60.00; H, 3.02; N, 20.99. Found; C, 60.07 ; H, 2.99; N, 20.95%.

3,8-Di(pyridin- 2-ylmethyl)- 1,6-dihydropyrimido [4,5-g] quinazoline- 2,4,7,9 (3H,8H)-tetrone (3q)

When compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ was added to a solution of 2aminomethylpyridine ($0.42 \mathrm{~g}, 4 \mathrm{mmol}$) in acetic acid (20 ml) in presence of anhydrous sodium acetate $(0.21 \mathrm{~g}, 1.5 \mathrm{mmol})$, the reaction mixture turns to green colour. Heating the reaction mixture under reflux for 3 hr , needles crystals were formed after cooling which were crystallized from acetic acid to give $3 q$ as green crystals.

3,8-Di(pyridin-2- ylmethyl)-1,6-dihydropyrimido [4,5-g] quinazoline- 2,4,7,9 $(3 H, 8 H)$ - tetrone ($3 q$)

Compound 3 q was obtained in 92% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3200 \mathrm{~cm}^{-1}$ (NH), 1710, $1650 \mathrm{~cm}^{-1}$ (C=O's); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 5,25\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.28$ (dd, 4H, Py H-3,5), 7.72 (dd, 2H, Py H-4), 8.40 (dd, 2H, Py H-6), 7.84 (s, 2H, two identical aromatic protons), $11.62(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH})$ and disappearance of NH in DMSO. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4}$. C, 61.68; H, 3.76; N, 19.62. Found; C, 61.70; H, 3.71; N, 19.65\%.

Synthesis of pyrimido[4,5-g]quinazoline 3 r and 3 s .
General procedure
2-amino-1,3,4-thiadiazole and/or 2-amino-1,3-thiazole ($0.4 \mathrm{~g}, 4 \mathrm{mmol}$) was heated under reflux with compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ in DMF (15 ml) for 2 hr . After cooling, the solid formed was filtered off, washed with water and recrystallized from DMF to give 3 r and/or 3 s as yellow crystals, respectively.

3,8-Di(1,3,4-thiadiazol-2-yl)-1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9 ($3 H, 8 H$)- tetrone ($3 r$)

Compound 3 r was obtained in 83% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; IR (KBr): v $3350 \mathrm{~cm}^{-1}$ (NH), 1730, $1650 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.87(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), 9.79 (s, 2H, thiadiazole H-5) 11.90 (s, 2H, 2NH). Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$. C, 40.58; H, 1.46; N, 27.07; S, 15.48. Found; C, 40.63; H, 1.40; N, 27.05; S, 15.51%.

3,8-Di(1,3-thiazol-2-yl)-1,6-dihydropyrimido [4,5-g] quinazoline-2,4,7,9 (3H,8H) tetrone (3s)

Compound 3 s was obtained in 75% yield, $\mathrm{mp}>360^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 3350 \mathrm{~cm}^{-1}$ (NH), 1730, $1650 \mathrm{~cm}^{-1}$ (C=O’s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.83$ ($\mathrm{s}, 2 \mathrm{H}$, two identical aromatic protons), $7.88(\mathrm{~d}, 2 \mathrm{H}$, thiazole $\mathrm{H}-5$), 7.95 (d, 2 H , thiazole $\mathrm{H}-4$) 11.83 (s, $2 \mathrm{H}, 2 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$. C, 46.60 ; H, 1.96; N, 20.38; S, 15.55. Found; C, 46.63; H, 1.95; N, 20.36; S, 15.54\%.

Pyrimidino[3`,4`-a]s-triazino [9`,8`-j]-quinazolino [3,4-a]s-triazine-2,3,4,6,7,10, 11,12,14,15-decahydro-2,4,6,10, 12,14-hexone (5)

A mixture of compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ and urea ($0.35 \mathrm{~g}, 6 \mathrm{mmol}$) in glacial acetic acid $(20 \mathrm{ml})$ in presence of anhydrous sodium acetate $(0.12 \mathrm{~g}, 1.5$ mmol) was refluxed for 3 hrs . After cooling, the solid formed was filtered off, washed with water and crystallized from DMSO as yellow crystals in 73% yield,
mp >360 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3150 \mathrm{~cm}^{-1}(\mathrm{NH}), 1730-1660 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 7.75$ ($\mathrm{s}, 2 \mathrm{H}$, two identical aromatic protons) and two broad bands at 10.96 and at $11.20(4 \mathrm{H}, 4 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{8} \mathrm{O}_{6}$. C, 43.99; H, 1.58; N, 29.31. Found; C, 43.94; H, 1.55; N, 29.39%.

Synthesis of dialkyl 2,5-di[(alkoxycarbonyl)amino]terephthalate (6a-f).
General procedure
When compound $2(0.6 \mathrm{~g}, 1 \mathrm{mmol})$ was boilied in alcohol, namely, methanol, ethanol, propanol, butanol, pentanol and isopropanol (30 ml) in presence of few drops of pyridine under reflux for 1-3 hr, solid crystals were formed after cooling. The precipitate was filtered off, washed with water and recrystallized from appropriate solvent to give $6 \mathrm{a}-\mathrm{f}$.

Dimethyl 2,5-di[(methoxycarbonyl)amino]terephthalate (6a)
Compound 6 a was obtained in 68% yield, mp 278-79 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3350 $\mathrm{cm}^{-1}(\mathrm{NH}), 1740,1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$'s $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $3.92\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 9.05(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), $10.19(\mathrm{~s}, 2 \mathrm{H}$, $2 \mathrm{NH})$. Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}$. C, 49.41; H, 4.74; N, 8.23. Found; C, 49.45; H, 4.70; N, 8.24\%.

Diethyl 2,5-di[(ethoxycarbonyl)amino]terephthalate (6b)
Compound 6 b was obtained in 73% yield, $\mathrm{mp}=202-4{ }^{\circ} \mathrm{C}$; IR (KBr) : v 3300 $\mathrm{cm}^{-1}(\mathrm{NH}), 1730,1690 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $1.40\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.18\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.35\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 9.05(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), 10.19 (s, 2H, 2NH); MS: m/z 396. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}$. C, 54.54; H, 6.10; N, 7.07. Found; C, 54.57; H, 6.08; N, 7.06\%.

Dipropyl 2,5-di[(propoxycarbonyl)amino]terephthalate (6c)
Compound 6 c was obtained in 58% yield, $\mathrm{mp}=162-64{ }^{\circ} \mathrm{C}$; IR (KBr): v 3300 $\mathrm{cm}^{-1}(\mathrm{NH}), 1730,1690 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $1.00\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.79\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.08\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $4.26\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 9.07(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), $10.17(\mathrm{~s}, 2 \mathrm{H}$, 2NH). Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8}$. C, 58.39; H, 7.13; N, 6.19. Found; C, 58.42; H, 7.15; N, 6.14\%.

Dibutyl 2,5-di[(butoxycarbonyl)aminolterephthalate (6d)
Compound 6 d was obtained in 72% yield, $\mathrm{mp}=115-17{ }^{\circ} \mathrm{C}$; IR (KBr): v 3300 $\mathrm{cm}^{-1}(\mathrm{NH}), 1730,1690 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.92\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $0.95\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 1.60\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.73(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), $4.13\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.30\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 9.05(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), 10.16 (s, 2H, 2NH). Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{8}$. C, 61.40; H, 7.93; N, 5.51. Found; C, 61.43; H, 7.91; N, 5.49\%.

Dipentyl 2,5-di[(pentoxycarbonyl)aminolterephthalate (6e)
Compound 6 e as obtained in 79% yield, $\mathrm{mp}=129-31{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 3300$ $\mathrm{cm}^{-1}(\mathrm{NH}), 1730,1690 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$'s $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.89\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$,
$0.90\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~m}, 16 \mathrm{H}, 8 \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.75(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), $4.12\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.29\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 9.06(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), 10.16 (s, 2H, 2NH). Anal. Calcd. For $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{8}$. C, 63.81; H, 8.57; N, 4.96. Found; 63.85; H, 8.55; N, 4.93\%.

Diisopropyl 2,5-di[(isopropoxycarbonyl)amino]terephthalate (6f)
Compound 6 f was obtained in 75% yield, $\mathrm{mp}=180-82^{\circ} \mathrm{C}$; IR (KBr): v 3300 $\mathrm{cm}^{-1}(\mathrm{NH}), 1730,1690 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$'s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $1.00\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.79\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.08\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $4.26\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 9.07(\mathrm{~s}, 2 \mathrm{H}$, two identical aromatic protons), $10.17(\mathrm{~s}, 2 \mathrm{H}$, $2 N H)$. Anal. Calcd. For $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8}$. C, 58.39; H, 7.13; N, 6.19. Found; C, 58.41; H, 7.15; N, 6.14\%.

References

1. Ostrowski, S., Synthesis of fused pyrimidines and purines by vicarious nucleophilic substitution of hydrogen (A Microreview). Jordan Journal of Chemistry, 4 (1), 1-15 (2009).
2. Yogesh, M.P., Kalpesh, M.M. and Keshav, C.P., Studies on synthesis characterisation and antimicrobial activity of pyrimidine based derivatives. International Journal of Chem.Tech. Research, 3 (4), 1734-1739 (2011).
3. Shiv Jee K., Pramod K.S., Vipin K.G., Rupesh D. and Nitin K., Review on synthesis and various biological potential of thiazolopyrimidine derivatives. J. Adv. Sci. Res. 2 (3), 18-24 (2011).
4. Newman, M.S. and Muth, C.W., Normal and pseudo esters of 2-benzoylbenzoic acid types. III. J. Am. Chem. Soc.73, 4627 (1951).
5. Ostrowski, S., Swat, J. and Makosza, M., A preparative method for synthesis of 4,5,6- trichloropyrimidine, Arkivoc, 1 (6), 905 (2000).
6. Bakhite, E.A., Radwan, S.M. and El-Deen, K., Synthesis of novel pyridothienopyrimidines, pyridothienopyrimidothiazines, pyridothieno pyrimidobenz-thiazoles and triazolopyrido thienopyrimidines. J. Chin. Chem. Soc. 47 (5), 1105 (2000).
7. Hassan, M.A., Younes, A.M., Taha, M.M., Salem, W.M. and Abdel-Monsef, A.H., An efficient synthesis of biologically active tetrachloroquinazolin-2,4-dione. Chemical Sciences Journal, CSJ-87 (2012).
8. Rideout, J.L., Krenitesky, T.A., Chao, E.Y., Elion, G.B., Williams, M.S., R.B. and Latter, V.S., Pyrazolo [3,4-d] pyrimidine ribonucleosides as anticoccidials. 3. Synthesis and activity of some nucleosides of 4-[(arylalkenyl)thio]pyrazolo[3,4d]pyrimidines. J. Med. Chem. 26 (10), 1489 (1983).

Egypt. J. Chem. 56, No. 2 (2013)
9. Rideout, J.L., Krenitesky, T.A., koszalka, G.W., Cohn, N.K., Chao, E.Y., Elion, G.B., Latter, V.S. and Williams, R.B., Pyrazolo [3,4-d] pyrimidine ribonucleosides as anticoccidials. J. Med. Chem. 25 (9), 1040 (1982).
10. Marei, M.G., Aly, D.M. and Mishrikey, M.M., A new synthesis of pyrazolo [1,5-c] pyrimidines from acetylenic β-diketones. Bull. Chem. Soc. Jpn. 65 (12), 3419 (1992).
11. Krenitesky, T.A., Rideout, J.L., Koszalka, G.W., Inmon, R.B., Chao, E.Y. and Elion, G.B., Pyrazolo [3,4-d] pyrimidine ribonucleosides as anticoccidials. 1. Synthesis and activity of some nucleosides of purines and 4-(alkylthio) pyrazolo[3,4d] pyrimidines. J. Med. Chem. 25 (1), 32 (1982).
12. Gatta, F., Perotti, F., Gradoni, L., Gramiccia, M., Orsini, S., Palazzo, G. and Rossi, V., Synthesis of some 1-(dihydroxypropyl)pyrazolo [3,4-d] -pyrimidines and in vivo evaluation of their antileishmanial and antitrypanosomal activity. J. Med. Chem. 25, 419 (1990).
13. Ugarkar, B.G., Cottam, H.B., Mckernan, P.A., Robins, R.K. and Revankar, G.R., Synthesis and antiviral/antitumor activities of certain pyrazolo [3,4-d] pyrimidine-4(5H)-selone nucleosides and related compounds. J. Med. Chem. 27 (8), 1026 (1984).
14. Makara, G.M., Ewing, W., Ma, Y. and Winter, E., Synthesis of bicyclic pyrimidine derivatives as ATP analogues. J. Org. Chem. 66 (17), 5783 (2001).
15. Mishra, B. and Muddin, N., Structure-based design and characterization of novel platforms for ricin and shiga toxin inhibition. Indian J. Chem. 28B, 346 (1989).
16. Miller, D.J., Shen, H., Suh, J.K., Kerwin, S.M. and Robertuss, J.D., A convenient and facile synthesis of 1-aroyl-4-oxo-5-substituted-phenylpyrazolo [3,4-d] pyrimidine-6-thiones. J. Med. Chem. 45 (1), 90 (2002).
17. El-Bendary, E.R. and Badria, F.A., Synthesis, DNA-binding and antiviral activity of certain pyrazolo [3,4-d] pyrimidine derivatives. Arch. Pharm. 333, 99 (2000).
18. El-Barbary, A.A., El-Brollsy, N.R., Pedersen, E.B. and Nielsen, C., Synthesis of 5'-amino- and 5'-azido-2',5'-dideoxy nucleosides from thieno [2,3-d] pyrimidine-2,4 (1H,3H)-dione. Monataschafte fur Chemie, 126, 593 (1995).
19. Balzarini, J. and McGuigan, C., Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication. J. Antimicrobial Chemotherapy, 50, 5 (2002).
20. Jain, R. and Shukla, A., Synthesis of some new derivatives of pyrazolin-5-ones. J. Indian Chem. Soc. 67, 575 (1990).
21. Zacharie, B., Connly, T.P., Attardo, R.G. and Penney, C.L., A short synthesis of 4substituted 1-(hydroxyalkyl)-1H-pyrazolo [3,4-d] pyrimidines. Tetrahedron, 52 (7), 2271 (1996).
22. Dao, B. and Mortan, T., Ger. Offen. DE., 19, 540, 107 (Cl. CO7D 487/04), (1996); C.A., 125 (10), 115415 f (1996).
23. Maesawa, T., Urano, F., Endo, M. and Sasago, M., Bismide compound, acid generator and resist composition each containing the same, and method of forming pattern from the composition. PCT Int. Appl., WO2003045915A120030605 (2003).

تخليق مشتقات جديدة للبيريميدين و الثثائى ألكيل تيريفيثلات من
 6،2- ثنائى فنيل سلفونيلوكسى- بيرولو أيزو اندول- تترون

> أحمد أبو بكر ، ممدوح حسن" ، حسين تمرك و أحمد مسلم
> قنسـ الكيمياء - كليـة العلوم - جنوب الو ادى - قنا و *قسـم الكيمياء الصيدليـة
> كلية الصيدلة و الصناعات الصيدلية - جامعة سيناء - شمال سيناء - مصر .

```
فى هذا البحث نم تحضبر مركب 6،2- ثنائى فنبل سلفونبلوكسى- بيرولو
أيزواندولـ تترون واستخدم كمکب بداية لتحضبر بعض المركبات الغير متجانسة
الحققة الجديدة لمشتقات الثنائى بيريميدين بتفاعله مع الامينات المختلفة. كذلك
بتفاعله مع الكحولات المختلفة تم تحضبر مشتقات جديدة من الثنائى ألكيل
    تيريفثالا. وتم دراسة تأثبر الثباتية النسبية من ناحية تكون الايزوميرات. 
```


[^0]: "E-mail: ahm672@yahoo.com

