Synthesis of Conductive Cu-core / Ag-subshell / polyaniline-shell Nanocomposites and their Antimicrobial Activity

R.M. Mohsen1, S.M. M.Morsi1, Y. M. Abu-Ayana1, A. M. Ghoneim2

1Department of Polymers & Piments, National Research Centre, 33 El Bohoth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt. Dokki, Cairo

2Microwave Physics and Dielectric Department, National Research Centre, 33 El Bohoth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt. Dokki, Cairo

CORE SHELL technique was used to synthesize conductive Cu-core / Ag-subshell / polyaniline-shell nanocomposites (NCs) and evaluating their antimicrobial activities. This was achieved through two stages, firstly different Cu/Ag core shell nanoparticles (Cu/Ag NPs) were prepared (C/A1, C/A3, C/A5), using electroless plating technique by reduction of AgNO₃ in alcoholic dispersion of Cu NPs at three different weight ratios of AgNO₃: Cu. Secondly, the prepared Cu/Ag NPs were further coated with polyaniline (PANI) by oxidative polymerization of aniline in their aqueous dispersions to form PANI/(Cu/Ag) NCs (NC1, NC3, NC5). XRD patterns of Cu/Ag NPs revealed their bimetallic crystalline structure. SEM micrographs and EDAX data proved formation of Ag thin shell on the surface of Cu core. The concentration of this silvery layer increased from ≈ 38% (C/A1) to 68% (C/A5). SEM and EDAX data of NCs, showed that PANI film wrapped 60% to 63% of Cu/Ag NPs surface that Cu nearly diminished. The synthesized NCs possessed good electrical conductivity that increased with Ag content from 0.52 S/m (NC1) to 13 S/m (NC5). Good antimicrobial activities (antibacterial and antifungal), of Cu/Ag NPs and their NCs were obtained. Such good conductivity and antimicrobial activity nominate the NCs to be applied in electronic and biotechnical fields.

Keywords: Cu/Ag core shell nanoparticles, Polyaniline nanocomposites, Electrical conductivity, Antimicrobial activity.

Introduction

The use of nanoparticles (NPs) in different areas of life has recently spread, leading to increased research interest in these materials. Amongst these materials are metallic NPs, which occupied an important position for their wide range of application fields, especially in electronics and biotechnology, due to their superior physical and chemical properties [1-3]. Conductive polymer- metal nanocomposites (NCs) occupy superior position among nanostructure materials, due to their different application in electronic and biotechnology fields such as sensors [4,5], biosensors [6-8], corrosion protective coatings [9,10], supercapacitors [11], and electromagnetic shielding devices [12]. They are mainly synthesized from polymer matrix through which metallic fillers are dispersed. Particles size (PS), concentration of matrix, fillers and their bond interactions, are some of many factors greatly affecting NCs properties [3]. PANI is considered the most promising conductive polymer due to its easy synthesis from cheap monomer, high electrical conductivity, and good stability [4,13]. The conductivity can be controlled by both doping process and type of dopant [14].

The most important metallic NPs are noble metals such as Au, Ag and Pt [15]. The main difficulty in using non-noble metals such as Co, Ni, Fe and Cu arises from their tendency towards oxidation at ambient conditions, particularly as their size gets smaller. Generally, Ag NPs is the most superior metal in conductivity and antimicrobial activity followed by copper [3,16] but Cu is sometimes preferable taking into consideration cost factor. Commonly, metallic NPs are prepared by chemical reduction [16-20] and electrochemical method [21], though various other techniques are involved including laser ablation [22], microwave irradiation [23].
biosynthesis [24], sonochemical technique [25], and solvothermal colloidal method [26]. In fact each technique has the advantage and disadvantage, thus choosing the most appropriate method depends on the desired properties and specific applications. Other metallic nanostructures as bimetallic NPs such as, metal nanoalloys [27-30] and core/shell NPs [16,31-33] are of massive importance for their wide range of applications. The properties of bimetallic NAs and core/shell NPs differ from their single constituent metals [34]. Generally, Ag-Cu nanoalloys possess excellent antibacterial and antiseptic characteristics [28-29] by destroying many types of bacteria, viruses and fungi that make them suitable for application in medicine and drug delivery fields [30]. Also, due to their superior electrical conductivity, they are used as sensors, corrosion resistance and composite fillers [27]. Commonly bimetallic nanoalloys can be prepared using chemical reduction and electrochemical method. However, electrochemical is considered the most practical and commercial method to make nanoalloys. Electrochemical method is mainly used for plating metal with more precious metal film. As Cu is susceptible to oxidation on exposure to outer atmosphere, it may be protected by coating with Ag nanolayer [3,16]. This technique is superior to chemical reduction methods, involving strong reducing agents and organic stabilizers, as the particle size (PS) and shape of the NPs, can be controlled by varying the applied current density. Metals commonly employed for platings are silver, copper and nickel. Electroless plating is used for preparing bimetallic NPs by the deposition of metallic thin layer on the other without using electric current [3]. It can be expressed as core shell technique. Bimetallic Cu/Ag core/shell NPs occupy the most important position in such class of nanostructure materials mainly due to their tremendous conductive properties for conductive and decorative inks applications [16,31,32]. Several other studies for preparation Cu/Ag NPs have been carried out, using electrodeposition thermal evaporation techniques under ultrahigh vacuum [32]. Excellent antibacterial and antiseptic characteristic of Cu/Ag NPs nominates them in medical field application [33]. It is worthy to mention that as we discussed above the superior properties of coating the Cu/Ag NPs by conductive polymer, it will also protect Cu from oxidation [32,35]. In this article, synthesis of Cu-core/Ag-subshell/PANI-shell NCs has carried out by coating PANI on bimetallic Cu/Ag NPs which have been prepared. Their electrical conductivity and antimicrobial activities were evaluated.

Experimental

Materials
Truncated cubical shape Cu NPs of particle size (PS) 1-10 nm (previously prepared and characterized by the authors) [3]. Silver nitrate AgNO3 was obtained from Sisco Research Laboratories Pvt. Ltd. India. Hydrazine monohydrate N2H4.H2O 64-65%, reagent grade 98%, was provided from Sigma-Aldrich. Ethylene glycol was obtained from SDFC Fine Chemical Ltd.. Methyl alcohol 99% was obtained from Sigma Chemicals. Sodium hydroxide pellets 99% was provided from Laboratory Chemicals, Modern Lab. Potassium persulfate 98% was obtained from Fischer Laboratory Reagent. Hydrochloric acid 35-38% was obtained from Fisher Scientific. Aniline monomer was obtained from Merck and distilled under reduced pressure before use.

Methodology
Preparation of bimetallic Cu/Ag core shell NPs
Bimetallic Cu/Ag NPs were prepared by deposition of thin layer of Ag NPs on prepared Cu NPs, using electroless plating technique. In a typical process, 1 g Cu NPs was dispersed in 30 ml methanol by mechanical stirrer using 1 g ethylene glycol as stabilizing agent. Desired amount of AgNO3 (1g,3g or 5g) was added to the reaction mixture and reduced by 10 g hydrazine monohydrate at pH 8-9 to prepare C/A1, C/A3 and C/A5, respectively. The prepared Cu/Ag NPs was filtered, washed by double distilled water and dried at room temperature.

Synthesis of conductive Cu-core/Ag-subshell/PANI-shell NCs (PANI/(Cu/Ag)) NCs
PANI/(Cu/Ag) NCs was synthesized by oxidative polymerization of aniline in the presence of aqueous dispersed Cu/Ag NPs. Typically, 3.75 ml aniline was dissolved in 100 ml distilled water in which 1.5 g C/A NPs was dispersed using 1.5 g ethylene glycol as stabilizing agent. 3g MHCl (doping agent) was added to the reaction mixture with continous stirring using mechanical stirrer, followed by addition of 1.9 g potassium persulfate dissolved in 100 ml distilled water. Dark greenish precipitate of PANI/(Cu/Ag) NC was obtained, filtered, washed with doubled distilled water and dried at room temperature. PANI/(Cu/Ag) NCs synthesized from C/A1, C/A3 and C/A5 were
symbolized as NC1, NC3 and NC5, respectively.

Instrumental analysis

XRD analysis

X-ray power diffraction (XRD) patterns were recorded at room temperature using Philips PW 1390 Diffractometer using Ni-filter and Cu radiation source (\(\lambda = 1.54 \text{ Å}\)), Japan and operated at 40 kV and 40 mA in the \(2\theta\) range 5–80° at the scan speed of 0.05° per second.

The average crystalline size \(D\) of NPs is estimated from Scherrer’s equation [27]:

\[
D = \frac{K\lambda}{\beta \cos \theta}
\]

where \(K\) is a shape factor constant equals to 0.9, \(\lambda\) is the wave length of X-ray radiation 1.54 Å, \(\theta\) is the Bragg diffraction angle and \(\beta\) is the angular line width at half of the maximum intensity (FWHM). The lattice strain \(\varepsilon\) is calculated from equation [36]:

\[
\varepsilon = \frac{\beta}{4 \tan \theta}
\]

FTIR spectroscopy

Fourier transform infrared (FTIR) spectra of sample/KBr pellets were recorded by JASCO FTIR 6100 in the range of 4000–400 cm\(^{-1}\).

Transmission electron microscopy analysis (TEM)

TEM micrographs were analyzed using High Resolution Transmission Electron Microscope JEOL-2100 TEM, USA.

Scanning electron microscope (SEM)

SEM photos were obtained by Quantum Field Emission Gun 250 SEM instrument with energy-dispersive X-ray spectroscopy (EDAX) system.

Electrical conductivity measurements

AC electrical conductivity was measured in S/m by Hioki 3522-50 LCR Hi Tester (Japan).

Antimicrobial activity measurements

Antibacterial and antifungus activities toward (Escherichia coli G and Staphylococcus aureus G) and (Aspergillus flavus and Candida albicans) were determined using modified Kirby- Bauer disc diffusion [37,38]. Measurements were carried out at “Micro Analytical Center”, Faculty of Science – Cairo University.

Results and Discussion

The synthetic steps used to prepare Cu/Ag NPs and PANI/(Cu/Ag) NC were presented in the schematic diagram displayed in Fig. 1.

Characterization of (Cu/Ag NPs)

XRD of Cu/Ag NPs

Figure 2 shows the XRD diffractograms of the prepared bimetallic Cu/Ag NPs (C/A1, C/A3, C/A5). The emergence of Ag and Cu remarkable peaks in XRD patterns pointed out crystalline formation of both metals. Clear and strong narrow diffraction peaks were obtained indicating high degree of crystallinity. The characteristic peaks of Ag emerged at diffraction angles 20 = 38.05-38.17° (111), 44.33-44.66° (200), 64-64.57° (220), 77-78.33° (311), and those related to Cu appeared at 2θ = 43.28-43.38° (111), 50.17-50.5° (200), 74° (220). They are well agreed with JCPDS standards of Ag NPs (No. 04-0783) and Cu NPs (No. 04-0836). The intensity of Ag diffraction peaks increased with increasing Ag content in Cu/Ag NPs and vice versa with Cu peaks which decreased with increasing Ag content. Table 1 shows the crystallite diameter (D) and lattice strain (L.S.) of Ag and Cu NPs in the Cu/Ag NPs. It shows that D of Ag increased from 11.2 nm in C/A1 to 34.46 nm in C/A5 while for Cu it decreased from 18.89 nm in C/A1 to 14.11 nm in C/A5. The lattice strain which arises due to crystal imperfection and distortion slightly decreased from C/A1 to C/A5.

TEM of Cu / Ag NPs

Figure 3 shows TEM images of C/A5 NPs. It reveals nearly rounded nanocrystals with diameter ranged from 10 nm to 30 nm. Some corner-edged nanocrystals are included in the images.

SEM micrographs and EDAX analysis of Cu/Ag NPs

Figure 4 shows SEM micrographs and EDAX analysis of the synthesized Cu/Ag NPs. It reveals nearly rounded nanocrystals with diameter ranged from 10 nm to 30 nm. Some corner-edged nanocrystals are included in the images.
Fig. 1. Schematic diagram of the synthetic pathway used to prepare Cu/Ag NPs and PANI/(Cu/Ag) NC.

Fig. 2. XRD of Cu/Ag NPs.
SYNTHESIS OF CONDUCTIVE CU-CORE / AG-SUBSHELL ...

Fig. 3. TEM images of C/A5 NPs.

Fig. 4. SEM micrographs and EDAX analysis of Cu/Ag NPs.

Egypt. J. Chem. 61, No. 5 (2018)
TABLE 1. Crystallite diameter (D) and lattic strain (L.S.) of in Cu/Ag NPs.

<table>
<thead>
<tr>
<th>Pea</th>
<th>Ag (111) C/A1</th>
<th>Ag (111) C/A3</th>
<th>Ag (111) C/A5</th>
<th>Cu (111) C/A1</th>
<th>Cu (111) C/A3</th>
<th>Cu (111) C/A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>11.2</td>
<td>14.96</td>
<td>34.46</td>
<td>18.89</td>
<td>15.65</td>
<td>14.11</td>
</tr>
<tr>
<td>L.S.</td>
<td>0.0099</td>
<td>0.0074</td>
<td>0.0032</td>
<td>0.0052</td>
<td>0.0063</td>
<td>0.0069</td>
</tr>
</tbody>
</table>

TABLE 2. EDAX data of prepared Cu/Ag NPs.

<table>
<thead>
<tr>
<th>Reactants ratio AgNO₃:Cu</th>
<th>Cu/Ag NPs</th>
<th>Ag:Cu wt. ratio on the surface</th>
<th>wt. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>C/A1</td>
<td>0.615</td>
<td>38.1</td>
</tr>
<tr>
<td>3:1</td>
<td>C/A3</td>
<td>0.996</td>
<td>49.9</td>
</tr>
<tr>
<td>5:1</td>
<td>C/A5</td>
<td>2.195</td>
<td>68.7</td>
</tr>
</tbody>
</table>

summarized in Table 2 show that as AgNO₃ to Cu ratio increased from 1:1 to 5:1, Ag % increased from 38.1 to 68.7 while Cu % decreased from 61.9 to 31.3.

Characterization of synthesized PANI/(Cu/Ag) NCs

FTIR spectra of the synthesized PANI/(Cu/Ag) NCs

The FTIR spectra of the synthesized PANI/(Cu/Ag) NCs, (NC1, NC2 and NC5) are given in Fig.5. Since NCs are composed of PANI, Ag NPs and Cu NPs, therefore, PANI characteristic bands are the only one represented in the figure. 3406 cm⁻¹ band is concerning to N-H stretching. 1562-1568 cm⁻¹ and 1485-1498 cm⁻¹ bands are related to C=C stretchings of quinonoid (N=Q=N) and benzenoid (N-B-N) rings, respectively. 1305 cm⁻¹ and 1225 cm⁻¹ bands are assigned to C-N stretchings of both secondary aromatic amine and polaron lattice, respectively. C-H in-plane and out-of-plane bendings of 1,4 disubstituted aromatic rings appeared at 1130cm⁻¹ and 805cm⁻¹, respectively [4,8].

TEM of PANI/(Cu/Ag) NCs

Figure 6 displays TEM photos of PANI/(Cu/Ag) NC5. The images show clear spherical typical core-shell nanoscaled particles. The particles size ranged from 10 nm to 45 nm with the majority between 20 nm to 30 nm. They consist of Cu core and bilayered shell of silver middle coat and PANI cover. Some small particulates are clearly observed in the images that may be related to a solo item of Cu core constituent.

SEM micrographs and EDAX analysis data of PANI/(Cu/Ag) NCs

Figure 7 shows SEM micrographs and EDAX analysis of PANI/(Cu/Ag) NCs. It revealed that PANI moderately coated Cu/Ag core shell NPs. Some coagulated particles of Ag NPs are observed on the surface. Table 3 summarizes the EDAX analysis data, it shows that PANI coated most of the Cu present on surface, such that it is almost diminished. Also Ag layer were coated by PANI to some degree. Generally no marked variation in NCs surface composition is noticed, whereby the weight percent of PANI and Ag ranged from (60.3 to 63.6), and (35.8 to 39.0) respectively.

Electrical conductivity

Conductivities of synthesized PANI/(Cu/Ag) NCs, are given in Table 4. They increase from 0.52 S/m (in NC1) to 13 S/m (in NC5). Generally, NC3 and NC5 gave high conductivity. This can be attributed to the increase of the relative Ag content to Cu in synthesized PANI/(Cu/Ag) NCs, as Ag is considered the most conductive metal on earth, due to single valence electron that makes it free to move around with little resistance. Cu also is considered one of the few metals that have this particular character, explaining their high
SYNTHESIS OF CONDUCTIVE CU-CORE / AG-SUBSHELL ...

Fig. 5. FTIR spectra of PANI/(Cu/Ag) NCs.

Fig. 6. TEM images of PANI/(Cu/Ag) NC5.

TABLE 3. EDAX data of synthesized PANI/(Cu/Ag) NCs.

<table>
<thead>
<tr>
<th>Reactants ratio PANI:Cu/Ag NPs</th>
<th>Dopped PANI*</th>
<th>EDAX of PANI/(Cu/Ag) NCs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NCs</td>
</tr>
<tr>
<td>2.55:1</td>
<td>63.6</td>
<td>NC1</td>
</tr>
<tr>
<td>2.55:1</td>
<td>60.6</td>
<td>NC3</td>
</tr>
<tr>
<td>2.55:1</td>
<td>60.3</td>
<td>NC5</td>
</tr>
</tbody>
</table>

*Approximate estimation of dopped PANI from EDAX of C, N and Cl.

Egypt. J. Chem. 61, No. 5 (2018)
Fig. 7. SEM images and EDAX analysis of PANI/(Cu/Ag) NCs.

Egypt. J. Chem. 61, No. 5 (2018)
Synthesis of Conductive Cu-Core / Ag-Subshell ...

Conductivity. It is worthy to mention that Ag in Cu/Ag bimetallic nanostructure enhances the electrical migration of Cu ions, leading to high conductivity [27]. Also coating the Cu/Ag NPs by PANI protect the Cu from oxidation.

Antimicrobial activities (antibacterial and antifungal activities)

The antimicrobial activities of Cu/Ag NPs, PANI and NCs relative to standards are represented in Table 5 and Fig. 8. Cu/Ag NPs have medium antibacterial activity to Escherichia coli (G-), while high inhibition is observed towards staphylococcus aureus (G+). They also showed high activity to both Aspergillus flavus and Candida albinos fungus, respectively. The antimicrobial activity of them stems from the superior activity of their NPs, allowing them to penetrate the cell wall and kill the microbe, also they generate metal ions in presence of oxygen that can reach the bacteria which NPs can not reach [41,42]. Moreover, as Ag NPs has higher antimicrobial activity than Cu NPs, the increase in Ag to Cu ratio from C/A1 to C/A5 contributed to rise the antibacterial activity, which can be explained by the formation of free radicals of Ag that participate in damaging the microbial cell [43]. It is well known that PANI possesses reasonable antimicrobial and antifungal resistance. Results revealed that doped PANI by hydrochloric acid showed medium and high activity to Escherichia coli (G-) and Aspergillus flavus, respectively, with no activity against Staphylococcus aureus (G+) and Candida albicans (fungus). Therefore, in NCs, PANI layer encapsulating Cu/Ag NPs decreased their antimicrobial activity, as PANI controls the release of metal ions by slowing them down, accordingly excess toxicity of the environment is avoided [41]. The NCs showed medium antibacterial activities towards both G- and G+ bacteria, with slight increase from NC1 to NC5, whereas they showed excellent antifungal activity towards Aspergillus flavus. They exhibited the same inhibition percentages towards Aspergillus flavus as their counterparts Cu/Ag NPs and also as PANI manifested excellent activity. However NCs are inefficient towards Candida albicans due to the nil activity of PANI layer.

Conclusion

In this article bimetallic Cu/Ag core shell NPs were prepared using electroless plating of Ag NPs on Cu NPs, by reduction of AgNO\(_3\) in dispersion of Cu NPs. Different weight ratios of AgNO\(_3\) to Cu NPs were used (1:1,3:1, and 5:1). PANI/ (Cu/Ag) NCs were synthesized by oxidative polymerization of aniline in dispersion of the prepared core shell NPs. XRD, FTIR, TEM, SEM and EDAX were used for characterization of both Cu/Ag NPs and their corresponding NCs.

XRD data and TEM images of Cu/Ag NPs indicated the formation of spherical nanoparticles (10-30 nm) of crystalline bimetallic structure. SEM micrographs showed that Ag coated moderately Cu NPs, while EDAX data revealed that thin layer of Ag increased from 38.1(of C/A1) to 68.7 (of C/A5) while Cu decreased from 61.9 to 31.3 weight percent, respectively.

EDAX data of NCs revealed that PANI mostly coated the uncovered Cu NPs, such that its content nearly diminished (≈ 0.5 weight percent). No marked variation of shell surface composition for all synthesized NCs was observed, as PANI and Ag weight percent ranged from (60-63.5) and (35.8 to 39) respectively.

The electrical conductivity of NCs increased from 0.52 S/m (in NC1) to 13 S/m (in NC5) with increasing of Ag content. They can be used as sensors and as protective coating on

Table 4. Electrical conductivity of PANI /(Cu/Ag) NCs.

<table>
<thead>
<tr>
<th>NCs</th>
<th>DC σ (S/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC1</td>
<td>0.52</td>
</tr>
<tr>
<td>NC3</td>
<td>9.22</td>
</tr>
<tr>
<td>NC5</td>
<td>13.00</td>
</tr>
</tbody>
</table>

Egypt. J. Chem. 61, No. 5 (2018)
Fig. 8. Antimicrobial and antifungal activities of NPs, NCs and pure PANI and their % in comparison to standards (ampicillin antibacterial agent and amphotericin B antifungal agent).

SYNTHESIS OF CONDUCTIVE CU-CORE / AG-SUBSHELL

... steel substrate from corrosion. Cu/Ag NPs and their corresponding NCs showed medium-high antibacterial and high antifungal activities, recommending them to be applied as biosensors, detectors and in food packaging field.

Acknowledgment

Great appreciation to National Research Center for the financial support of this research article derived from project No.10050408 (2013-2016). Deep thanks to Prof. Dr. Mohamed Hashem vice president of National Research Center of research affairs and international relations for his continuous support.

References

Egypt. J. Chem. 61, No. 5 (2018)

TABLE 5. Antibacterial and antifungal activity of different prepared Cu/Ag NPs, PANI and synthesized NCs.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inhibition zone diameter (mm / mg sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escherichia coli (G⁺)</td>
</tr>
<tr>
<td>Control : DMSO</td>
<td>0.0</td>
</tr>
<tr>
<td>Ampicillin antibacterial agent</td>
<td>25</td>
</tr>
<tr>
<td>Amphotericin B Antifungal agent</td>
<td>--</td>
</tr>
<tr>
<td>C/A1</td>
<td>14% to Standard</td>
</tr>
<tr>
<td>C/A3</td>
<td>14% to Standard</td>
</tr>
<tr>
<td>C/A5</td>
<td>14% to Standard</td>
</tr>
<tr>
<td>PANI pure</td>
<td>9% to Standard</td>
</tr>
<tr>
<td>PANI/(C/A1) NC1</td>
<td>12% to Standard</td>
</tr>
<tr>
<td>PANI/(C/A3) NC3</td>
<td>12.5% to Standard</td>
</tr>
<tr>
<td>PANI/(C/A5) NC5</td>
<td>13% to Standard</td>
</tr>
</tbody>
</table>

Values with respect to standards, 30%, from 30-60% over 60%, and over75% are considered weak, medium, high and excellent respectively.

(Received 28/5/2018; accepted 18/7/2018)
تشتهر المعادن بكل من قوة التوصيل الكهربائي ومقاومة الميكروبات ويحتل معدن الفضه المكانة الأولى يليه النحاس. ومن الناحية الاقتصادية يفضل النحاس الا أنه من عيوبه قابليته للأكسدة عند التعرض للجو الخارجي، لذا فالسائد طلقه برقية من الفضه لحمايته باستخدام الطلاء الكهربائي وهو من أكثر الطرق شيوعا. وحيث ان النتائج الأفضل في الحجم النانومتري

يتهدف هذا البحث إلى تحضير وتقييم متراكبات بوليمريه نانومتريه موصله وذات مقاومة للميكروبات ويمكن تقسيم العمل بهذا البحث إلى قسمين:

• القسم الأول تحضير المجس من جزيئات النحاس ذو (silver-copper core shell) الحجم النانومتريي. تغطى بعضيئات الفضه النانومترية الحجم بالطلاء بدون استخدام الكهرباء وذلك باختزال ملح نترات الفضه في محلل للنحاس النانومترى الحجم. وقد تم استخدام نسب مختلفة بالوزن من نترات الفضه إلى النحاس.

• القسم الثانى تحضير متراكب بوليمرى موصل من الأنيلين مع المزيج المعدنى النانومتري (من النواة من النحاس والمغلف بطبقه رقيقة من الفضه). وقد تم التحضير ببلمرة مونومر الأنيلين على سطح XRD وتم تقييم جميع الخواص لكلا من المزيج والمتراكب البوليمرى بالأشعة السينية XRD وتم استخدام الميكرسكوب الإلكترونيTEM لتحديد مكونات اللونحاس النانومتريي. إضافة باستخدام الميكرسكوب الإلكتروني المزود بإشعاع السيرينMSEM وتم استخدام الميكرسكوب الإلكتروني الحراري FTIR لدراسة تركيب السطح وتعيين نسب المكونات المختلفة.

وفقد اثبتت القياسات أن جزيئات النحاس النانومتريي الحجم قد تم تغطيتها برقية من جزيئات الفضه في متراكب بوليمرى نانومتريي المحضر وتم الحصول على متراكبات بوليمرية موصله نانومتريي بتغطية اسطح core shell بالبولى انيلين وتم تحضير تلك المتراكبات بوليمريه بتطبيق core shell للألكترونيات وتم تقييم المقاومه للميكروبات لكل من الموصل واثبتت نجاحها ويمكن استخدامها ككشافات وحساسات للميكروبات وفى المواد المستخدمة في التغليف الغذائي.