

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Chemical Composition of Lipoidal and Flavonoidal Extracts from

Egyptian Olive Leaves with *In vitro* Biological Activities

Amal M. El-Feky¹*, Wael M. Aboulthana²

 ¹Pharmacognosy Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
 ²Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.

Abstract

The olive leaves (*Olea europaea* L.) have long been utilized for their various beneficial effects in the folk medication due to their various active phyto-constituents such as sterols, fatty acids, phenolics and flavonoids. Therefore, the study aimed to investigate the chemical composition of lipoidal and flavonoidal extracts from Egyptian olive leaves, as well as assaying the *in vitro* biological activities (antioxidant, scavenging, anti-diabetic, anti-Alzheimer and anti-arthritic activities).

It was found that 43 compounds (85.36%) were identified by GC/MS in petroleum ether *O. europaea* extract. Among these compounds, 10 unsaturated hydrocarbons, 9 saturated hydrocarbons, 9 fatty alcohols, 9 fatty acid methyl esters and 6 phytosterols were noticed. β -Sitosterol (1.53%), stigmasterol (1.02%), Δ^5 -avenasterol (0.96%) and campesterol (0.84%) have the greatest values. Furthermore, UPLC- MS/MS negative ion mode technique clarified the presence of 3 phenolic acids, 4 flavonoid aglycones, 8 flavonoid monoglycosides, 3 flavonoid diglycosides and two seco-iridoids in the methanolic *O. europaea* extract. It is worth to mention that both petroleum ether and methanol extracts of *O. europaea* leaves proved remarkable biological activities (antioxidant, scavenging, anti-diabetic, anti-Alzheimer and anti-arthritic activities) with significant effect of methanol extract more than that of petroleum ether one. Our findings proved that the biological activities could be attributed to the combination of lipoidal and flavonoidal constituents. The study concluded that the methanolic *O. europaea* extract contains more effective phyto-constituents and exhibited higher biological efficiency than petroleum ether one.

Keywords: Olive Leaves, Lipids, Flavonoids, Antioxidant, Anti-diabetic, Anti-Alzheimer, Anti-Arthritic.

Introduction

Olea europaea L. tree is categorized as a member of the *Oleaceae* family which is considered as one of the oldest known agricultural plants in the world, especially in the Mediterranean region. In the Arabic language, it is acknowledged as Zaitoon and in the English language as Olive [1].

Olive leaves are considered as agricultural waste by-products which resulted through olive oil production, accounting for 10% of the weight of all harvested olive trees [2]. Olive leaves are a good source of valuable constituents with a variety of

health-promoting effects because they contain large amounts of lipoidal and phenolic components [3]. The leaves phytoconstituents varied qualitatively as well as quantitatively as a result of numerous conditions, such as genotypes, collection times, surroundings circumstances, geographical locations, and exposition to sunlight [4].

Historically, *O. europaea* leaves have been used to treat neurological and rheumatic conditions in Lebanon, as well as to relieve joint and cramps in certain areas of Iran. Therefore, they were utilized in the folk medicine as a traditional herbal tea with

*Corresponding author e-mail: <u>ammelfeky@hotmail.com</u>.; (Amal M. El-Feky). Receive Date: 14 June 2023, Revise Date: 16 August 2023, Accept Date: 03 September 2023 DOI: 10.21608/EJCHEM.2023.217533.8138

©2023 National Information and Documentation Center (NIDOC)

numerous curative benefits, such as gout, arteriosclerosis, and diabetes mellitus [5].

Actually, the previous study carried out by Dekanski [6] verified that *O. europaea* leaves extracts have strong antioxidant and free radical scavenging properties, making them suitable for usage in a variety of treatments. Therefore, the researchers recently have become more interested in detailed study on advantages of *O. europaea* leaves as antioxidant, anti-atherosclerotic, antihypertensive, antibacterial, and anti-mutagenic agents [7].

The present study was designed to investigate the chemical composition of lipoidal and flavonoidal extracts from Egyptian *O. europaea* leaves, as well as assaying *in vitro* biological activities.

Material and Methods

1. Phyto-chemical Investigation

1.1. Plant material

Olive leaves were collected in January 2023 from private olive farm in El-Slaheya Elgdeda, Sharkia Governorate, Egypt. The specimen of the leaves was identified by Therese Labib Youssef, a taxonomist of Botanical Orman Garden, Giza, Egypt. *1.2. Plant extraction*

The dried powdered olive leaves (400g) were defatted with petroleum ether and then extracted with methyl alcohol several times till complete extraction. The obtained two extracts were separately concentrated under reduced pressure at 45° C using the rotary evaporator. The concentrated extracts were kept separately in tightly closed containers in refrigerator for chemical and biological investigation. *1.3. Quantification of total polyphenols and tannins*

Concentration of the total polyphenols was quantified in both petroleum ether and methanol extracts of Egyptian olive leaves as mg gallic acid/100 gm using Folin Ciocalteu reagent according to the method suggested by Singleton and Rossi [8]. In addition, total tannin content was assessed using tannic acid as a reference based on the method described by Broadhurst and Jones [9].

1.4. Identification of the lipoidal constituents in the petroleum ether extract

Using GC/MS technique, a Shimadzu GC/MS-QP5050A, the petroleum ether extract of olive leaves was investigated. By comparing the spectral fragmentation patterns of the compounds with those of available database libraries (Wiley (Wiley Int.) USA and NIST (Nat. Inst. St. Technol., USA)) as well as published research papers, the lipoidal compounds have been identified. Based on peak area integration, quantitative determination was carried out.

1.5. Identification of the major phenolics and flavonoids

UPLC-QTOF-MS/MS negative ion mode was carried out on a Vendor/ Specstriple quadruple instrument for characterization of the major phenolics and flavonoids in the methanol extract of olive leaves, where HPLC-MS system was composed of an autosampler injector (Switzerland), waters corporation (Milford, MA01757, U.S.A) and mass spectrometer. ColumnACQUITY UPLC-BEH Waters (X select HSS T3)C18 1.7 μ m- 2.1 \times 50 mm. Mobile phase elution was made with the flow rate of 0.3 mL/min using gradient mobile phase comprising two eluents: eluent A is 5 mM ammonium formate buffer pH 3 containing 1% methanol and eluent B is 100 % acetonitrile. The peaks and spectra were processed using the Analyst TF 1.7.1software and tentatively identified by comparing its retention time (Rt) and mass spectrum with reported data.

1.6. Isolation and structure elucidation of the principal flavonoids

One gram of the methanol extract of olive leaves were subjected to Ready-made chromatographic plates (20x20cm) coated with silica gel F254 for the detection of flavonoids using a developing system chloroform- ethyl acetate -acetone (5:1:4) [10]. The bands giving yellow color after spraying with ALCL₃ spray reagent were marked and scratched separately [11]. The isolated flavonoids were identified by a number of spectroscopic investigations and compared with previous literature.

2. In vitro Biological Activities

All the biological activities were assayed in both petroleum ether and methanolic *O. europaea* leaves extracts and the analyses were carried out in three replicates.

2.1. Antioxidant Activity

Total antioxidant capacity (TAC) was assessed as mg gallic acid/gm by evaluating the green phosphate/Mo⁵⁺ complex at wavelength (λ) 695 nm based on the method suggested by Prieto [12]. Also, the iron reducing power (IRP) was tested as μ g/mL using ascorbic acid as standard according to the method demonstrated by Oyaizu [13].

2.2. Free Radical Scavenging Activities

The scavenging activity was assayed by determining the ability of each plant extract to scavenge the free radicals. The median inhibitory concentration (IC_{50}) that required from the tested extract to inhibit 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals was calculated according to the method suggested by Rahman[14] . Furthermore, the activity 2,2'-azinobis-(3scavenging against ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was evaluated by calculating inhibition 2,2'-azinobis-(3percent (%) of the ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical

Egypt. J. Chem. 66, No. SI 13 (2023)

using ascorbic acid as standard based on the method described by Arnao [15].

2.3. Anti-Diabetic Activity

The anti-diabetic activity was assessed in both petroleum ether and methanol extracts of Egyptian olive leaves by calculating inhibition percents (%) of α -amylase and α -glucosidase enzymes according to the methods established by Wickramaratne [16] and Pistia-Brueggeman and Hollingsworth [17], respectively using acarbose as standard drug. 2.4. Anti-Alzheimer's Activity

It was determined by calculating the inhibition percent (%) of acetyl cholinesterase (AChE) enzyme using donepezil as standard drug according to Ellman's method [18].

2.5. Anti-Arthritic Activity

This assay was carried out by calculating percent (%) of protein denaturation [19] and proteinase inhibition [20] using the diclofenac sodium that was prepared using the method suggested by Meera [21] as standard drug.

3. Statistical Analysis

One-way analysis of variance (one-way ANOVA) was carried out using Statistical Package for Social Sciences (SPSS for windows, version 11.0) for evaluating the statistical correlations (positive and negative) among the different biological measurements. The correlation was considered significant at P <0.05 and considered highly significant at P <0.01.

Results and Discussion

1. Phyto-chemical Investigation

1.1. Quantification of total polyphenols and tannins

The concentration of total polyphenols and total condensed tannins was quantified in both petroleum ether and methanol extracts of Egyptian olive leaves. The results were explained in table 1, where the methanol extract showed greater values of polyphenols (106.67 mg/100g) and tannins (42.67 μ g/ml) than that exist in the petroleum ether extract (35.82 mg/100g &14.33 μ g/ml, respectively).

The quantification assay was in agreement with the study reported by Ibrahim [22] and supported consequently by Mohamed [23] who stated that olive leaves are considered as a rich source of phenolic constituents. Moreover, Salah, [24] studied the extraction yield and total polyphenols content in eight olive cultivars leaves and established that the methanol was the best solvent for olive leaves extraction, as it produced high polyphenols content.

Table 1. Content of total polyphenols and total condensed tannins in petroleum ether and methanol extracts of Egyptian olive leaves.

Plant extract	Total Polyphenols (mg gallic acid/100 gm)	Total Condensed Tannins (µg/ml)		
Petroleum ether	35.82 ± 0.06	14.33 ± 0.02		
Methanol	106.67 ± 0.25	42.67 ± 0.10		

Values were calculated from three replicates and expressed as mean \pm SE.

1.2. GC/MS identification for the lipoidal constituents

The petroleum ether extract of Egyptian olive leaves was subjected to GC/MS investigation, and the constituents were identified by comparing their spectral fragments to those of the available database archives Wiley (Wiley Int.) USA and NIST (Nat. Inst. St. Technol., USA)]. The contents and composition of the lipoidal constituents are presented in table 2. Fourty three compounds (85.36%) were identified in the lipoidal matter of olive leaves, among which 10 unsaturated hydrocarbons, 9 saturated hydrocarbons, 9 fatty alcohols, 9 fatty acid methyl esters and 6 phytosterols were characterized.

5-Octadecene (5.02%) and 10-heneicosene (4.08%) were the principal unsaturated hydrocarbons, while docosane (4.05%) and pentadecane (3.39%) were the chief identified saturated hydrocarbons. Furthermore, heptadecanol and eicosanol were the major identified fatty alcohols in the lipoidal matter with the values of 4.08% and 4.79%, respectively.

Additionally, six saturated fatty acids (SFA) (7.99%) and three unsaturated fatty acids (UFA) (8.91%) were characterized. Palmitic acid (C16:0)

was detected as the major saturated fatty acid with the concentration of 3.08%, while oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3) were the principal detected unsaturated fatty acids which constituted 4.69, 2.46, &1.76%, respectively.

Furthermore, the sterols profile in olive leaves lipoidal matter is studied. β -Sitosterol (1.53%), stigmasterol (1.02%), Δ^5 -avenasterol (0.96%) and campesterol (0.84%) have the greatest values, while 3-methoxy-28-norolean-17-ene (0.45%) and oleanolic acid (0.32%) were found in minor amounts. In the last few years, the sterols composition of the lipoidal matter of olive leaves has attracted specific interest due to its nutritious and health-promoting benefits as antimicrobial, anti-inflammatory and cancer-fighting properties [25], as well as its ability to lower plasma total cholesterol and low-density lipoprotein (LDL) [26].

It is interesting to note that the investigation outcomes are consistent with published researches [27, 28], supporting the positive impacts of the lipoidal matter extracted from olive leaves on human health for lowering the risk of cardiovascular disease

because of its characteristic fatty acid composition	
and phytosterols [29].	

Table 2. GC/MS analysis of petroleum ether extract of Egyptian olive leaves.

class	Compound	BP	Molecular weight	Molecular formula	Area %	Total area %
	3-Dodecene	41	168	$C_{12}H_{24}$	0.93	
	4-Tetradecene	43	196	$C_{14}H_{28}$	1.49	
	Pentadecene	43	210	C15H30	3.42	
	9-Octadecene	43	252	C ₁₈ H ₃₆	2.87	
Unsaturated	Heptadec-8-ene	55	238	C ₁₇ H ₃₄	1.95	
hydrocarbons	5-Octadecene	55	252	C ₁₈ H ₃₆	5.02	24.77
	1-Nonadecene	55	266	C ₁₉ H ₃₀	3.21	
	5-Eicosene	55	280	C ₂₀ H ₄₀	1.04	
	10-Heneicosene	55	294	$C_{20}H_{40}$ $C_{21}H_{42}$	4.08	
	1-Tetracosene	43	336		0.76	
				C ₂₄ H ₄₈		
	Pentadecane 2,6,10-Trimethyl	57 57	212 226	C ₁₅ H ₃₂	3.39 0.57	
	2-Methylheptadecane	57	220	$C_{16}H_{34}$ $C_{18}H_{38}$	2.31	
	2-Methyloctadecane	57	254	$C_{18}H_{38}$ $C_{19}H_{40}$	1.34	
Saturated	Docosane	43	310	$C_{19}H_{40}$ $C_{22}H_{46}$	4.05	16.15
hydrocarbons	Tetracosane	57	338	$C_{22}H_{46}$ $C_{24}H_{50}$	1.63	10.15
	2-Cyclohexyleicosane	82	364	$C_{24}H_{50}$ $C_{26}H_{52}$	0.87	
	Hentriacontane	57	436	$C_{20}H_{52}$ $C_{31}H_{64}$	1.58	
	Dotriacontane	57	450	$C_{32}H_{66}$	0.41	
	1-Octen-4-ol	69	128	C ₈ H ₁₆ O	1.30	
	Tetradecanol	55	214	C ₁₄ H ₃₀ O	1.49	
	Hexadecanol	43	240	$C_{16}H_{16}O_2$	3.42	
Eatter also hal	Heptadecanol	55	256	C ₁₇ H ₃₆ O	4.08	
Fatty alcohol	Nonadecanol	55	284	C ₁₉ H ₄₀ O	2.37	22.42
	Eicosanol	83	298	$C_{20}H_{42}O$	4.79	
	Tetracosanol	55	354	$C_{24}H_{50}O$	1.54	
	Hexacosanol	43	382	C ₂₆ H ₅₄ O	0.96	
	Triacontanol	43	438	C ₃₀ H ₆₂ O	2.47	
	Nonanoic acid methyl ester(C9:0)	74	172	$C_{10}H_{20}O_2$	1.20	
	Myristic acid, methyl ester (C14:0)	74	242	$C_{15}H_{30}O_2$	0.94	
	Methyl pentadecanoic acid methyl ester	74	256	$C_{16}H_{32}O_2$	1.23	
	Palmitic acid, methyl ester (C 16:0)	74	270	$C_{17}H_{34}O_2$	3.08	
Fatty acid methyl esters	Linolenic acid, methyl ester (C18:3)	67	292	$C_{19}H_{32}O_2$	1.76	16.9
	Linoleic acid, methyl ester (C18:2)	67	294	$C_{19}H_{34}O_2$	2.46	
	Oleic acid methyl ester (C18:1)	55	296	$C_{19}H_{36}O_2$	4.69	
	nonadecanoic acid methyl ester (C19:0)	74	312	$C_{20}H_{40}O_2$	0.83	
	Triacontanoic acid methyl ester (C30:0)	74	466	$C_{31}H_{62}O_2$	0.71	
	β -sitosterol	43	414	C ₂₉ H ₅₀ O	1.53	
	Δ^5 -avenasterol	55	412	C29H48O	0.96	5.12
Phytosterols	Campesterol	43	400	$C_{28}H_{48}O$	0.84	

3-Methoxy-28- norolean- 17-ene	191	426	C ₃₀ H ₅₀ O	0.45	
Oleanolicacid(3b- hydroxy-5a-olean-12- en-28-oicacid)	203	456	$C_{30}H_{48}O_3$	0.32	

1.3. Identification of the major phenolics and flavonoids

Due to the numerous positive impacts of olive leaves on human health, many research investigations have recently focused on correlation of the observed biological activities with their chemical characterization [7].

To chemically identify the phenolic and flavonoid constituents in olive leaves, UPLC-MS/MS negative ion mode analysis was performed. A variety of compounds were recorded as phenolic acids, flavonoid aglycones, flavonoid glycosides and seco-iridoids via chemical classification as illustrated in table 3. These chemical compounds have a wide range of health impacts [30]. Therefore, the positive health effects of olive leaves could be ascribed to the grouping of these bioactive constituents [31]. Worthily, the phenolic constituents found in olive leaves are responsible for the majority of bioactivities [7]. Kabbash [32] earlier characterized many flavonoidal compounds in olive leaves comprising flavonolsas quercetin andrutin, flavones as luteolin-7glucoside, apigenin-7-glucoside, and diosmetin, beside to flavan-3-ols as catechin.

In the present research study, 3 phenolic acids, 4 flavonoid aglycones, 8 flavonoid monoglycosides, 3 flavonoid diglycosidesand two seco-iridoids were identified in the methanol extract of olive leaves. The phenolic acids were caffeic acid, dihydrocaffeic acid, and quinic acid with m/z 179, 181,and 191, respectively were detected in the negative ionization mode. In addition to characterization of the flavonoid aglycones (apigenin, luteolin, chrysoeriol and quercetin) with their mono and di glycosides. Moreover, the two seco-iridoids were identified as oleuropein and oleuropein-3'-glucoside with molecular weight [M - H] at 539 and 701, respectively. The results of this investigation line up with previously conducted studies [33-35].

Class	Name	[M - H] ⁻	Molecular	Main fragments
Phenolic acids	Caffeic acid	179	C ₉ H ₈ O ₄	107, 135
	Dihydrocaffeic acid	181	$C_9H_{10}O_4$	109, 121, 137
	Quinic acid	191	$C_7 H_{12} O_6$	109, 127, 160
Flavonoid	Apigenin	269	$C_{15}H_{10}O_5$	117,151, 227
aglycones	Luteolin	285	$C_{15}H_{10}O_{6}$	147, 285
	Chrysoeriol	299	$C_{16}H_{12}O_{6}$	227, 256, 284
	Quercetin	301	$C_{15}H_{10}O_7$	121, 151, 178
Flavonoid	Apigenin-7-O-glucoside	431	$C_{21}H_{20}O_{10}$	239, 269
mono-	Apigenin-7-O-rutinoside	577	$C_{27}H_{30}O_{14}$	269, 433
glycosides	Quercetin-3-O-rhamnoside	447	$C_{21}H_{20}O_{11}$	257, 301
	Quercetin-3-Glucuronide	477	$C_{21}H_{18}O_{13}$	151,301
	Quercetin-3-Arabinoside	433	C ₂₀ H ₁₈ O ₁₁	271, 301
	Rutin	609	C ₂₇ H ₃₀ O ₁₆	271, 301
	Luteolin-7-O-glucoside	447	$C_{21}H_{20}O_{11}$	285, 412
	Luteolin-7-O-rutinoside	593	C ₂₇ H ₃₀ O ₁₅	285, 383, 412
Flavonoid di-	Apigenin 6,8-di-C-glucoside	593	$C_{27}H_{30}O_{15}$	117, 269
glycosides	Luteolin-3', 7-di-O-	609	$C_{27}H_{30}O_{16}$	285, 447
	Quercetin 3,4'-diglucoside	625	$C_{27}H_{30}O_{17}$	301, 463
Seco-iridoids	Oleuropein	539	$C_{25}H_{32}O_{13}$	223, 307, 377
	Oleuropein-3'-glucoside	701	$C_{31}H_{42}O_{18}$	135, 315, 469

Table 3. Identification of the main phenolics and flavonoids in olive leaves by UPLC- MS/MS negative ion mode analysis.

1.3. Structure elucidation of the principal flavonoids Apigenin-7-O-glucoside was isolated as yellowish crystals, m.p.180 °C. It produced a dark purple color under short UV light and turned to yellow with AlCl₃ spray reagent with R_f of 0.89, UV- λ max nm; MeOH (263, 338) for flavonoid skeleton, MeOH+NaOMe (240sh,270,305sh,389) gave bathochromic shift in band I with increased intensity confirming the presence of polyhydroxyl groups. MeOH+AlCl₃ (270,304, 350,387) bathochromic shift indicative for free OH group at C-3 or C-5; MeOH+AlCl₃/HCl (273,300, 348,386) no hypsochromic shift was observed; indicating absence of ortho-dihydroxyl groups. MeOH+NaOAc (265, 352,388) no change in UV absorbance of band II indicating substitution of 7-OH group, while bathochromic shift was observed in band I indicating presence of a free 4'hydroxyl group. MeOH+NaOAc/ H₃BO₃ (266,350) no change in UV absorbance was observed; indicating absence of ortho-dihydroxyl groups. ¹H NMR (400 MHz, DMSO, δ ppm): 6.98 (s, H-3),6.51 (d, J 2.3 Hz, H-6), 6.87 (d, J 2.3 Hz, H-8), 8.14 (d, J 8.5 Hz, H-2',6'), 7.35 (d, J 8.5 Hz, H-3', 5'), 5.12 (d, J 7.1 Hz, H-1"), 3.24-3.81 (m, sugar protons). The achieved spectral data matched to Sezen Karaoğlan, [36].

quercetin-7-O-glucoside was isolated as yellow crystals with melting point 248 °C. It produced brown spot under UV light and converted to yellow color with AlCl₃ reagent with R_f of 0.83, UV- λ max nm; MeOH (254,268sh, 370) with absorbance more than 350 nm indicating presence of flavonol nucleus; MeOH+NaOMe (246sh,290, 365,455) producing bathochromic shift confirming the presence of polyhydroxyl groups. MeOH+AlCl₃ (259sh,274, 339,457) bathochromic shift indicating presence of hydroxyl group at C-3 or C-5 or C-3 and C-5 or groups; ortho-dihydroxyl MeOH+AlCl₃/HCl (260,302sh, 342,458) keeping UV absorbance was observed in band I and II indicating presence of hydroxyl group at C-3 and C-5. MeOH+NaOAc (285,378,427sh) showing bathochromic shift of band I s ascribable to free 4'-OH group; MeOH+NaOAc/ H₃BO₃ (261,290sh,452) with bathochromic shift of band I indicates the presence of 3', 4'dihydroxy group. ¹H-NMR (500 MHz, CD₃OD) δ / ppm: 6.39(1H, d, J=2.4Hz, H-6), 6.78(1H, d, J=2.4Hz, H-8), 7.88(1H, d, J=2.1Hz ,H-2'), 6.94(1H, d, J=8.3Hz ,H-5'), 7.62(1H, dd, J=2.1, 8.3Hz, H-6'), 5.03 (H-1``). ¹³C-NMR (125 MHz, CD₃OD) δ / ppm: 156.85 (C-2), 127.30 (C-3), 180.25 (C-4), 161.46 (C-5), 94.63 (C-6), 164.85 (C-7), 95.21 (C-8), 162.59 (C-9), 99. 74 (C-10), 121.36(C-1`), 106.56 (C-2`), 145.26 (C-3`), 159.31 (C-4`), 104.12 (C-5`), 116.81 (C-6[°]), 102.41 (C-1[°]), 74.51 (C-2[°]), 77.37 (C-3[°]), 68.53 (C-4^{\,\)}, 78.93(C-5^{\,\)}, 61.77(C-6^{\,\}). The aforementioned spectroscopical data were in agreement with that reported by Legault [37].

quercetin-3,7-diglucopyranoside was isolated as yellow crystals with melting point 225 °C. It produced purple color under UV light and changed to yellow color after spraying AlCl₃ with R_f of 0.78, UV-λmax (MeOH) nm: 255,267sh, 359 with absorbance more than 350 nm pointing to presence of flavonol nucleus; MeOH+NaOMe (269,299sh,398) producing bathochromic shift directing to existence of polyhydroxyl groups. MeOH+AlCl₃ (271,299sh, 337,443) gave bathochromic shift signifying occurrence of hydroxyl group at C-3 or C-5 or C-3 ortho-dihydroxyl and C-5 or groups; MeOH+AlCl₃/HCl (270,300sh, 340,440) with stable UV absorbance in band I and II representing presence of hydroxyl group at C-3 and C-5. MeOH+NaOAc (261,295sh, 376,424sh) displaying bathochromic shift of band I for free 4`-OH group; MeOH+NaOAc/ H₃BO₃ (260, 435) with bathochromic shift of band I directs the presence of 3, 4^{dihydroxy} group. ¹H-NMR (500 MHz, CD₃OD) δ / ppm: 6.34(1H, d, J=2.2Hz, H-6), 6.59(1H, d, J=2.2Hz, H-8), 7.63(1H, d, J=3.4Hz, H-2'), 6.85(1H, d, J=8.5Hz, H-5'), 7.54(1H, dd, J=3.4, 8.5Hz, H-6'), 5.01 (H-1^{**}), 5.17 (H-1^{***}). ¹³C-NMR (125 MHz, CD₃OD) δ / ppm: 157.12 (C-2), 134.42 (C-3), 177.82 (C-4), 161.32 (C-5), 98.78 (C-6), 163.61 (C-7), 95.85 (C-8), 158.01 (C-9), 106.25 (C-10), 123.41 (C-1`), 115.78 (C-2`), 145.31 (C-3`), 148.41 (C-4`), 117.84 (C-5`), 122.89 (C-6`), 101.33 (C-1``), 71.65 (C-2^{**}), 72.51(C-3^{**}), 68.34 (C-4^{**}), 77.81 (C-5^{**}), 60.54 (C-6^{*}),101.32 (C-1^{***}), 70.69 (C-2^{***}), 73.22 (C-3^{***}), 66.65(C-4^{***}), 76.45 (C-5^{***}), 61.76 (C-**6**```). The spectral data matched to Al-Taweel [38].

2. In Vitro Biological Activities

2.1. Antioxidant Activity

Many prevalent diseases including cancer, atherosclerosis, rheumatoid arthritis and aging-related degenerative processes, are thought to entail excessive lipid oxidation and inflammation. The principal approach for avoiding as well as treating such conditions may be through reducing this extra oxidation processes by exogenous consumption of natural antioxidants such as olive leaves products for example [7]. Both petroleum ether and methanol extracts of Egyptian olive leaves proved remarkable total antioxidant capacity (TAC), iron reducing power (IRP), and free radical scavenging activities against DPPH and ABTS, with significant effect of methanol extract more than that of petroleum ether as illustrated in table 4.

Anter [39] reported that olive leaves were beneficial in cell protecting against the oxidative

Egypt. J. Chem. 66, No. SI 13 (2023)

injury produced by hydrogen peroxide without genotoxication and therefore, they can be utilized to enrich human health. Additionally, it has been established that the chemical structure of the phenolic compounds plays a significant role in their antioxidant properties; therefore, It has been speculated that the great antioxidant and scavenging ability of olive leaves extracts could be related to the abundance of phenolics and flavonoids with high degree of hydroxylation in their skeletons [6], which interact with the free radicals to produce more stable Additionally, Kermanshah [7], products [40]. reported greater antioxidant effects of olive leaves oil than butylated hydroxyl toluene (BHT) due to various sterols and fatty acid composition.

2.2. Anti-diabetic Activity

The in vitro anti-diabetic activity of the petroleum ether and methanol extracts of Egyptian olive leaves was assessed in comparison with acarbose as a standard drug. The study verified that both extracts inhibited α -amylase and α -glucosidase by 36.13 & 26.95% for petroleum ether extract and by 36.57 & 26.54% for methanol extract in a remarkable value when compared with acarbose (inhibition percentage= 67.33 & 54.33%, respectively) as illustrated in table 5. The study's findings coincided with those published by Eidi [41], who examined the antidiabetic influence of alcoholic olive leaves extract in normal and streptozotocininduced diabetic rats for 14 days and proved the significant decrease in serum glucose level. Oleuropoeside is one of the main active constituents that manage this action. According to Gonzalez [42], this compound's hypoglycemic effect may be caused by two different mechanisms; either by stimulation of sugar-induced insulin secretion or by improving the peripheral glucose intake.

2.3. Anti-Alzheimer's Activity

The *in vitro* anti-Alzheimer activity of the petroleum ether and methanol extracts of Egyptian olive leaves was evaluated in comparing with donepezil as a standard drug. The study proved that methanol extract have a significant inhibition of

acetylcholinesterase by 51.88% in a value near to that of donepezil (68.34%) as shown in table 6. The activity may be attributed to the various phenolic and flavonoids constituents which play in a synergism mode [43].

Despite the paucity of studies concerning treatment of Alzheimer disease by olive leaves, a recent record proposed that olive leaves consuming boosts autophagy and recovers proteostasis, which is evident in decreased harmful protein aggregation in Alzheimer disease. As consequently, olive active constituents could be used as useful supplement in the treatment of Alzheimer disease [44].The reduction of neuroinflammation and oxidative stress through NF-B and Nrf2 regulation, respectively, might represent the mechanism driving those beneficial actions [45].

2.4. Anti-arthritic Activity

The anti-arthiritic effect of the petroleum ether and methanol extracts of Egyptian olive leaves was examined in comparison with diclofenac sodium as a standard drug. The investigation proved that both extracts have similar remarkable proteinase denaturation percentage by 34.88% & 34.60%, respectively and proteinase inhibition by 31.31 & 31.03%, respectively as presented in table 7.

The study outcomes are in consistence with that achieved by Rosillo [46] who assessed the antiinflammatory impact of olive oil polyphenolic components in mice with collagen-induced arthritis. Kaneko [47] additionally investigated into how olive leaves extracts affected the reduction of cytokine production, and stated that using olive leaves extract for treatment of inflammation could reduce the release of pro-inflammatory cytokines and the expression of the NF-B p65 protein in human placenta cell cultures. The statistical correlations among the different *in vitro* biological activities of the tested extracts were illustrated in table 8.

	Antioxidant A	Activity	Scavenging Activity		
Tested group	TAC	IRP	DPPH	ABTS (%) 20.47 ± 0.03	
	(mg gallic acid/gm)	(µg/mL)	$(IC_{50} \mu g/ml)$		
Petroleum ether extract	85.97 ± 0.14	50.15 ± 0.08	11.63 ± 0.02		
Methanol extract	256.01 ± 0.60	149.34 ± 0.35	3.91 ± 0.01	60.96 ± 0.14	
Ascorbic Acid (standard)	-	-	$\textbf{3.58} \pm \textbf{0.01}$	41.75 ± 0.10	

Table 4. Antioxidant capacity and scavenging activity of petroleum ether and methanol extracts of Egyptian	1 olive leaves.
--	-----------------

Values were calculated from three replicates and expressed as mean \pm SE.

Table 5. The <i>in vitro</i> anti-diabetic activity of the petroleum ether and methanol extracts of Egyptian olive leaves									
Tested group	Inhibi	tion (%)							
Tested group	α-amylase	α-Glucosidase							
Petroleum ether extract	36.13 ± 0.06	26.95 ± 0.07							
Methanol extract	36.57 ± 0.09	26.54 ± 0.09							
Acarbose (standard)	67.33 ± 0.16	54.33 ± 0.01							

Values were calculated from three replicates and expressed as mean \pm SE.

Table 6. Anti-Alzheimer effect of petroleum ether and methanol extracts of Egyptian olive leaves.

AChE inhibition %
8.86 ± 0.02
51.88 ± 0.12
68.34 ± 0.16

Values were calculated from three replicates and expressed as mean \pm SE.

Table 7. Anti-arthiritic effect of petroleum ether and methanol extracts of Egyptian olive leaves.

	Percentage (%)						
Tested group	Proteinase Denaturation	Inhibition of Proteinase					
Petroleum ether extract	34.88 ± 0.08	31.31 ± 0.08					
Methanol extract	34.60 ± 0.08	31.03 ± 0.08					
Diclofenac Sodium (standard)	$\textbf{45.92} \pm \textbf{0.11}$	43.72 ± 0.11					

Values were calculated from three replicates and expressed as mean \pm SE.

 Table 8: The statistical correlations among the different in vitro biological activities of the tested extracts.

			Phyto-c	onstituents	Antioxida	nt Activity	Scavenging	Activity	ctivity Inhibition (%))	Anti-arthri	tic activity
									Anti-dia	Anti-diabetic Activity Anti-Alzheimer			
			TPC	тст	TAC	IRP	DPPH	ABTS	α-amylase	α-Glucosidase	ACE	Proteinase Denaturation	Inhibition of Proteinase
ţ	ituen	TPC	-	0.000**	0.000**	0.000**	-0.000**	0.000**	0.012*	0.022*	0.001**	0.071	0.070
Phyto-	constituen ts	TCT	0.000**	-	0.000**	0.000**	-0.000**	0.000**	0.012*	0.022*	0.000**	0.071	0.070
xida	1	TAC	0.000**	0.000**	-	0.000**	-0.000**	0.000**	0.012*	0.022*	0.000**	0.071	0.070
Antioxida	nt	IRP	0.000**	0.000**	0.000**	•	-0.000**	0.000**	0.012*	0.022*	0.000**	0.071	0.070
ngin		DPPH	- 0.000**	-0.000**	-0.000**	-0.000**	-	0.000**	0.012*	0.022*	0.000**	0.071	0.070
Scavengin	20	ABTS	0.000**	0.000**	0.000**	0.000**	0.000**	-	0.012*	0.022*	0.000**	0.071	0.070
_	Anti- diabeti c	α-amylase	0.012*	0.012*	0.012*	0.012*	0.012*	0.012*	-	0.209	0.012*	0.373	0.370
%) u	An dial	a-Glucosidase	0.022*	0.022*	0.022*	0.022*	0.022*	0.022*	0.209	-	0.022*	0.001**	0.001**
Inhibition (%)	Anti- Alzheime r	ACE	0.000**	0.000**	0.000**	0.000**	0.000**	0.000**	0.012*	0.022*	-	0.070	0.070
Anti-arthritic		Proteinase Denaturation	0.071	0.071	0.071	0.071	0.071	0.071	0.373	0.001**	0.070	-	0.001**
Anti-a		Inhibition of Proteinase	0.070	0.070	0.070	0.070	0.070	0.070	0.370	0.001**	0.070	0.001**	-

Conclusion

The study verified that Egyptian olive leaves are considered as a promising medicinal plant with antioxidant, anti-diabetic, anti-Alzheimer and antiarthritic. These biological activities could be attributed to the combination of various lipoidal and flavonoidal constituents, encouraging the scientists to use this plant leaves in an economical and accessible means.

Conflict of interest

The authors clarify that they have no conflicts of interest in this research paper.

References

 Abdelrahman, M. H., Hussain, R. O., Shaheed, D. S., AbuKhader, M., & Khan, S. A. Gas chromatography-mass spectrometry analysis and *in vitro* biological studies on fixed oil isolated from the waste pits of two

Egypt. J. Chem. 66, No. SI 13 (2023)

varieties of *Olea europaea* L. *OCL*, 2019, 26(28):1-8.

- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172.
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (*Olea europaea* L.) leaves. Eur. Food Res. Technol. 2016, 243, 89–99.
- Losito, I.; Abbattista, R.; De Ceglie, C.; Castellaneta, A.; Calvano, C.D.; Cataldi, T.R.I. Bioactive Secoiridoids in Italian Extra-Virgin Olive Oils: Impact of Olive Plant Cultivars, Cultivation Regions and Processing. Molecules 2021, 26, 743.
- 5. Esmaeili-Mahani, S., Rezaeezadeh-Roukerd, M., Esmaeilpour, K., Abbasnejad, M., Sheibani, V., ... Rasoulian. В., & Hajializadeh, Z. (2010). Olive (Olea europaea L.) leaf extract elicits antinociceptive potentiates activity, morphine analgesia suppresses and morphine hyperalgesia in rats. Journal of ethnopharmacology, 132(1), 200-205.
- 6. Dekanski, D., et al., Protective effect of olive leaf extract on hippocampal injury induced by transient global cerebral ischemia and reperfusion in Mongolian gerbils. Phytomedicine 2011: 18(13);1137-1143.
- Kermanshah, Z., Samadanifard, H. O. S. E. I. N., Moghaddam, O. M., & Hejrati, A. L. I. R. E. Z. A. (2020). Olive leaf and its various health-benefitting effects: A review study. *Pakistan Journal of Medical & Health Sciences*, 14(2), 1301-1312.
- 8. Singleton, V.L. and Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol.Vitic., 16 (3): 144-158.
- Broadhurst, R.B. and Jones, W.T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 48(3): 788-794.
- 10. Markham, K. R. (1975). Isolation techniques for flavonoids. *The flavonoids*, 1-44.
- Seikel, M. K. (1962). "Chromatographic methods of separation, isolation and identification of flavonoid compounds", In: "The Chemistry of Flavonoid Compounds" Geissman, T. A.; Macmillan Co., New York. p. 34.
- 12. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation

of a phosphomolybdenum complex: specific application to the determination of vitamin E. *Analytical biochemistry*, 269(2), 337-341

- Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japanese Journal of nutrition, 44: 307-315.
- Rahman, M.M.; Islam, M.B.; Biswas, M. and Alam, A.K. (2015). *In vitro* antioxidant and free radical scavenging activity of different parts of *Tabebuia pallida* growing in Bangladesh. BMC Research Notes, 8(1):621-628.
- Arnao, M.B.; Cano, A. and Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem., 73: 239-244.
- Wickramaratne, M.N.; Punchihewa, J. and Wickramaratne, D. (2016). In-vitro alpha amylase inhibitory activity of the leaf extracts of *Adenanthera pavonina*. BMC Complement Altern. Med., 16(1): 466.
- Pistia-Brueggeman, G. and Hollingsworth, R.I. (2001). A preparation and screening strategy for glycosidase inhibitors. Tetrahedron. 57: 8773-8778.
- Ellman, G.L.; Courtney, K.D.; Andres, V.J. and Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7: 88-95.
- 19. Das, S. and Sureshkumar, P. (2016). Effect of methanolic root extract of *Blepharispermum subsessile* DC in controlling arthritic activity. Research Journal of Biotechnology, 11(4): 65-74.
- Oyedapo, O.O. and Famurewa, A.J. (1995). Antiprotease and Membrane Stabilizing Activities of Extracts of Fagara Zanthoxyloides, Olax Subscorpioides and Tetrapleura Tetraptera. Int. J. Pharmacogn., 33(1): 65-69.
- Meera, S.; Ramaiah, N. and Kalidindi, N. (2011). Illustration of anti-rheumatic mechanism of *rheumavedic* capsule. Saudi Pharm. J., 19(4): 279-284.
- 22. Ibrahim, E. H., Abdelgaleel, M. A., Salama, A. A., & Metwalli, S. M. (2016). Chemical and nutritional evaluation of olive leaves and selection the optimum conditions for extraction their phenolic compounds. J. Agric. Res. Kafr. El-Sheikh Univ, 42, 445-459.
- 23. Mohamed MB, Guasmi F, Ali SB, Radhouani F, Faghim J, Triki T, et al. The LC-MS/MS characterization of phenolic compounds in leaves allows classifying

Egypt. J. Chem. 66, No. SI 13 (2023)

olive cultivars grown in south Tunisia. Biochem Syst Ecol, 2018; 78: 84-90.

- Salah, M.B.; Abdelmelek, H. and Abderraba, M. (2012). Study of phenolic composition and biological activities assessment of olive leaves from different varieties grown in Tunisia. Med. Chem., 2 (5): 107-111.
- 25. Awad AB,Downie A, Fink CS and Kim U, Dietary phytosterol inhibits the growth and metastasis of MDA-MB-231 human breast cancer cells grown in SCID mice. *Anticancer Res* 20:821–824 (2000).
- 26. Kritchevsky D and Chen SD, Phytosterols health benefits and potential concerns: a review. *Nutr Res* **25**:413–428 (2005).
- 27. konoz, E., Abbasi, A., Moazeni, R. S., Parastar, H., & Jalali-Heravi, M. (2013). Chemometrics-assisted gas chromatographic-mass spectrometric analysis of volatile components of olive leaf oil. *Journal of the Iranian Chemical Society*, 10, 169-179.
- 28. Da Silva, M. D. G., Freitas, A. M. C., Cabrita, M. J., & Garcia, R. (2012). Olive oil composition: Volatile compounds. *Olive oil-constituents, quality, health properties and bioconversions*, 17-47.
- 29. Grundy SM. 1986. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N Eng J Med 314: 745–748.
- Wang, N., Liu, Y., Ma, Y., & Wen, D. (2018). Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice. The Journal of Nutritional Biochemistry, 57, 180–188.
- 31. Petropoulos, S. A., Fernandes, Â., Tzortzakis, N., Sokovic, M., Ciric, A., Barros, L., & Ferreira, I. C. F. R. (2019). Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean under commercial cultivation flora conditions. Food Research International, 119, 859-868.
- 32. Kabbash, E. M., Ayoub, I. M., Abdel-Shakour, Z. T., & El-Ahmady, S. H. (2019). A phytochemical study on Olea europaea L. Olive leaf extract (cv. Koroneiki) growing in Egypt. Archives of Pharmaceutical Sciences Ain Shams University, 3(1), 99-105.
- Torul, H., Kucukboyaci, N., Tamer, U. Ğ. U. R., & Karasu, Ç. İ. M. E. N. (2020). Evaluation of phenolic compounds and

protective effects of olive (*Olea europaea* L.) leaf extracts on endothelial cells against hydrogen peroxide-induced toxicity. *Journal of Research in Pharmacy*, 24(4).

- 34. Zhang, Y., Wen, M., Zhou, P., Tian, M., Zhou, J., & Zhang, L. (2020). Analysis of chemical composition in Chinese olive leaf tea by UHPLC-DAD-Q-TOF-MS/MS and GC–MS and its lipid-lowering effects on the obese mice induced by high-fat diet. *Food Research International*, 128, 108785.
- Palmeri, R., Siracusa, L., Carrubba, M., Parafati, L., Proetto, I., Pesce, F., & Fallico, B. (2022). Olive leaves, a promising byproduct of olive oil industry: Assessment of metabolic profiles and antioxidant capacity as a function of cultivar and seasonal change. *Agronomy*, 12(9), 2007.
- Sezen Karaoğlan, E., Hancı, H., Koca, M., & Kazaz, C. (2023). Some Bioactivities of Isolated Apigenin-7-O-glucoside and Luteolin-7-O-glucoside. *Applied Sciences*, 13(3), 1503.
- Legault, J., Perron, T., Mshvildadze, V., Girard-Lalancette, K., Perron, S., Laprise, C., Sirois, P. and Pichette, A., 2011. Antioxidant and anti-inflammatory activities of quercetin 7-O-β-D-glucopyranoside from the leaves of *Brasenia schreberi. Journal of Medicinal Food*, *14*(10), pp.1127-1134.
- Al-Taweel AM, Abdel-Kader MS, Fawzy GA, Perveen S, Maher HM, Al-Zoman NZ, Al-Shehri MM, Al-Johar H, Al-Showiman H (2015). Isolation of flavonoids from *Delonix elata* and determination of its rutin content using capillary electrophoresis.*Pakistan journal of pharmaceutical sciences* 28, 1897-1903
- Anter, J.; Bedmar, Z.F.; Pulido, M.V.; Peyras, S.D.; Millán, M.M.; Moraga, A.A.; Serrano, A.M. and Castro, M.D.L. (2011). A pilot study on the DNA-protective, cytotoxic: andapoptosis-inducing properties of olive-leaf extracts. Mutat. Res. 723,165– 170.
- Saija, A. and N. Uccella, Olive biophenols: functional effects on human wellbeing. Trends Food Sc Tech 2000: 11(9-10); 357-363.
- 41. Eidi, A., Eidi, M., & Darzi, R. (2009). Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(3), 347-350.

Egypt. J. Chem. 66, No. SI 13 (2023)

- Gonzalez M, Zarzuelo A, Gamez MJ, Utrilla MP, Jimenez J, Osuna I. 1992. Hypoglycemic activity of olive leaf. Planta Med 58: 513–515.
- 43. Hadrich, F., Chamkha, M., & Sayadi, S. (2022). Protective effect of olive leaves phenolic compounds against neurodegenerative disorders: Promising alternative for Alzheimer and Parkinson diseases modulation. *Food and Chemical Toxicology*, 159, 112752.
- 44. Romero-Márquez, J. M., Forbes-Hernández, T. Y., Navarro-Hortal, M. D., Quirantes-Piné, R., Grosso, G., Giampieri, F., ... & Quiles, J. L. (2023). Molecular Mechanisms of the Protective Effects of Olive Leaf Polyphenols against Alzheimer's Disease. *International Journal of Molecular Sciences*, 24(5), 4353.
- 45. Abdallah, I.M.; Al-Shami, K.M.; Yang, E.; Wang, J.; Guillaume, C.; Kaddoumi, A. Oleuropein-Rich Olive Leaf Extract Attenuates Neuroinflammation in the Alzheimer's Disease Mouse Model. ACS Chem. Neurosci. 2022, 13, 1002–1013.
- Rosillo, M.Á., et al., Anti-inflammatory and joint protective effects of extra-virgin oliveoil polyphenol extract in experimental arthritis. J nut biochem 2014: 25(12); 1275-1281.
- 47. Kaneko, Y., et al., Olive Leaf Extract (*Olea Vita*) Suppresses Inflammatory Cytokine Production and NLRP3 Inflammasomes in Human Placenta. Nutrients 2019: 11(5); 970.