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Abstract 

Molecular modelling is applying computer software to describe the molecular systems. This leads to understating many 

systems and structures in chemical, biological systems. Molecular modelling is now widely used in much basic as well as 

applied science. On the other hand, carbonaceous materials which also known as carbon nano materials have attracted 

interests of many researchers according to their amazing special structures and extraordinary electronic properties. So that, 

research on the carbon nano materials are now increasing rapidly. Accordingly, carbon nano materials are surveyed with 

special care to fullerene, carbon nanotubes and graphene as well as their based systems. The review include how can 

molecular modelling describe the physical, chemical and functionality of the carbon nano materials. The review includes the 

following points 

1. Introduction 

2. Molecular modelling  

3. Calculated parameters through molecular modelling  

4. Carbon nano materials  

5. Fullerene based systems  

6. CNT based systems  

7. Graphene based systems  

8. Modelling other forms of carbon 

9. Conclusion and outlook 
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1. Introduction 

Nanotechnology is worldwide science and 

technology find its applications in all fields, in all 

fields one can find nanoscale, nanoparticle, 

nanophase, nanocrystal, or nanomachine. So that, 

this field attracts worldwide attention. Simply nano 

scale materials are those with dimension in nano 

meters which is length scale, in this sense 1 nm is 

equal to a billionth of a meter (10-9 m) [1].  
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This class of materials is something between 

chemical interactions which took place among 

atoms and within molecules in rang below 1 nm and 

condensed matter physics which is representing 

clusters of materials gathered in crystals contains 

huge numbers of atoms. This makes several 

scientists ranging materials between 1 nm to 100 

nm not within chemistry or solid-state Physics. This 

in turn requires new concepts and design of 

equipment's to follow up this new branch also 

requires approximations of the theoretical methods 

to follow up changes in this nano scale materials. 

Better understanding of this range leads to 

continuous developments and achievements in 

many areas whereas nano materials are applied. It 

could be here stated that, nanotechnology is the 

manipulation of matter with at least one dimension 

sized from 1 to 100 nanometers [2,3].  

It is worth to mention that for manipulation of 

nano scale materials molecular modelling  is a 

promising field. Moreover, carbon nano materials 

are an important class of nano materials due to its 

novelty applications in many areas.  Accordingly, 

an introduction to molecular modelling  is presented 

then carbon nano materials will be survived with the 

focus to their possible studies with molecular 

modelling . 

 

2. Molecular modelling: 

Molecular modelling is simulation conducted for 

molecular systems to understand the molecular 

behaviour. It is a class of computational work based 

on the quantum mechanics designed to study the 

chemical structures. It is an effective tool in 

materials science, physics and chemistry. It could 

be applied whereas experimental facilities are 

limited or unavailable or ethically not allowed for 

many systems such as biological systems [4-9]. It 

computes the energy of a particular molecular 

system, which leads to predict geometrical 

parameters; thermochemical parameters and 

vibrational frequencies including Infrared and 

Raman beside many other physical as well as 

chemical important parameters.  

Such class of computational work pointed 

toward enhance the communication between 

experimental and theoretical research on both 

existing and new advanced findings based on their 

amazing applications.  It is now worldwide applied 

for many systems and molecules covering many 

areas of both basic and applied science [10-14].  

Recent applications of molecular modelling  are 

guiding researchers to elucidate the molecular 

structure and chemical interactions of molecules in 

many areas of applied research [15-17].   

Molecular modelling  consists of molecular 

mechanics and electronic structure method [18], 

both could be summarized as in the following: 

Molecular mechanics: It applies the laws of 

classical physics to predict the structures and the 

properties of the molecules.   It performs 

computations based upon the interaction among the 

nuclei. Electronic effects are approximated, this 

makes the computations quite inexpensive, and used 

for very large system.  

Electronic structure method: It applies 

schroedinger wave equation.  Practically exact 

solution of schroedinger equation is not enough so, 

electronic structure method has many 

approximations to its solution. It has the following 

classes  

Semi-empirical methods  

Ab initio 

Density functional methods.   

 More details about the basic principles of such 

classes of electronic structure methods were 

reported [18-20]. 

 

3. Calculated parameters through molecular 

modelling : 

For electronic structure method and from 

theoretical point of view the model is an 

approximation to solve schroedinger wave equation. 

So, the model is a theoretical method with basis set. 

As stated earlier [21] the method could be Ab 

initio or density functional theory. While the basis 

set is a mathematical representation of the orbitals. 

The combination between a theoretical procedure, 

and a basis set is used to approximate a solution for 

schroedinger wave equation.  As it is a second order 

equation, it has two solutions. One of the most 

important parameters, which obtained through the 

first derivative, is the optimized geometry of the 

studied structure that predict bond lengths and bond 

angles of the structure. It localizes the lowest 

energy molecular structure in close proximity to the 

specified starting structure. It depends primarily on 

the gradient of the energy, i.e. it is the first 

derivative of energy with respect to atomic position. 

Moreover, through first derivative one can also 

obtain the total energy and total dipole moment. 

Otherwise, the second derivative one can obtain 

https://en.wikipedia.org/wiki/3_nanometer
https://en.wikipedia.org/wiki/130_nanometer
https://en.wikipedia.org/wiki/Nanometers
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many parameters such as; vibrational frequencies 

including Raman and Infrared; polarizability; 

thermochemical parameters. It is worth to mention 

that these methods or the solutions could be 

compared with experimental results after so called 

corrections or scaling. As these methods contain 

systemic errors which could be corrected be so 

called scale factor. Only scaled data could be 

compared with experimental results.  

 

Carbon nano materials:  

Carbon-based materials are now widely used for 

many applications such family include graphite, 

activated carbon, fullerene, carbon nanotubes, 

mesoporous carbon, diamond and recently graphene 

[21].  

Figure 1 presents some types of carbon-based 

materials as graphite, fullerene, Single walled 

carbon nanotubes, Multiwalled carbon nanotubes, 

graphene and Diamond respectively. 

 

  
a b 

 
 

c d 

 
 

e f 

       

Fig. 1. Carbon based materials a- graphite, b-fullerene, c- Single 

walled carbon nanotubes, d- Multiwalled carbon nanotubes, e 

graphene and f- Diamond. 

 

In the following not all but only some members 

of carbon materials will be surveyed. Starting with 

fullerene, which is also termed as C60 is a member 

of carbon nano materials since its discovery is 

considered among the most attractive point of 

research [22]. Physically, it is described with 

unusual magnetic properties which may be 

correlated to its icosahedralv nature. It is 

corresponding to Ih symmetry, in addition, its 

magnetic susceptibility arises from the existence of 

π-electrons ring currents in its carbon spheroid. In 

1991, SumioIijima discovered a byproduct of 

fullerene called carbon nanotubes (CNTs) of two 

types’ single-walled nanotubes and multi-walled 

nanotubes.  Single-walled nanotubes with growing 

diameters being arranged (like “Russian doll”) in a 

concentric manner, while multi-walled nanotubes 

may consist of one rolled up graphene sheet [23]. 

Carbon nanotubes could be produced in 

considerable amount using catalytic decomposition 

of acetylene in the presence of supported Co and Fe 

catalysts [24]. Another method could be achieved 

by a 60 keVAr+ ion bombardment with normal 

incident angle under high vacuum. In such method 

fullerene was first transformed into amorphous 

carbon then formed carbon nanotubes [25]. Both 

fullerene and Carbon nanotubes could be also 

produced using the conventional catalytic Chemical 

Vapor Deposition (CVD) with certain care single-

walled carbon nanotubes could be also produced 

[26]. Other modifications for producing could be 

reported elsewhere [27-29]. Since the discovery of 

CNTs till now, it attracts interest due to their side 

range of applications, including high strength [30], 

extraordinary flexibility [31], excellent electrical 

conductivity [32] and field emission properties [33], 

which promise tremendous applications in electron 

field emitter of displays [34], nanoscale electronic 

devices [35], biosensors [36], hydrogen storage [37] 

and fuel cell electrodes [38]. Graphene is a two-

dimensional structure; its carbon atoms is 

considered as surface atoms [39]. This makes its 

electronic properties is changed with introducing 

atoms like transition metals and/or metal oxides 

[40-41] this could be also achieved with molecules 

as well [42]. When graphene is interacted with 

metal nanoparticles (Ag, Au, Pt and Pd) there is a 

significant charge-transfer interaction which 

dedicates this composite for many applications 

depending on their surface [43]. Although graphene 

is a member of carbon nano materials , it is now the 

parent of a new family of graphene-based materials 

[44]. Such a new family is not only for gas sorption 

but also for energy storage [45]. Increasing the 

applications of modified graphene comes from the 

fact that graphene properties are not only a function 

of its number of layers but also a function of the 
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structural defects [46]. As indicated earlier, such 

defects could be achieved with doping or 

decoration, which enhances the ability of graphene 

to carry out its task. Moreover, it becomes highly 

sensitive and selective to act as gas sensor. 

Continuous work on graphene-based materials 

indicated its suitability to act as electrochemical 

biosensors for different materials including ascorbic 

acid; dopamine; uric acid; amino acid tryptophan as 

well as detecting nitrite in human serum [47]. 

 

4. Modelling  carbon nano materials : 

Applying molecular modelling could be effective 

tool to investigate different properties of carbon 

nano materials. In this section it will be directed to 

three members of the family namely fullerene, 

carbon nanotubes and graphene. 

 

5. Fullerene Based Systems:  

As mentioned earlier fullerene is belonging to 

structures of ambiguous aromatic character; 

traditional measurements are not providing proper 

classification [48].  This in turn paves the way 

toward new powerful characterizing tools to 

investigate it. Doping and/or substation could 

enhance the electronic properties but following up 

the effect of that could be described on the 

theoretical basis. Molecular modelling  with Mont 

Carlo simulation level is utilized to calculate the 

pauli paramagnetic susceptibility of A3C60 (A=K, 

Rb) compounds [49].  This confirming the findings 

that, C60 is an aromatic molecule with a vanishingly 

small ring current magnetic susceptibility [50].  

Molecular modelling  with different level of 

theories show the ability for calculating important 

physical and chemical parameters necessary for 

understanding the properties of fullerene.   Quantum 

mechanical calculations using Ab initio was used to 

elucidate, the structural and electronic properties of 

small silicon clusters and endohedral 

metallofullerenes [51].  Some efforts were also 

utilized with Density Functional Theory, DFT for 

reporting the structural parameters then the stability 

of C60CH2 [52].   Another level of theory at Ab 

initio was also conducted for studying stability of 

MC60 where M is Sc, Y, and K respectively [53].   

The same level of theory was also consulted for 

describing in details the equilibrium structure of 

giant fullerenes [54]. Calculations upon inorganic 

fullerene spheroids were performed at 

semiempirical molecular orbital calculation. Some 

important parameters were calculated including 

geometrical parameters, electronic properties, and 

then vibrational characteristics [55].  The fullerene 

family include another members and derivatives, 

the structure, stability and polymerization of C28 

was calculated with ab initio quantum mechanical 

level [56].  Computational levels are also modified 

in order to follow up the changes in the C60 systems.   

The first-principles DFT calculations were utilized 

to describe the adsorption of C60 on Si (111) [57].  

Another computational effort was carried out at Ab 

initio level to investigate the interaction between 

C60 and Si (100) [58].  Calculation are predicating 

the stability of other fullerene members so that, it is 

proven that, g-C80 and g-C240 cages are less stable 

and have smaller HOMO–LUMO gaps as compared 

with their graphite isomers [59]. Time-dependent 

DFT combined with sum-over-states method were 

utilized to estimate the static third-order optical 

susceptibility χ(3) for BN fullerene materials  [60]. 

Semiempirical calculations were proposed to study 

the structure and vibrational properties of C60, C80 

as well as their epoxides [61]. As an application of 

the effect of doping, it is stated that C60 behave like 

superconductor when it is doped with K [62]. But 

this requires some kind of cooling around 18k.  This 

paves the way toward C60 doping with alkali metals 

then superconducting properties achieved, including 

high critical magnetic fields [63].  Further efforts 

are then emphasis that, the alkali metal doped C60 

are good candidates for superconductivity based on 

their unique electronic structure [64].  Based on Ab 

initio calculations, the phonon spectrum of K6C60 

are presented. The effects of doping upon the 

infrared frequencies and their intensities are 

identified and correlated with their physical origin. 

The results are discussed in detail for optically 

allowed modes [65].  Other efforts were carried out 

for doping, as a hole doped C60 at relatively higher 

temperature around 52 k [66]. Rather than doping 

with metals other way of interactions could be 

achieved with functional groups and/or other 

chemical organic structures. So that, C60 were 

interacted with CHCl3 and CHBr3 it is reported that 

an expansion in the lattice took place [67].  

According the unique electronic properties of 

modified fullerene it is also applied as device. It is 

tested as photovoltaic cells when is prepared in 

polymeric matrix [68]. Experimental efforts are 

conducted to prepare filamentary K-C60 

superconductor by the suspension spinning method. 
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Results show superconductivity with Tc=18 K, 

which was indicated by SQUID measurement [69]. 

This in turn enhances the applications of fullerene 

composite as polymer photovoltaic cells. 

Accordingly, conjugated polymer/ C60 composite 

was prepared for this purpose [70].  

 C60 was further mixed with polystyrene then, 

bistability in single layer devices was observed. 

This was the first principle toward the applications 

of such class of materials as devices in disposable 

printable electronics [71].  According to the 

amazing properties and applications of composite 

materials based on C60 it is combined with carbon 

nanotube for many advanced applications including 

X-ray, neutron as well as high-energy particle 

physics [72]. 

 

6. CNT based systems: 

The structure of CNTs show abundant pores with 

large surface-to-volume ratios, this in turn enhances 

the process of adsorption/desorption of gases onto 

the CNTs surface [73-74]. Such process could 

change the physical properties of the CNTs surface 

and paves the way toward applications of CNTs in 

the field of gas sensors [75-76].  It is stated that, 

sensor based on CNTs and/or their derivatives are 

characterized by faster response as compared with 

traditional sensors. It is stated that, significant 

variations in the electronic properties of the CNTs is 

recorded when it acts as gas sensor. Accordingly, 

DFT calculations based ATK-VNL and Gaussian 

approach has been used to verify the sensing 

phenomena of CNTs and used effectively to follow 

the changes in the electronic properties. A case 

study is reported for H2S sensing for pristine and 

functionalized zigzag [77]. The gas molecules that 

adsorb on the surface of CNTs, change the shape of 

CNTs and trigger redistribution of electrons, 

leading to a macroscopic change in their resistance. 

Batch experiments was confirmed by DFT 

calculations in order to conduct quantitative 

correlation between structural parameters and CNTs 

adsorption performance [78]. Molecular modelling  

analyses of the electronic properties of the CNTs 

leading the research towered further applications of 

CNTs. Based on high response, selectivity, high 

surface area it is reported that, CNTs are excellent 

candidate for different applications in many areas 

such as environmental monitoring, space, 

biomedical and pharmaceutical applications [79-

88]. 

DFT is also confirming some experimental 

findings for the suitability of CNTs in biological 

applications. In this sense, beside experimental 

work, a detailed study on the interaction between 

pyrimethamine anticancer drug and (6, 0) zigzag 

single-walled carbon nanotube was performed by 

DFT/B3LYP and DFT/M06-2X with 6-31G* level 

of theories [89].  

 

7. Graphene based systems  

DFT calculations were carried out for both 

graphene as well as their complexes to study their 

abilities for adsorptions of some ions. Coronene was 

used as graphene model system, complexation was 

described as exothermic and spontaneous in most 

cases. The spectral analysis indicated significant 

variation in electronic properties based upon 

complexation [90]. The first-principles DFT 

calculations was used to investigate the mechanism 

of oxygen reduction reaction in fuel cells. For such 

reason, copper-nitrogen embedded graphene (CuN3-

Gra) is introduced as an efficient electrocatalyst 

[91]. Molecular modelling  analyses dedicate 

graphene as a catalyst according to its amazing 

properties including its like large surface area, high 

thermal and electronic conductivity, high 

mechanical strength and excellent chemical stability 

[92]. It is stated that, graphene is almost inert 

regarding the process of adsorption owing to the in-

plane π-conjugation. It is suggested to enhance the 

surface reactivity of graphene, this is could be 

conducted as one replacing one or more of carbon 

atoms with heteroatoms, this could dramatically 

change the electronic properties [93-94].  

As well as other members of carbon nano 

materials graphene show the potential applications 

as gas sensor. It has high specific surface area, 

extremely low Johnson noise, unusual carrier 

density dependent electrical conductivity and 

limited crystal defects [95-100]. Molecular 

modelling  data dedicate graphene for novel and 

unusual applications. It could be applied as a heavy 

metal detector [101]. While it is reported that such 

applications could be carried out with graphene 

quantum dots [102]. Molecular modelling  

suggested that, the interaction of graphene with 

heavy metals leads to variation in electronic 

properties in terms of charge transfer and Schottky 

barrier height which leads to the change in the 

current flowing through the barrier. 
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Regarding the fullerene, CNTs and graphene it is 

clear that the investigation of electronic properties 

is important step toward understating the 

mechanism of interaction of such structures with 

their surrounding molecules, then it is important to 

understand the electronic properties for 

functionality and further applications of carbon 

nano materials. It is stated that molecular modelling  

methods specially those based on DFT are effective 

methods to investigate electronic properties of 

carbon nano materials [103-106].  

 

8. Modelling  other forms of carbon: 

Exfoliated graphite (EG) is a promising material 

for many applications such as flow field plates for 

fuel cells, EMI shielding, vibration damping and 

stress and chemical sensing [107-108].  Owing to 

these wide range of application EG is exposed to 

molecular modelling  to assess its different 

properties including the mechanical, thermal and 

electrical properties respectively [109].  

Modelling  was supporting experimental finding 

in order to optimize the application of graphite as 

electrodes with different thicknesses and porosities 

for high-energy-density Li-Ion batteries [110]. 

Diamond D5 substructures was subjected to 

molecular dynamics simulations [111]. The 

structural stability of such intermediates/fragments 

appearing in the construction/destruction of D5 net 

was investigated. The nanotwinned diamond films 

under nanoindentation was subjected to molecular 

dynamics simulations [112]. 

 

The rational design of carbon fibers with desired 

properties requires quantitative relationships 

between some parameters such as microstructure 

and resulting properties. Molecular modelling  with 

different levels shows potential applications for 

predicting the microstructure evolution during the 

processes of carbonization which in turn is effective 

tools for tailoring the desired carbon fibers [113-

114].  It is also reported that, molecular modelling  

could be also utilized to study the mechanical 

behavior of carbon fiber-amine functionalized 

multiwall carbon nanotube/epoxy composites [115]. 

 

9. Conclusion and outlook: 

Based upon the above considerations carbon 

nano materials have unique surface, physical as well 

as chemical properties which leads to amazing 

applications. Based on molecular modelling  it is 

clear that, hetero atoms could dramatically alter the 

electronic properties which leads to further 

applications covering many areas of science and 

technology. It is stated that some important and 

simple parameters such as total dipole moment, 

band gap energy and molecular electrostatic 

potential could be important to understand the 

functionality of carbon nano materials [116-118].  

It is now well known to utilize quantum 

mechanical methods for tailoring materials with 

special functions to act for certain applications. For 

examples the discovery of two-dimensional (2D) 

materials such as graphene, silicene, molybdenum 

disulfide, black phosphorus, and graphitic carbon 

nitride have received tremendous attention owing to 

their exceptional features with respect to quantum 

transport, photoelectric activity, and photocatalysis 

[119-120]. There are systematic errors within these 

molecular modelling  methods which could be 

corrected with scale factor. For methods like DFT: 

B3LYP [121-123] the accuracy is comparable with 

experimental results after scaling the calculated 

results. So that, molecular modelling  with different 

levels and routes are now ready to design new 

materials for future purposes. Finally, this review 

indicated that molecular modelling  is a useful tool 

for studying carbon based materials as well as their 

derivatives. It is also of concern for many other 

systems and structures whereas the experimental 

tools are limited and/or unavailable [124-130].   
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