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Pt-MOx/C (M = Ti, Ce or Zr) electrocatalysts was prepared for the purpose of ‎developing 
a cheap and efficient electrocatalysts for oxygen reduction reaction ‎‎(ORR) using a 

mixture of ethylene glycol and sodium borohydride (EG + NaBH4) as ‎areducing agent. Pt/C 
was studied for estimation of metal oxides effect.Pt-CeO2/C-1 ‎was prepared through single 
reducing agent ethylene glycol for studying the effect of ‎changing the reducing agent on the 
activity of electrocatalysts toward ORR and for ‎studying ORR kinetics. The electrocatalytic 
activity of the prepared electrocatalysts ‎towards (ORR) was evaluated by cyclic voltammetry 
(CV) and linear sweep ‎voltammetry (LSV) on a rotating disc electrode (RDE). Pt-ZrO2 /C 
shows the best ‎activity towards ORR among the studied electrocatalysts; the oxygen reduction 
‎current density for it is about 5 times; (5.84 mAcm-2) as that of Pt/C (1.26 mAcm-2). ‎Pt-CeO2/C 
showed better ORR activity (2.24 mAcm-2) than Pt-CeO2/C-1(1.58 ‎mAcm-2) indicating the 
great effect of changing the reducing agent not only on the ‎electrocatalyst behavior towards 
ORR but also its particle size and the metal content ‎of the resultant electrocatalysts. Oxygen 
reduction mechanism for Pt-CeO2/C and Pt-‎CeO2/C-1 was evaluated using through Koutecky-
Levich, they showed first-order ‎kinetics with ORR not controlled solely by diffusion. 
XRD, EDX and TEM analyses ‎were used to characterize the prepared electrocatalyst.‎

Keywords: Oxygen reduction reaction, platinum nanoparticles, metal oxides, rotating ‎disk 
electrode.‎
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Introduction‎                                                              

Oxygen reduction reaction (ORR) is one of 
the most important ‎electrocatalytic reactions 
because of its role in corrosion of metals and 
‎electrochemical energy conversion especially in 
the field of fuel cells applications[1]. ‎The cell 
voltage values of fuel cells are limited due to the 
slowness of ORR at the ‎cathode. The most used 
electrocatalyst for ORR is platinum which is 
highly active ‎chemically stable, but Pt is expensive 
and limited in the world’s supply; this results in 
‎difficulty of widespread commercialization of the 
fuel cell technology. So, research ‎efforts in the 
development of cathode electrocatalysts have been 
focused on reducing ‎the Pt content or replacing it 
with less expensive materials with maintaining 
high ‎ORR activity[2], so getting electrocatalysts 
in which transition metals have been ‎alloyed with 
noble metals is a need[3-5].‎
	

The principal problems that inhibit direct 
methanol fuel cells (DMFCs) ‎commercialization 
are: development of a highly active and CO-

tolerant anode ‎catalysts and the overcoming of 
the oxygen reduction reaction (ORR) slowness 
at the ‎cathode [6].Considering that Pt catalysts 
alone we face a problem of the  slowness of ‎ORR 
which is due to the formation of - OH species at 
+0.8 V that inhibits further ‎reduction of oxygen 
and hence results in loss of performance[7] .So, 
composite Pt-‎based electrocatalysts containing 
rare earth oxides have shown a number of 
‎characteristics that make them promising for 
catalytic studies due to the harmonic ‎electronic 
effect in combining metal oxides, carbon and 
Pt. Strong d-d-Metal-Support ‎Interaction of 
hyper-d-electronic metal with mostly hypo-d-
oxide (TiO2, ZrO2, HfO2) ‎implies that the d-d-
metal-oxide interaction is in accordance with the 
bonding ‎strength which results in weakening of 
intermediate chemisorptive bonds (M-H, M-‎CO)
[8-12].Among the studied metal oxides, CeO2 
is predominant in the applications as ‎catalyst 
support[13-17]. CeO2 is a fluorite oxide whose 
cations can switch between +3 ‎and +4 oxidation 
states, here the oxide acts as an oxygen buffer 
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to control oxygen ‎concentration at the catalyst 
surface. This may be due to the enhancement of the 
‎interaction between Pt and ceria for the catalytic 
activities of Pt[18, 19]. Cerium oxide ‎nanoparticles 
were in-situ grown on reduced graphene oxide 
(rGO) through thermal ‎treatment of the Ce3+-doped 
graphene oxide(GO) under nitrogen atmosphere. 
The ‎nano composites show electrocatalytic activity 
toward the oxygen reduction reaction ‎‎(ORR) in 
alkaline solution. Especially, the cerium oxide 
nanoparticles/rGO ‎nanocomposites treated at 750 
C possess excellent electrocatalytic ability with a 
‎dominating four-electron pathway[20].‎

TiO2 is promising because of its good 
electrochemical properties, chemical ‎stability and 
non-toxic nature[21]. Pt-TiO2/C shows improved 
stability in polymer ‎electrolyte membrane fuel 
cells (PEMFCs) compared with Pt/C[22].In spite of 
the ‎amount of titanium dioxide and the crystalline 
phase (TiO2 anatase/rutile phase) it ‎was found that, 
it modifies the strength of the interaction between 
the substrate and ‎the metal nanoparticles[23, 24]. 
The good effect of addition TiO2 may be attributed 
to ‎two factors which are: the changes in the Pt-d 
electronic properties and the geometric ‎effect that 
leads to the Pt-Pt bonding distance contraction 
and hence results in a ‎sensible improvement of the 
electrochemical reactions[25, 26].Titanium oxide-
based ‎cathode, synthesized from oxy-titanium 
tetra-pyrazinoporphyrazine by the oxidation ‎under 
a low partial pressure of oxygen using carbon nano-
tubes as a support, showed ‎high reactivity in the 
four–electron reduction of oxygen[27]. Platinum 
nanoparticles (Pt ‎NPs) have been anchored by 
photo deposition on titanium oxide (TiO2) matrix 
which ‎is formed via titanium isopropoxide 
hydrolysis on cup–stacked carbon nanotubes 
‎‎(CSCNT) in isopropanol, the resultant composite 
Pt catalyst was tested for oxygen ‎reduction reaction 
(ORR) in acidic media and the results revealed 
that the anchoring ‎of Pt NPs on the TiO2 support 
material deposited on CSCNT is an effective way 
to ‎enhance the ORR activity of Pt NPs[28]. A 15 
wt.% Pt-based catalyst was developed ‎on a mixture 
of titanium suboxides, with an excess of the Ti3O5 
phase, doped with ‎Mo, as a Ti3O5-Mo  without 
carbon support and compared to a commercial 
20 wt.% ‎Pt/C (E-TEK). The Pt/Ti3O5-Mo catalyst 
shows an excellent electroactivity and ‎stability 
toward the ORR, reaching a performance of 73.3 
mA mg-1, nearly twice as ‎that of the commercial 
Pt/C, with a current density of 1.1 mA cm-2 at 0.9 
V vs RHE, ‎and an half-wave potential of 0.86 V 

vs RHE [29]. Pt/ZrO2@CNx has been synthesized 
‎by forming a highly conductive nitrogen−doped 
carbon layer on the surface of ZrO2 ‎‎(ZrO2@CNx) 
the final step is the Pt nanoparticles deposition. 
The Pt/ZrO2@CNx ‎catalyst showed a high 
electrocatalytic activity for the oxygen reduction 
reaction ‎‎(ORR)[30]. A two−step method has been 
used by G. Liu et al. to prepare Pt4ZrO2/C ‎catalyst 
as a cathode catalyst in a high temperature PEMFC 
based on H3PO4 doped ‎polybenzimidazole (PBI) to 
investigate the cell performance[31]. Cobalt oxide 
(Co3O4) ‎nanocubes were incorporated into reduced 
graphene oxide (RGO) using a simple ‎single-
step hydrothermal reaction for an electrocatalytic 
oxygen reduction reaction ‎‎(ORR). The RGO@
Co3O4 nano hybrid with 4 wt% of graphene oxide 
modified ‎glassy carbon (GC) electrode exhibited 
better electrocatalytic activity when ‎compared 
to the other controlled modified electrodes and 
commercial Pt/C catalyst ‎for the ORR in an 
alkaline medium[32]. Bifunctional electrocatalysts 
series composed ‎of nitrogen-doped grapheme 
cobalt oxide nanoparticles nano-hybrids (Co-
N/G) are ‎fabricated through one-pot hydrothermal 
synthesis, The optimized Co-N/G catalyst ‎consists 
of the highest contents of pyridinic nitrogen and 
CoO, efficiently catalyze ‎both ORR and OER[33].‎

Microwave-assisted technology has been 
widely used for preparing many ‎nanomaterials 
because it is a quick, simple, homogeneous and 
efficient method [34-36]. ‎Smaller particles were 
formed when microwave irradiation method 
was adopted. It ‎was reported that Pt particles 
with about 3-4 nm size exhibited a higher mass 
‎electrocatalytic activity for oxygen reduction [37, 
38]. Pt–Ru particles with 3 nm size ‎displayed 
the highest mass catalytic activity for methanol 
electrooxidation [39]. So as ‎a direct result, 
microwave irradiation method is applicable in 
different areas namely; ‎materials synthesis, food 
drying, microwave-induced catalysis and plasma 
chemistry ‎‎[40-43].‎

The present work aims to study physical 
and electrochemical behavior of Pt-‎MOx/C 
electrocatalysts, where MOx refers to TiO2, CeO2 
and ZrO2 in order to ‎develop a cheaper and more 
efficient electrocatalyst for oxygen reduction 
reaction. ‎Pt/C has been studied to evaluate the 
metal oxide effect; Pt-CeO2/C-1 has been ‎studied 
to evaluate the effect of the changing of the used 
reducing agent on the ‎behavior of the prepared 
electrocatalyst.‎
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‎Experimental‎                                                          

Catalyst synthesis‎
All the reagents in this synthesis were in 

analytical grade (Sigma-Aldrich) ‎and used without 
further purification. Double distilled water was 
used in all aqueous ‎solutions preparation and 
washing. According to this preparation method, 
we have ‎synthesized Pt-TiO2/C, Pt-CeO2/C and Pt-
ZrO2/C electrocatalysts using titanium (IV) ‎oxide 
(TiO2), cerium (IV) oxide (CeO2) and zirconium 
(IV) oxide (ZrO2), ‎respectively through two steps. 
The first step involved the synthesis of MOx/C 
‎powders via solid state reaction under intermittent 
microwave heating, while the ‎second step is 
platinum loading on MOx/C surfaces. To prepare 
MOx/C, a fixed ‎amount of titanium (IV) oxide 
(TiO2), cerium (IV) oxide (CeO2) or zirconium 
(IV) ‎oxide (ZrO2) [5 wt.%] well dispersed over 
carbon black Vulcan XC−72R using a ‎mixture 
of second distilled water and isopropanol in the 
ratio of (1:1). This ‎suspension was stirred using 
magnetic stirrer for 30 min and heated into a 
microwave ‎oven (Caira CA-MW1025, touch pad 
digital control, 50 MHz, 1400 W) in six cycles; 
‎each cycle was 20 s on and 60 s off. The next 
step is the filtration of the mixture and ‎washing 
it with double distilled water for 6 times, the 
last step is drying in an air ‎oven at 80oC for 6 h. 
Reduction of platinum on the prepared MOx/C 
powders is done ‎through modified microwave-
assisted polyol process in which H2PtCl6 solution 
was ‎added to a suspension of MOx/C powder in 
distilled water with adjusting Pt loading ‎at 25 
wt.%. For this step, a mixture of ethylene glycol 
and sodiumborohydride (EG + ‎NaBH4) were used 
(in this case the electrocatalysts are assigned as 
Pt-MOx/C). pH of ‎the solution was adjusted at 10 
using 0.4 M KOH in ethylene glycol to induce the 
‎formation of small and uniform Pt nanoparticles. 
This mixture was then heated into ‎the microwave 
oven for 50 s in one continuous mode. Pt-MOx/C 
powder was then ‎filtered, washed and dried. Pt-
CeO2/C-1was prepared via the same procedure 
using ‎single reducing agent ethylene glycol (EG) 
for studying the effect of changing the ‎reducing 
agent during the preparation process. ‎

Physical characterization                                  ‎
XRD, TEM and EDX analyses are used to 

describe Pt/C and the mentioned ‎Pt-MOx/C 
electrocatalysts physically. Specifications of 
devices used to evaluate these ‎types of analyses are: 
a RigakuD/MAX-PC 2500 X-ray diffractometer 
equipped with ‎Ni filtered Cu Ka as the radiation 

source. The tube current was 40 mA with a voltage 
‎of 40 kV to evaluate the crystalline structure of 
the prepared electrocatalysts. TEM ‎and EDX 
analyses was performed using JEOL-JEM 2010 
transmission electron ‎microscope that operated at 
an accelerating voltage of 160 kV

Electrochemical measurements‎
Voltamaster 6 potentiostat and Rotating 

Disc Electrode (RDE) were ‎employed for the 
electrochemical measurements. It is connected 
to a personal ‎computer as data interface. Cyclic 
voltammetry (CV) and linear sweep voltammetry 
‎‎(LSV) were conducted to measure the 
electrocatalytic activity of the prepared Pt–‎MOx/C 
electrocatalysts towards oxygen reduction reaction. 
The three electrode cell ‎consists of Pt wire and Ag/
AgCl as the counter and the reference electrodes, 
‎respectively. All the potential values in this work 
are referred to RHE. The working ‎electrode was 
a thin film of electrocatalyst supported on glassy 
carbon (GC) ‎electrode (with geometrical surface 
area of 0.196 cm2) which is a part of the RDE. 
‎This GC electrode was first polished using 0.05 
µm alumina powder and soft cloth ‎then carbon-
supported electrocatalyst was put on it mixed with 
1 droplet of ‎isopropanol, two consecutive droplets 
of 5% Nafion solution were put after ‎isopropanol 
has dried, at last a second droplet of isopropanol 
was added, the ‎electrocatalyst thin film was left till 
air drying. The catalyst loading is 0.6 mg/cm2.‎

For the electrochemical active surface area 
(ECSA) determination ‎experiments, they were 
carried out at room temperature employing 0.5 M 
H2SO4 as ‎the electrolyte solution and three electrode 
system in which Hg/Hg2SO4/1.0 M ‎H2SO4(MMS) 
is the reference electrode. Thirty CVs with scan 
rate of 50 mVs-1 at a ‎potential window (-700 to 900 
mV/MMS) (-80 to 1520 mV/RHE) was conducted. ‎

All electrochemical experiments were carried 
out at room temperature and ‎ambient pressure 
employing 0.5 M H2SO4 as the electrolyte 
solution. At first nitrogen ‎was bubbled for 20 min. 
The CV scan at the 10th cycle is recorded scan 
rate of 50 ‎mVs−1 with a potential window (-200 
to 1000 mV/Ag/AgCl) (-1 to 1199 mV/RHE) ‎and 
one LSV with scan rate of 10 mVs-1 in a potential 
range (1000 to-200 ‎mV/Ag/AgCl) (1199 to-1 
mV/RHE) was performed, then oxygen bubbling 
for 30 ‎min, after that LSVs with different rpm 
values ranging between 200 rpm to 2400 rpm 
‎were performed in solution saturated with 
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oxygen with the same conditions as in case 
‎of LSV performed in solution saturated with 
nitrogen. The same conditions of CV ‎recorded 
in nitrogen is repeated in case of oxygen. ‎

Results and Discussion‎                                           

Physical characterization of Pt-MOx/C 
electrocatalysts‎

Figure (1a) showed the X-ray diffraction 
(XRD) of Pt-TiO2/C, Pt-CeO2/C and ‎Pt-ZrO2/C 
electrocatalysts in comparison with that of 
Pt/C. The diffraction peaks of ‎Pt(111), Pt(200) 
and Pt(220) appear in allelectrocatalysts.
XRD pattern of Pt-CeO2/C-‎‎1electrocatalysts 
shows that CeO2 has four diffraction peaks of 
CeO2 at 2θ = 28.6o, ‎‎33.1o, 47.5o and 56.3o that 
correspond to (111), (200), (220) and (311) 
diffraction ‎planes, respectively[44].These are 
typical of single-phase oxides with fluorite 
‎structures. so, both Pt and CeO2 phases exist 
simultaneously in Pt-CeO2/C ‎electrocatalyst, it 
was also noticed that; after introducing CeO2 to 
Pt/C in Pt-CeO2/C ‎electrocatalyst, 2θ values are 
shifted in the positive direction when compared 
to those ‎of Pt in Pt/C as shown in Table 1 
while for Pt-ZrO2/C electrocatalyst Pt(111), 
‎Pt(200) and Pt(220) planes are observed at 2θ 
= 39.765o, 45.909o and 67.682o, ‎respectively. 

Pt(111) and Pt(220) planes are shifted to 
higher 2θ values when ‎compared to those of 
Pt/C as shown in Table 1. This is an indication 
for the fact ‎that incorporation of ZrO2 affects 
the crystalline lattice of platinum; no diffraction 
‎planes related to ZrO2 phase were found. This 
can be due to the low concentration of ‎ZrO2 
or partial ZrO2 entering into Pt crystalline 
lattice[45-48]. For Pt-TiO2/C ‎electrocatalyst 
we can notice that; Pt(111) Pt (200) and 
Pt(220) diffraction planes are ‎found to be at 

higher 2θ values when compared to those in 
Pt/C-1 as in Table ‎‎1 resulting in a crystal lattice 
contraction, it is also noticed from Fig.1 (a)
that; no ‎characteristic peak for TiO2 is found 
in XRD pattern, this could be interpreted 
by the ‎existence of the titanium oxide in an 
amorphous form[49]. Pt (200) diffraction 
planes ‎of Pt-CeO2/C-1, showed 2θ shift to 
higher values 47.326 when compared to that of 
Pt-‎CeO2/C47.319 as seen from Fig.1b while the 
corresponding interplanar spacing ‎parameter is 
constant 1.919. Pt (111) and Pt (220) diffraction 
planes of Pt-CeO2/C-1 ‎show no values, so we 
can conclude that introducing CeO2 in Pt-

Fig.1. XRD patterns of (a) Pt/C and different Pt‒
MOx/C, (b) Pt-CeO2/C and Pt-CeO2/C-‎‎1 
electrocatalysts.‎

TABLE 1. Variation of 2θ and d values of Pt(111), Pt(200) and Pt(220) diffraction peaks of Pt/C and different Pt‒
MOx/C electrocatalysts.

Electrocatalyst

Pt(111) Pt(200) Pt(220) Pt crystallite 
size / nm

2θ / Å d / Å 2θ / Å d / Å 2θ / Å d / Å

Pt/C 39.265 2.293 46.001 1.971 67.353 1.389 -
Pt‒TiO2/C 39.678 2.270 46.339 1.958 67.539 1.386 -

Pt‒CeO2/C 39.621 2.272 47.319 1.919 67.563 1.385 3.2

Pt‒ZrO2/C 39.765 2.264 45.909 1.975 67.682 1.383 -
Pt‒CeO2/C-1 - -   47.326 1.919 - - -

(a)

(b)



383

Egypt. J. Chem. 60, No.3 (2017)‎

PREPARATION AND CHARACTERIZATION OF NANO STRUCTURED Pt-MOx

CeO2/C-1 leads to ‎crystal lattice contraction. 
It was found that the Pt particle size for Pt in 
Pt-CeO2/C is ‎‎3.2 nm while that inPt-ZrO2/C, Pt-
TiO2/C and Pt-CeO2/C-1electrocatalysts could not 
‎be estimated, this phenomena is attributed to the 
fact that, XRD gives information ‎about crystalline 
size information rather than true particle size[50].‎

Energy dispersive X-ray (EDX) analysis 
has been carried out to determine the 
‎elemental composition of the prepared Pt/C 
and Pt-MOx/C electrocatalysts. Figure 2 ‎‎(a-
e) present the (EDX) spectra of Pt/C, Pt-
TiO2/C and Pt-CeO2/C, Pt-ZrO2/C and Pt-
‎CeO2/C-1electrocatalysts respectively. The 
weight and atomic percentages of ‎different 
elements constituting these electrocatalysts 
are presented in Table 2. Wt. ‎‎% of Pt was 
found to be 36.03 in Pt/C electrocatalyst. This 
percentage was increased ‎when different MOx 
were introduced. All studied samples found 
to contain carbon, ‎oxygen and platinum in 
different weight percentages. It is noticed from 
Table 2 that ‎Pt-ZrO2/C electrocatalyst showed 
the highest weight percentages of Pt (56.03)
while ‎Pt-CeO2/C-1 electrocatalyst showed 
the lowest one (10.39). On the other hand we 
‎found that; Pt-CeO2/C has the highest weight 
percentage value for the metal (here; ‎Ce) 8.84.
On studying the effect of reducing agent we 
can observe that, using single ‎reducing agent 
(EG) decreases the Wt.% of Pt and M (Ce) 
while increases that of C ‎and O. It was also 
noticed that the weight percentage of oxygen 
for electrocatalysts ‎prepared using mixed 
reducing agent is low when compared to that 
prepared using ‎single reducing agent. ‎

Transmission electron microscopy (TEM) 
image of Pt/C electrocatalyst was ‎shown in Fig. 

Fig. 2. EDX spectra of (a)Pt/C, (b)Pt−TiO2/C, (c) 
Pt−CeO2/C, (d) Pt−ZrO2/C and (e) Pt−
CeO2/C-1 ‎electrocatalysts.‎

(a)

(b)

(c)

(d)

(e)
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3 a, a'. A higher degree of particle agglomeration 
is observed with ‎particle size of 3.57 nm as 
shown in Table 3. Figure (3b& 3b') display TEM 
images of Pt–TiO2/C ‎electrocatalyst. The catalyst 
particles were homogeneously dispersed on the 
carbon ‎support in with Pt particle size of 3.06 nm. 
(Fig.3c&3c') Figure(3e& 3e') show TEM ‎images 
of Pt-CeO2/C and Pt-CeO2/C-1, respectively. The 
addition of CeO2 to Pt/C ‎using a single reducing 
agent of (EG)during the reduction step decreases 
the resultant ‎Pt particle size (2.50 nm) while using 
mixed reducing agent (EG +NaBH4) increases ‎Pt 
particle size (2.78 nm) which in agreement with 
the fact that; the used reducing ‎agent strongly 
affects morphology and ORR activity of nano 
carbon supported ‎electrocatalysts. Using different 
reducing agents, namely; ethylene glycol (EG), 
‎borohydride (NaBH4) and formaldehyde (HCHO) 
resulted in producing ‎electrocatalysts with 
different particle size. The method with (EG) has 
resulted in the ‎smallest mean particle sizes in the 
range between 4.6 and 6.6 nm, the electrocatalyst 
‎based on NaBH4 provided the mean particle size 
ranging between 4.6 and 13.3 nm, ‎while that 
based on HCHO has showed a mean particle 
size in the range 8.8 - 22.9 ‎nm[51].When CeO2 
is added to Pt/C in Pt-CeO2/C electrocatalyst as 
in Figs. 3c,c' ‎aggregated particles are shown, 
this could be attributed to the tendency of Pt-
CeO2 ‎nanoparticles to form agglomerates[52]. 
TEM images of Pt-ZrO2/C electrocatalystare 
‎represented in Figs. (3d&3d') Pt particle size was 
found to be 3.49 nm which is little ‎bit smaller than 
that of Pt/C (3.57 nm), this is somewhat similar to 
results obtained by ‎Liu et al. who found that; The 
particle size for Pt/C catalyst is 3.0 nm while that 
of ‎Pt4ZrO2/C catalyst is 4.2 nm(31).‎

Electrochemical characterization
Electrochemical surface area (ECSA) evaluation‎
The electrochemical active surface area 

(a)

(a1)

(b)

(b1)

(c)
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(ECSA) of a catalyst is calculated ‎according to 
the following equation[53, 54]:‎

ECSA (m2g−1) = ‎ ‎                 (1)‎

where QH (C m−2) is the charge of hydrogen 
desorption, [Pt] (g m−2) is the ‎quantity of Pt 
loading on the electrode.‎

ECSA of the prepared electrocatalysts was 
estimated by integrating the ‎voltammograms 
corresponding to hydrogen adsorption−desorption 
area. It is so ‎obvious from Fig.4 that all Pt-MOx/C 
have higher ECSA values than that of Pt/C as 
‎shown in Table 4 which is could be due to the 
presence of more active sites on the Pt-‎MOx/C 
surfaces than those on Pt/C surface[55]. ‎

Pt-ZrO2/C and Pt-CeO2/C electrocatalyst 
has the highest ECSA value among ‎all studied 
electrocatalysts which are 69.60 and 46.93 m2g-1 
respectively, but in case ‎of Pt-TiO2/C, it was 
noticed that; although its mass activity at 0.65V/
RHE is -0.567 ‎mAmg−1which is smaller than that 
of Pt/C that equals-2.11mAmg−1, it was found to 
‎have higher ECSA value, 32.90 m2g-1 than that 
of Pt/C which is 24.60 m2g-1, this ‎could  be 
attributed to the smaller Pt size of Pt-TiO2/C (3.06 
nm) if it has been ‎compared to Pt/C (3.57 nm)  
and better Pt dispersion as seen in Fig.(3a, 3a' and 
3 b, ‎‎3b').This is in accordance with Gustavsson 
et al. who showed that the presence of ‎TiO2 can 
either increase or decrease the ORR performance 
of Pt catalyst, depending ‎on the sequence through 
which the thin films have been deposited which 
comes in ‎accordance with the fact that; synthesis 
method has been found to make changes in ‎the 
Pt electronic and geometric parameters[40]. 

Fig. 3. TEM images of (a,a1) Pt/C, (b, b1)Pt−TiO2/C, 
(c, c1) Pt−CeO2/C, (d, d1)   Pt−ZrO2/C and 
(e, e1) ‎Pt−CeO2/C-1electrocatalysts.‎

(c1)

(d)

(d1)

(e)

(e1)
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On comparing the two prepared Pt-‎CeO2/C; 
namely: Pt-CeO2/C and Pt-CeO2/C-1 we noticed 
that, changing the used ‎reducing agent affects 
the behavior of the resultant electrocatalyst, as 
calculated from ‎Equation 1, Pt-CeO2/C showed 
higher ECSA value that equals 46.93 m2g−1 
than that ‎of Pt-CeO2/C-1; 39.85 m2g-1. Another 
observation is related to both Pt-ZrO2 carbon 
‎supported electrocatalyst which is although it 
has large particle size (3.49 nm) it ‎showed the 
highest ECSA and electrocatalytic activity, this 
could be explained by the ‎fact that the difference 
in particle size is not huge to the extent that 
affects its ‎catalytic activity if compared  to results 
obtained by Oishi and Savadogo  who ‎synthesized 
Pd electro-catalyst monolayer on different single 
crystal substrates which ‎was found to have  wide 
range of particle sizes up to 92 nm with mean 
value of 18–‎‎20 nm[56].‎

Cyclic voltammetry results‎
Cyclic Voltammograms curves (CVs) in 

oxygen saturated solution were ‎recorded in the 

potential range from -1.0 to 1199 mV/RHE. 
The results of Pt/C and ‎Pt-MOx/C catalysts are 
presented in Fig. 5, the voltammograms shape is 
the typical ‎shape of that of Pt nanoparticles in acid 
medium[57, 58]. Pt/C, Pt-TiO2/C and Pt-CeO2/C 
‎electrocatalysts show:‎

•	 The characteristic H adsorption- desorption 
peak at 0.05-0.3 V/RHE while that for ‎Pt-
ZrO2/C lies at 0.05-0.4 V/RHE.‎

•	 Pt oxide formation-reduction peaks at 
0.85/0.60 V/RHE. ‎

•	 It could be easily noticing that; Pt-ZrO2/C 

and Pt-CeO2/C have the highest Pt ‎oxidation-
reduction peaks among the prepared 
electrocatalysts

Study of oxygen reduction with RDE‎
Figure 6   represents linear sweep voltammograms 

(LSVs) of Pt/C and Pt-MOx/C ‎where (M = Ti, Ce 
or Zr), it is obvious that, all prepared Pt-MOx/C 
electrocatalysts ‎have higher activity towards 
ORR than Pt/C except for Pt-TiO2/C. Moreover 
Pt-‎ZrO2/Chas the highest mass activity values at 
0.65V/RHE that equals -9.75 mAmg−1 ‎i.e. the best 
activity towards ORR when it was compared with 
the other catalysts, this ‎is because ZrO2 was found 
to have fairly high oxygen storage capacity, which 
‎enlarges the oxygen concentration at the catalyst 
surface, and achieves higher ORR ‎activity with 
maintaining the catalyst at the same oxygen 
pressure[59].‎

Regarding forPt-CeO2/C; it has high activity 
for ORR as seen from Fig. 6 and ‎shows a good 
catalytic activity for ORR; -2.240 mAcm-2 at 

Fig. 4. 30th C.V.s of Pt/C and different Pt-MOx/C  
electrocatalysts in 0.5 M H2SO4 solution at 
25 oC; scan rate: 50 mVs−1‎

Fig. 5. Cyclic voltammograms of (a) Pt/C and 
different Pt-MOx/C, (b) Pt- CeO2 /C and  Pt- 
CeO2 /C-1  electrocatalysts in ‎O2 saturated 
0.5 M H2SO4 solution at 25 oC; scan rate: 50 
mVs−1. ‎

(a)

(b)
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0.65V/RHE which is ‎higher than that of Pt/C(-
1.262mAcm-2) at the same potential value as 
seen in Table ‎‎4, this could be interpreted in the 
light of the fact that; Pt-CeOx appears to have a 
‎characteristic system when compared to other 
Pt−oxide composite catalysts; the ‎active oxygen 
supplied from CeO2 to Pt surface contributed to 
the improvement of ‎the ORR activity of the Pt-
CeOx cathode, so this noticed behaviour of high 
ORR ‎activity of Pt-CeO2/C may be improved 
by formation of Pt surface partially covered ‎by 
amorphous Ce2O3 layer or may be due to the role 
of ceria layer in  Pt oxide ‎formation on Pt[60].‎

On evaluating the performance of  mentioned 
electrocatalysts prepared using ‎the mixed 

reducing agent, it was found that Pt–CeO2/
Chas a higher potential value; ‎‎1097.9 mV/RHE 
than that of  Pt-TiO2/C; 967.9 mV/RHE at zero 
current, this big ‎difference which equals 130.0 
mV is related to the difference in mass activity 
value ‎at 0.65V/RHE which is -2.240 mAcm-2 for 
Pt-CeO2/C and -0.340 mAcm-2 for Pt-‎TiO2/C, 
meaning that increasing in the mass activity value 
of Pt−CeO2/C  6.588 times ‎as that of Pt-TiO2/C. 
The case is different for Pt−ZrO2/C in which the 
mass activity ‎value  at 0.65V/RHE is the highest 
among the studied Pt-MOx/C; -5.840 mAcm-2.
The ‎onset potential is known as the potential at 
which the current for oxygen reduction is ‎first 
observed[61]. Here the onset potential value for 
Pt−ZrO2/C is the highest one ‎among the studied 
electrocatalysts; 1041.2 mV/RHE indicating 
that the oxygen ‎reduction catalytic activity of 
this electrocatalyst exceeds the other catalysts 

‎regarding to onset potential values; the higher 
onset potential values the higher  ‎catalytic activity 
towards ORR[62] as seen from Fig 6. ‎

Figure 7 (a, b) shows the (LSVs) of ORR 
on the Pt-CeO2/C and Pt-CeO2/C-1 ‎electrodes 
respectively in O2 saturated 0.5 M H2SO4 solution 
with rotation rates ‎ranging between  200-2400 
rpm.‎

Fig. 6. RDE voltammograms of Pt/C and different 
Pt-MOx/C electrocatalysts with electrode 
rotation rate at 2400 rpm in O2 ‎saturated 
0.5 M H2SO4 solution at 25 oC; scan rate: 
10 mVs−1.‎

Clear performance differences between the 
two catalysts can be figured out ‎by comparing 
the LSVs of a particular electrode rotation speed. 
It is very clear that ‎there is an extrusive relation 
between cathodic current values and the rate of 
electrode ‎rotation. The studied catalyst samples 
show the same ORR open circuit potential ‎‎(around 
1040 mV for Pt-CeO2/C-1 and around 1080 mV 
for Pt-CeO2/C), generally ‎this is in consistent with 
the expected behavior for ORR in aqueous acid 
medium ‎catalyzed by Pt nanoparticles on carbon 
supports[60].‎

Fig. 7. RDE voltammograms of (a) Pt- CeO2 /C, (b) 
Pt- CeO2 /C-1 with electrode rotation rates 
at 200, 800, 1600, and 2400 ‎rpm. Electrode 
potential window 1.6 V to 0.4 V/RHE, scan 
rate 10 mVs-1.‎

(a)

(b)
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The increase in the diffusion limiting current 
in the RDE measurement is ‎directly proportional 
to the rotation speed. The limiting current 
densities of Pt-‎CeO2/C increased from 1.25 to 1.80 
mAcm−2while that of Pt-CeO2/C-1 increased ‎from 
0.82 to 1.55 mAcm-2 as the rotation speeds were 
increased from 200 to 2400 ‎rpm, this behavior 
could be explained by the fact that; higher rotation 
speeds leads to ‎faster oxygen flux at the electrode 
surface and hence generating higher currents.‎

Hydrated oxide reduction produced by 
applying a reducing agent. Typical ‎reducing 
agents are H2 [63] where strength of reduction 
is controlled by temperature [64, ‎‎65] and NaBH4 
[66] which have strong reduction strength at room 
temperature‎

Comparing Pt-CeO2/C and Pt-CeO2/C-1 in 
Fig. (7a, 7b) we can easily notice ‎that, for 2400 
rpm, Pt-CeO2/C had a higher current density 
value at 0.65V/RHE; -‎‎2.240 mAcm-2 than that of 
Pt-CeO2/C-1 that equals to-1.597 mAcm-2, this 
could be  ‎related to the fact that, smaller particle 
sized electrocatalysts produced from using 
‎single reducing agent may tend to agglomerate 

and hence reduce the activity of the ‎whole 
electrocatalysts, hence the oxide reduction extent 
in the preparation method ‎affects the Pd and Au 
performance towards the ORR which is related to 
the catalyst ‎synthesis procedures [67-71].‎

From the comparison of the LSVs recorded 
for both Pt-CeO2 on Carbon ‎catalysts at 2400 
rpm we can easily also observe the differences 
in the open circuit ‎potential,limiting currentand 
half wave potential values. The open circuit 
potential is ‎higher in case of Pt-CeO2/C catalyst; 
1097.9 mV/RHE than in case of Pt-CeO2/C-1; 
-‎‎1055.3 mV/RHE, faster ORR is observed in the 
whole potential window for Pt-‎CeO2/C than on 
Pt-CeO2/C-1 catalyst. The half wave potential of 
Pt-CeO2/C was ‎shifted to about 100 mV in the 
positive side compared to Pt-CeO2/C-1. Similarly, 
the ‎limiting current of Pt-CeO2/C catalyst is 
higher by about 300 mA (regardless to the ‎sign) 
compared to Pt-CeO2/C-1. The favorable shifts in 
the open circuit, half wave ‎potential and limiting 
current regions equivalent to the electrode of Pt-
CeO2/C can be ‎attributed to the enhanced ORR 
activity. It was found that the difference in the 
‎limiting currents for the two electrocatalysts may 

TABLE 2. Weight and atomic percentages of different elements forming Pt/C and different Pt-MOx/C electrocatalysts

Element Pt/C Pt−TiO2/C Pt−CeO2/C Pt−ZrO2/C Pt−CeO2/C-1

Weight% Atomic% Weight% Atomic% Weight% Atomic% Weight% Atomic% Weight% Atomic%
C K 63.97 96.65 42.82 86.70 44.60 89.58 37.69 86.26 67.83 84.19

O K - - 2.98 4.54 2.27 3.42 2.80 4.80 15.38 14.34

Pt M 36.03 3.35 48.96 6.10 44.29 5.48 56.03 7.89 10.39 0.79
Ti  K - - 5.24 2.66 - - - - -
Ce  L - - - - 8.84 1.52 -   6.40    0.68
Zr L - - - - 3.48 1.05 - -

TABLE 3. Particle size values of Pt/C and different Pt-MOx/C electrocatalysts according to TEM analysis.

Electrocatalyst Particle size / nm 
Pt/C 3.57

Pt-TiO2/C 3.06
Pt-CeO2/C 2.78
Pt-ZrO2/C 3.49

Pt-CeO2/C-1 2.50

TABLE 4. Electrochemical parameters and electrochemical surface area values obtained from LSVs and CVs of  
Pt/C and Pt-Mox/ C electrocatalysts 0.5 MH2SO4 solution.

Electrocatalysts Open circuit pot. [mV/RHE]
at 0 current

Onset ORR [mV/
RHE]

ECSA
[m2g−1]

Current density  at 
650 mV/RHE

Pt/C 899.5 830.1 24.60 -1.262
Pt-TiO2/C 967.9 790.5 32.90 -0.34
Pt-CeO2/C 1097.9 931.4 46.93 -2.240
Pt-ZrO2/C 801.0 1041.2 69.60 -5.840
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(a)

be due to the difference of oxygen ‎diffusion at 
both of them[72]. It is also found thatPt-CeO2/C 
(8.84 Ce%)  had  higher ‎onset potential and 
limiting current than  Pt-CeO2/C-1 (6.40 Ce%)  
which is in ‎accordance with Kang et al.[73]‎

Oxygen reduction mechanism of Pt-CeO2/C 
and Pt-CeO2/C-1 has been ‎evaluated using the 
Koutecky-Levichequation to determine the 
number of electrons ‎transferred per O2 molecule.‎

 ‎                                                                   (2)
‎

where Ik is the kinetic current; ω is the rotation rate; 
n is the number of ‎electrons involved in the reaction; 
F is Faraday constant; A is the geometric area of ‎the 
disk electrode; D and c are the diffusion coefficient 
of dissolved oxygen and the ‎concentration of 
dissolved oxygen in 0.5M H2SO4, respectively; v is 
the kinematic ‎viscosity of the electrolyte.‎

Figure 8 a, b represents Koutecky-Levitch (-1/I 
versus ω-1/2) plots for the ORR ‎on Pt-CeO2/C and 
Pt-CeO2/C-1 electrodes respectively at electrode 
potential range ‎from 0.2V - 0.5V vs. RHE in 
0.5M H2SO4. The linearity and the parallism 
of these ‎plots indicate first-order kinetics with 
respect to molecular oxygen[74]. The ‎calculation 
of n was performed using the values: F= 96,485 
Cmol-1; A= 0.196 cm2; D ‎‎= 1.93×10-5 cm2 s-1; c 
=1.13×10−6 mol cm−3; v=9.5×10-3 cm2 s-1[75].
Intercept different ‎values at the y-axis indicate the 
existence of different kinetic constants at different 
‎electrode potentials while the non-zero values of 
the intercepts imply that the ORR is ‎not controlled 
solely by diffusion [76]. ‎

(b)

Fig. 8.Koutecky–Levichplot drawn at different 
potentials for (a) Pt- CeO2 /C, b) Pt- CeO2 /C-1 
in O2-saturated 0.5 M ‎sulphuric acid solution 
at 2400 rpm, scan rate 10 mVs-1.‎

Conclusion                                                                      

Pt-MOx/C electrocatalysts have been prepared 
through two steps. The first step ‎involves the 
synthesis of MOx/C powders via solid state 
reaction under intermittent ‎microwave heating, 
while the second step is platinum loading on 
MOx/C surfaces ‎using ethylene glycol or a mixture 
of ethylene glycol and sodium borohydride as the 
‎reducing agent.‎

•	 The preparation method of the electrocatalysts 
is found to affect their behaviour ‎towards 
ORR.‎

•	 Pt-CeO2/C and Pt-ZrO2/C have the highest 
activity for oxygen reduction among ‎the 
studied electrocatalysts and also higher than 
that of prepared Pt/C in acid ‎medium.‎

•	 Changing the used reducing agent was found 
to affect the electrocatalytic ‎efficiency and 
electrochemical surface area of the resultant 
electrocatalyst.‎

•	 Pt-CeO2/C and Pt-CeO2/C-1 showed first-
order kinetics with respect to molecular 
‎oxygen with oxygen reduction reaction not 
controlled solely by diffusion. ‎
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تم تحضير العوامل الحفازة المتكونة من البلاتين و أكاسيد بعض العناصر الانتقالية و المدعمة ‏بالكربون لتطوير عامل 
حفاز رخيص و فعال لتفاعل اختزال الأكسجين باستخدام عامل مختزل ‏ثنائي ) ايثلين جليكول +بوروهيدريد الصوديوم( 
حيث أن العناصر الانتقالية المستخدمة هي ‏التيتانيوم، السيريوم و الزيركونيوم. تم دراسة البلاتين المدعم بالكربونالمكون 
من البلاتين و ‏أكسيد السيريوم و المحضر باستخدام الايثلين جليكول منفردا لدراسة تأثير تغير العامل المختزل ‏على نشاط 
العامل الحفاز لتفاعل اختزال الاكسجين وكذلك حركية تفاعل اختزال الاكسجين. و قد ‏تم تتبع النشاط الحافزي الكهربي 
الخطيعلى  الفولتمتري  المسح  و  الدائرية   باستخدام ‏الفولتمترية  الاكسجين  اختزال  لتفاعل  المحضرة  الحفازة  للعوامل 
لتفاعل  نشاط  أفضل  الزيركونيوم  أكسيد  البلاتين و  المكون من  الحفاز  قد أظهر ‏العامل  الدائري.و  القرصي  الالكترود 
اختزال الأكسجين ‏حيث وجد أن كثافة تيار اختزال الأكسجين له )5.840 م أمبير/سم2( حوالي خمسة أضعاف ‏كثافة 
تيار اختزال الأكسجين عند استخدام البلاتين المدعم بالكربون)1.262 م أمبير/سم2(. كما ‏وجد آن العامل الحفاز المكون 
من البلاتين و أكسيد السيريوم  المحضر بعامل مختزل ثنائي له ‏تيار اختزال أكسجين أفضل )2.240 م أمبير/سم2( من 
نظيره المحضر بالعامل المختزل ‏الأحادي )1.597 م أمبير/سم2( مما يوضح التأثير الكبير لتغيرالعامل المختزل ليس 
فقط على ‏نشاط  العامل الحفازتجاهتفاعل اختزال الأكسجين و انما أيضا على حجم الجسيمات ومحتوى ‏العنصر الانتقالي 
أكسيد  و  البلاتين  من  المكونين  للعاملين ‏الحفازين  الأكسجين  اختزال  تفاعل  دراسة حركية  الحفاز.أظهرت  العامل  في 
السيريوم   باستخدام معادلة كوشيه ليفيش و أظهرت أنه ‏تفاعل من الدرجة الأولى. تم استخدام حيود الأشعة السينية و 

الطاقة المتبددة للأشعة السينية و ‏كذلك الميكروسكوب الالكتروني الناقل لتوصيف العوامل الحفازة المحضرة.‏

 تحضير و توصيف تراكيب نانومترية من البلاتين و أكاسيد العناصر الانتقالية لتفاعل اختزال
الأكسجين في ‏الأوساط الحامضية ‏
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