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Abstract 

The gas tungsten arc welding (GTAW) method is used with different parameters to join 304SS, 308LSS, and 

304SS. welding speed and gas flow rate effects on the characterization of the three welding samples were studied. 

Optical microscopy (OM) and scanning electron microscopy (SEM) were used to look at the base materials 
(BM), the heat-affected zone (HAZ), and the welding materials (WM). The tensile strength and hardness were 

studied for the different welding conditions. The 304SS/308LSS/304SS welding corrosion behavior was 

examined. The potentiodynamic polarization of the three welding conditions in 3.5% NaCl was investigated. The 

weld region in the low heat input sample has the lowest CR value (2.140 mm/yr), while the HAZ region in the 

high heat input sample has the lowest CR value (0.29 mm/yr). The SEM investigated the morphology of the three 

corroded welding conditions.  It was found that the welding parameters had an impact on the average pit size of 

the corroded samples. The HAZ region in the high heat input sample has the lowest average pit size (0.329 µm). 
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1. Introduction 

New oil reservoirs are one of the most corrosion-

prone situations for metals [1, 2, 3]. Since corrosion 

is a major concern in the oil and gas sector, 

corrosion-resistant steels are constantly in demand [4, 

5, 6]. These austenitic stainless steels (SS) are 
formable and resistant to high and cryogenic 

temperatures. It also resists high-temperature 

breaking and oxidation [7, 8]. In the oil and gas 

business, welding is commonly used, and the chosen 

procedure must assure component performance and 

not need excessive maintenance to maximize 

industrial efficiency. The breakdown or deterioration 

of metallic materials caused by the contact of the 

metal surface with the environment is known as the 

corrosion process [9, 10, 11, 12]. Poor SS welding 

procedures reduce corrosion resistance (CRST), 
especially stress corrosion cracking (SCC) resistance 

[13, 14]. Gas tungsten arc welding (GTAW) has a 

high arc deposition rate depending on process factors 

[15, 16]. A tungsten inert gas with a non-consumable 

electrode creates the sample arc [17, 18]. GMAW is 

used in various industries, including oil and gas since 
it produces minimal spatter and welds in all locations 

[1, 4]. Controlling phase balance with SS welding 

settings was shown [3, 4]. The GTAW has welding 

factors such as gas flow rate, voltage, current, 

polarity, welding speed, and arc duration that affect 

GTAW weld characteristics [19, 20, 21]. Process 

factors impact sample surface and mechanical 

characteristics [22, 23]. The bead and penetration are 

too tiny at high welding speeds. When the workpiece 

is cold, the welding speed should be lower; as it heats 

up, it should be faster [40]. For the same current and 
voltage, increasing welding speed reduces heat input 
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and mechanical behavior [25]. The GTAW of 

austenitic SS in hydrogen-argon produces stable, 

dependable joints with smooth surfaces. Ar shielding 

gas was tested with 20% hydrogen [26]. 

 

Weld tensile strength is heavily reliant on 

microstructure, which is influenced by welding-

induced microstructural changes [18]. Industries 

focusing on minimizing corrosion-induced damage 

can consider pit size control as a factor in welding 
process optimization. Also, industries involving 

structures exposed to corrosive conditions, such as 

marine or chemical sectors, can implement corrosion-

resistant measures based on previous studies [19]. 

These studies are our guide in the selection of 

appropriate stainless-steel grades and welding 

parameters for applications in chloride-rich 

environments [4, 5, 7]. This work aims to find out the 

optimum welding speed and gas flow rate effects and 

provides practical information for the GTAW 

process. Also, tensile strength and hardness under 

different welding conditions provide essential data on 

the mechanical performance of welded 304SS filled 

with 308LSS by using GTAW. Studying the 

microstructure of the base material (BM), weld 

material (WM), and heat-affected zone (HAZ) 

regions. The examination of corrosion behavior in 

304SS/308LSS/304SS welds using potentiodynamic 

polarization (PP) in 3.5% NaCl provides insights into 
the electrochemical corrosion resistance of the base 

material (BM), weld material (WM), and heat-

affected zone (HAZ) regions. Then it is investigated 

the welding parameters impact the average pit size of 

corroded welded samples in 3.5% NaCl. In the future 

work study these welding parameters in other media 

for industrial applications. These might predict 

mechanical failure and corrosion attack. 

 

2. Experimental Work 
The BM is SS304, and the WM is SS308L. The 

chemical constituents of the BM and WM are listed 

in Table 1. The welding was performed by GTAW 

bydifferent GTAW parameters were illustrated in 

Table 2.  

 

Table 1 The chemical constituents of the BM (304SS) and WM (308LSS) 

Materials  C Mn P S Si Cr Ni Mo Cu 

304SS (BM) 0.062 1.33 0.040 0.01 0.36 18.66 9.95 0.086 0.28 

308LSS (WM) 0.023  1.75 0.025 0.010 0.36 19.85 9.18 0.07 0.18 

 

Table 2 The different GTAW parameters 

Samples 
welding speed, 

𝑚𝑚 𝑚𝑖𝑛⁄  

Welding volt, 

V 
Welding current, A 

Gas flow rate, 

𝐿 𝑚𝑖𝑛⁄  

S01 41 10 84 10 

S02 58 10 84 10 

S03 58 12 58 15 

 
The heat input is calculated using Eq. 1 which 

explains the numerical relationship between the basic 

parameters of welding (welding voltage, welding 
current, and welding speed) [27]: 

 

𝐻 =  
𝑉 𝑥 𝐼

1000 𝑥 𝑆
 (1) 

Where H indicates heat input in 𝐾𝐽 𝑚𝑚⁄ , V denotes 

voltage in volts (V), I indicates current in amperes 

(A), S denotes welding speed in 𝑚𝑚 𝑠𝑒𝑐⁄ . 

 

The welded samples were cut into three regions BM, 

WM, and HAZ.  The sample pieces were ground with 

SiC papers up to 1200 grit and polished using 

alumina paste 0.3 µm then etched. The microstructure 

examination was studied by optical microscopy 

(OM), scanning electron microscopy (SEM), and 

energy dispersive x-ray analysis (EDX). 
 

The tensile examination was conducted using a 400 

KN universal testing apparatus (Tinius Olsen tester 

Machine- model-602). Hardness profiles were 

measured using a load equal to 10 kg with a dwell 

time of 30 sec for Vickers hardness.  

 

The polished samples of three regions BM, WM, and 

HAZ were characterized by potentiodynamic 

polarization (PP) test. The corrosion current density 

(𝑖𝑐𝑜𝑟𝑟), and corrosion potential (𝐸𝑐𝑜𝑟𝑟) were provided 
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from the Tafel curves of potential vs. the logarithm of 

𝑖𝑐𝑜𝑟𝑟 . The corrosion rate (CR) was calculated from 

Eq. (2) [28, 29] as follows: 

𝐶𝑅 (𝑚𝑚 𝑌𝑟)⁄ =   
0.00327∗𝑖𝑐𝑜𝑟𝑟∗𝐸𝑊.

𝐷
 (2) 

Where 𝑖𝑐𝑜𝑟𝑟  denotes the current density in µ𝑚 𝑐𝑚2⁄ , 

D denotes the specimen density in 𝑔 𝑐𝑚3⁄ , and EW. 

denotes the specimen's equivalent weight in grams. 

 

Surface morphology and composition of the three 

specimens after corrosion in a solution of 3.5% NaCl 

were investigated by SEM and EDX, respectively, for 

BM, HAZ, and WM. 

3. Results and Discussions 

3.1 Microstructure  

The OM and SEM microstructures of the 304SS 

(BM) before weld are explored in Fig. 1. The OM 

image consists of austenite twins with large equiaxed 

grains and small amounts of ferrite grains [30]. The 

austenite has good CRST and low cost but produces 
cracks when it solidifies [31, 32]. The twin 

boundaries improve the mechanical properties such 

as strength and ductility thus 304SS is used in power 

plants [33, 34]. It may have some carbides in the 

microstructures (black spots). Fig. 2 represents the 

OM and SEM microstructures of 308LSS (WM) 

before welding with fine equiaxed austenitic grains 

[35]. The 308LSS has good weldability because of its 

low carbon content [36, 37, 38]. The Cr content is 

larger than 12% in 304SS and 308LSS resulting in 
excellent CRST because of Cr2O3 film formation with 

a high thermal expansion coefficient and less thermal 

conductivity [39, 40]. 

 

  
(a)  (b)  

Fig. 1. The microstructures of 304SS (BM) before welding (a) OM and (b) SEM 

 

  
(a)  (b)  

Fig. 2. The microstructures of 308SS (WM) before welding (a) OM and (b) SEM 
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Fig. 3 represents the OM and SEM images of the 

three different samples after welding with different 

conditions of welding parameters. The welding speed 

has increased from 41 𝑚𝑚 𝑚𝑖𝑛⁄  in S01 to 58 

𝑚𝑚 𝑚𝑖𝑛⁄  in S02 with the same gas flow rate where it 

increases from 10 𝐿 𝑚𝑖𝑛⁄  in S03 to 15 𝐿 𝑚𝑖𝑛⁄  as 

shown in Figs. 4 and 5. The optical microstructure of 

the three samples appears in the three zones (BM, 

HAZ, and WM) in them.

 

  

(a) (b) 

Fig. 3. The microstructure of S01 sample (a) OM and (b) SEM 

 

  

(a)  (b)  

Fig. 4 The microstructure of S02 sample (a) OM and (b) SEM 
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(a)  (b)  

Fig. 5 The microstructure of S03 sample (a) OM and (b) SEM 

 
3.2 Tensile test 

The three samples were performed to study the 

GTAW parameters' effect on the mechanical 

properties of the investigated three samples. The 

uniaxial tensile test of BM along with the three 
welded specimens using various heat input 

combinations was conducted to assess the joint 

strength at room temperature (𝑅𝑇) as shown in Fig. 6 

and listed in Table 3. The tensile characteristics 

exhibit enhancement when the heat transfer is 

reduced [41]. The heat input rises because the groove 

area or arcing parameter increases. This resulted in a 

significant decrease in yield strength, whereas 
ultimate strength remained relatively unchanged [42, 

43]. 

 

 

 
Fig. 6. Welding samples of different conditions for tensile test 
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Table 3. Mechanical properties at significant Heat Input 

Sample Number 

Ultimate Tensile 

Strength  

(UTS), MPa 

Yield Strength 

(YS), MPa 
Elongation % 

Heat Input 

KJ/cm 
Remarks 

BM -304SS 525 210 40.9 -- -- 

WM -308LSS 599 390.9 46.9 -- -- 

S01 591.7 362.3 39.6 8.69 Low Heat Input 

S02 577.7 350.3 38.9 10.43 
Medium Heat 

Input 

S03 567.3 343.7 35.7 12.29 High Heat Input 

 

 
3.3 Hardness 

The hardness was estimated as a profile by Vickers 

hardness with 10 kg with 30 sec dwell time as seen in 

Fig. 7. The average hardness value of the BM is 

about 249 HV. The hardness of the three samples is 
illustrated in Fig. 7. The highest hardness is S01 

which has the highest tensile strength with low heat 

input of the welding process. The hardness 

distribution in weld deposits may be because of the 

distribution and the size of carbide precipitation in 

the matrix [44]. 

 

 

 
Fig. 7. Hardness of the three samples with different welding parameters 

 

 
3.4 Potentiodynamic Polarization (PP) 

Figs 8, 9, and 10 show the PP curves for the BM, 

HAZ, and WM of the three samples, respectively. 

From Table 4, the sample potentials range from 591.8 

mV to 873.8 mV. The S01-Weld specimen has the 

lowest CR value (2.140 mm/yr) as compared with 

other conditions. The S03-HAZ specimen has the 

lowest CR value (0.29 mm/yr) as compared with 

other conditions due to the difference in average pit 

size as listed in Table 5. The S03-HAZ has the lowest 

average pit size (0.329 µm) as compared with S01-

HAZ (0.513 µm) and S02-HAZ (0.726 µm). 
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The medium heat input results in the formation of 

large grain size which affects negatively hardness, 

strength, and CRST. The CRof S02-WM and S02-

HAZ are slightly higher than S01-WM and S01-

HAZ, respectively. These appear from the average pit 

size in Table 4 and the surface morphology after 

corrosion as provided in Figs.11, 12, 13, and 14. The 

high heat input promotes the reduction of pitting 

corrosion at the S03-HAZ region and crack initiation 
which results in lowering the CRat this region. 

Increasing the welding speed increases the grain size 

while increasing the gas flow rate leads to more fine 

grains, especially in the HAZ region. There is no 

presence of discontinuity of the welding and no phase 

transformation. Crack development and propagation 

occur in the ferrite phase of some duplex SS [45]. 

 

Increasing gas flow rate and welding speed increase 

the CR of WM and HAZ regions. The low-speed 

WM displayed the lowest electrode potential during 
the exposure period while the high-speed WM via 

verse. The electrode welding speed along the joint 

influences bead shape, cosmetic appearance, depth of 

fusion, and heat input into the BM. Faster welding 

speeds yield narrower beads which have less 

penetration. Heat input is also affected by welding 

speed, which in turn influences the metallurgical 

structure of the WM. If speeds are too fast there is a 

tendency for undercut, porosity, and slag inclusion, 

since the weld freezes quicker [46, 47]. 

 
The decrease in the CRST in SS may be explained by 

the well-known ‘chromium depletion theory’. For 

304SS, Cr and Mo carbides precipitate along the 

grain boundaries (Gbs) throughout the aging. This is 

because the carbon diffusing is faster than Cr from 

the matrix to the Gbs resulting in Cr-depleted zones. 

The phenomenon is commonly referred to as 

sensitization of SS. The depleted regions are 

responsible for corrosion attacks but after aging time 

disappears of sensitization effect because of the Cr 

diffusion back from the matrix into the depleted zone. 
This phenomenon is known as healing [46, 47]. 

 

 

 

 
Fig. 8. The PP curve of the BM  
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Fig. 9. The PP curves of the HAZ of the three samples 

 

 

 
Fig. 10. The PP curves of the WM of the three samples 
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Table 4. The CR values of the three samples of different regions in 3.5%NaCl at 𝑅𝑇  

Specimen E(i=0), mV 𝑖𝑐𝑜𝑟𝑟 , mA/cm² Rp, ohm.cm² CR, mm/yr 

BM -754.5 0.263 72.0 2.823 

S01-HAZ -776.6 0.230 104.6 2.471 

S02-HAZ -873.8 0.274 71.9 2.948 

S03-HAZ -591.8 0.027 1180.0 0.293 

S01-WM -769.5 0.199 120.2 2.140 

S02-WM -798.0 0.206 73.3 2.216 

S03-WM -780.5 0.494 41.7 5.308 

 

 
Fig. 11. The surface morphology of the corroded BM 

 

  
(a)  (b)  

Fig. 12 The surface morphology of the corroded S01 (a) HAZ, and (b) WM 
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(c)  (d)  

Fig. 13. The surface morphology of the corroded S02 (a) HAZ, and (b) WM 

 

  
(a)  (b)  

Fig. 14. The surface morphology of the corroded S03 (a) HAZ, and (b) WM 

 
 

Table 5. The average pit size of the three samples of different regions after corrosion in 3.5%NaCl at 𝑅𝑇  

Specimen Average pit size after corrosion, µm 

BM 3.102 

S01-HAZ 0.513 

S02-HAZ 0.726 

S03-HAZ 0.329 

S01-WM 0.383 

S02-WM 0.394 

S03-WM 2.988 

 

 
When welding dissimilar metals like 304SS and 

308LSS using the GTAW process, the corrosion 

mechanism can be influenced by several factors such 

as electrochemical potential difference, alloying 

elements, HAZ, sensitization, and welding 

environment [48]. When two dissimilar metals are 

welded together, there can be a difference in their 

electrochemical potentials. This potential difference 

can lead to the formation of a galvanic couple, where 

one metal acts as the anode and the other as the 

cathode. In the case of 304SS/308LSS/304SS 

welding, if the potential difference between the 
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metals is significant, it can accelerate the corrosion of 

the less noble metal. The composition and alloying 

elements present in the base metals and the filler 

metal (308LSS) can affect the corrosion behavior. 

Alloying elements, such as Cr and Ni, provide CRST 

to stainless steels. However, the composition and 

distribution of these elements in the weld zone can be 

affected by the welding process, potentially leading 

to localized corrosion [49]. During welding, the heat 

input can result in the formation of the HAZ adjacent 
to the weld. The HAZ experiences various levels of 

thermal cycling, which can affect the microstructure 

and CRST. The HAZ may contain altered grain 

boundaries, precipitates, and varying levels of 

alloying elements, potentially influencing the 

corrosion behavior. The welding environment can 

also influence the corrosion mechanism. The 

presence of chlorides can lead to pitting corrosion, 

especially if the weld is not adequately passivated or 

if the chloride concentration is high [50]. 

 

Stainless steels can be susceptible to sensitization, a 

process in which chromium carbides form along the 

grain boundaries, depleting the material of chromium 

and reducing its corrosion resistance. The heat input 

during welding can induce sensitization in the HAZ 

or the fusion zone, increasing the susceptibility to 

intergranular corrosion [51]. Minimizing the heat 
input during welding increases the CRST of weld 

regions and via verse in the  HAZ regions due to Cr-

depleted zones [46, 47]. It is important to note that 

the specific corrosion mechanism and behavior of the 

weldment can depend on the specific welding 

parameters, base metal conditions, and environmental 

factors.  

 

 

 

Conclusions 
Microstructure, mechanical, and corrosion behavior 

of welding of 304SS/308LSS/304SS using GTAW 

were investigated. It was concluded the following: 

1. The microstructure was affected by the gas flow 

rate and welding speed of the WM and HAZ 

regions. Increasing the welding speed increases 

the grain size while increasing the gas flow rate 

leads to more fine grains, especially in the HAZ 

region. There is no presence of discontinuity of 

the welding and no phase transformation. 

2. The highest tensile strength and hardness are 
obtained at low heat input during the welding. 

The values of tensile and hardness are satisfied 

according to the welding process GTAW. 

3. The CRST decreases with an increase in the 

heat input during the welding. Also, it decreases 

with increasing the welding speed. Increasing 

the gas flow rate decreases the CRST of the 

WM but increases the CRST of the HAZ 

region.   

4. The weld region in the low heat input sample 

has the lowest CR value (2.140 mm/yr), while 

the HAZ region in the high heat input sample 
has the lowest CR value (0.29 mm/yr).   

5. Increasing the average pit size of the corroded 

samples in WM and HAZ regions increases the 

CR value. The higher heat input promotes the 

reduction of the pits at the HAZ region with 

average pit size (0.329 µm) and cracks 

initiations that decrease the CR value at this 

region.  
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