Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Genus *Cestrum* Therapeutic Potential: An Updated Review of its Phytochemica Pharmacological, and Morphological Features

Ibrahim N. Alrabayah^a, Seham S. Elhawary^a, Zeinab A. Kandil^a, Essam M. Abd El-Kadder^b Ahmed F. Essa^c, Mohamed A. El Raey^d CrossMark

^aPharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt. ^bTrees Research Department, Horticulture Research Institute, Agriculture Research Center, Giza 12619, Egypt. ^cChemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt. ^dPhytochemistry and Plant Systematics, National Research Centre, Dokki, Cairo 12622, Egypt.

Abstract

One of the most significant Solanaceae genera is *Cestrum* L. which was perceived as a folk remedy. The genus *Cestrum* is recognized for its ornamental usage in the oldest and newest studies. The genus *Cestrum* has interesting isolated compounds and promising *in-vivo* and *in-vitro* biological activities. A number of unique metabolite structures were verified throughout the species represented as saponins, lignans, and flavonoids. Saponins were mainly steroidal saponins (spirostanol and furostanol), phenolic acids, aldehydes, phenyl propanoids, and alkaloids, in addition to non-polar components, which were determined to a much lesser extent. Those phytoconstituents that were characterized in different parts of the species by applying different solvents are crucial for various biological actions, including anti-microbial, anti-cancer, anti-viral, anti-inflammatory, and insecticidal effects. This work has an updated review of the phytochemical, pharmacological, and morphological characterizations.

Keywords:; Jessamines; Traditional medicine; Saponins; Flavonoids; Anti-microbial; Insecticidal.

1. Introduction

Herbal medicine remains the foundation of basic healthcare for approximately 75–80% of the global population, primarily in developing countries, due to their inability to pay for expensive western drugs and healthcare, as well as the fact that traditional treatments are more acceptable from a cultural and spiritual perspective. The chemical components of herbal remedies or plants are thought to be more compatible with the human body since they are part of the physiological processes of live flora. Natural remedies made from plants have been used for centuries to treat a wide range of illnesses [1, 2]. Recently, there has been an increase in interest in using plant-based natural health supplements for both illness prevention and therapy [3]. Traditional medicine has long relied on medicinal plants to effectively treat disease and preserve health. Therefore, there is a lot of opportunity to explore new approaches to the prevention and treatment of disease using medicinal plants [4, 5].

The genus *Cestrum* is found in northern Mexico and southern Florida and comprises about 250 to 300 species. Due to their aromatic flowers, they are sometimes known as *Cestrums* or jessamines (from "jasmine"). They are shrubs that can reach heights of 1-4 m [6].

Cestrum species are well recognized for their use in traditional medicine, chemistry, pharmacology, and ornamental uses [7]. *C. nocturnum* is used by Chinese traditional medicine to cure swellings and burns [8]. *C. parqui* is used as an anti-pyritic and anti-inflammatory. *C. nocturnum* has previously been

*Corresponding author e-mail: ibrahimrabay3a@gmail.com

Receive Date: 29 May 2023, Revise Date: 22 June 2023, Accept Date: 06 July 2023

DOI: <u>10.21608/EJCHEM.2023.214022.8048</u>

©2024 National Information and Documentation Center (NIDOC)

used as an antiepileptic in Chinese traditional medicine [9]. *C. laevigatum* has been used as sedative dressings for wounds, anti-spasmodics, and diuretics. *C. auriculatum* has been used for the cure of allergies, skin infections, pyrexia, and diarrhea [10].

Taxonomically, Cestrum is a genus of the family Solanaceae that belongs to the Solanales order then to the class Spermatopsida and Tracheophyta Phylum [7]. According to previous studies, the genus Cestrum contains flavonoids, lignans, saponins, phenolics, volatile oils, and alkaloid compounds. The genus has been used in the medical field for pharmacological and ethnopharmacological activities [10]. Recent studies have shown that this genus has promising effects in several areas, the most important of which are anti-microbial [11-13], anti-inflammatory [14, 15], anti-cancer [16-18], insecticidal [19-21], and molluscicidal activities [22]. In this work, we have an updated review of the genus Cetrum since it has gained interest and has promising in-vitro and in-vivo collected and have activities. We updated phytochemical, pharmacological, and morphological characterizations. The aim of this review was to summarize the current state of knowledge regarding the methods and effectiveness of the isolation of active substances from Cestrum L. and their pharmacological activities.

2. Cestrum L. Morphology Characterization

There are several different species of Cestrum, including trees, shrubs, and vines with sympodial, polyaxial, and monochasial branching. The mature plants are deciduous in nature. In the winter, leaves fall off and are quickly replaced by new growth in the spring. This new growth is supported by side branches with presence of a leaf at each node, giving the illusion of an opposing arrangement of uneven leaves on the surface. It might have monochassial or polyaxial branching. Solitary or clustered blooms with five fused sepals and petals distinguish members of this genus. Flowers may also be almost actinomorphic. Fruits are juicy, succulent berries that birds may readily consume and spread through the deposit of faeces. The blooms stand out and are mostly pollinated by insects. Corollas are long and tubular while anthers are short and longitudinally dehiscent. The berries are few-seeded and the ovary

is superior and contained five stamens and two carpels [23].

3. Phytochemical studies

Numerous updated collections of different phytochemical studies from the genus *Cestrum* (Table 1-2)

3.1. Saponin compounds

Saponins are steroid or triterpene glycosides that are found in a wide variety of physiologically active compounds in plants and marine animals [24]. The oldest and most recent studies have shown an interest in these compounds since they have promising invivo and in-vitro activities such as antihypercholesterolemic, anti-inflammatory, antiallergic, cytotoxic, antitumor, and antiviral activities [25].

Fresh leaves of *C. nocturnum* were extracted with methanol to produce a novel steroidal saponin (1) [26]. Diurnoside I (2) has been detected in leaf extract of *C. diurnum* by Ahmad et al [27]. Also, a new monodesmosidic spirostanol glycoside (3) has been isolated from *C. nocturnum* leaves [28]. From *C. sendtenerianum*, Haraguchi and his coworkers have isolated have isolated seven spirostanol sapogenin (4) and saponins (5-10) [29, 30]

A phytochemical study by Mimaki et al. [18] resulted in the isolation of 7 steroidal saponins (11-17) from *C. nocturnum*. Moreover, cesdiurins I–III (18-20) were isolated by Fouad et al; 2008 [31]. As well as compounds 21 and 22 have been detected in *C. hediundinum* [32]. The fruits of *C. ruizteranianum* were extracted with aqueous methanol, and seven spirostane and furostane-type glycosides (23-29) were isolated in the study done by Galarraga et al. [33]. Spirostanol and furostanol steroidal saponins (30-44) have been isolated from *C. laevigatum* [34, 35].

Other 2 spirostanol saponins (45, 46) have been isolated and elucidated from 80% ethanolic extract of the leaves of *C. schlechtendahlii* [36].

In a phytochemical analysis study of a methanolic extract of leaves from *C. parqui*, 4 steroidal saponins **(47-50)** have been detected in the leaf extract of *C. parqui* [37]. In addition, the phytochemical study done by Iguchi et al. [38] resulted in the isolation of 10 steroidal glycosides from *C. newelli* **(51-60)**.

377

Structures of saponin compounds reported in *Cestrum* species are illustrated in **Figure 1**.

3.2. Alkaloid compounds

The different species of *Cestrum* contained alkaloid in considerable amounts as previously mentioned. In *C. diurnm* and *C. nocturnum* leaf extract, 4 alkaloids (**61-64**) have been reported by Halim et al. [39]. Also, 1-carbamoylpyrrolidin-2 -one (**65**) has been detected in *C. nocturnum* [40]. Moreover, solanidine and solasodine (**66**, **67**) have been isolated from *C. purpureum* [10]. cestrumines A and B (**68**, **69**) have been identified in *C. hediundinum* [**32**]. Structures of alkaloids reported in *Cestrum* species are illustrated in **Figure. 2**

3.3. Flavonoid and their glycosides

As presented in **Table 1** and **Figure 3**, methoxylated (70, 71) and non-methoxylated (72- 77) flavonol glycosides have been isolated from *C*. *nocturnum* and *C*. *hediundinum* [13, 15, 29].

3.4. Lignan compounds

Lignans are extensively dispersed across the plant world and have a long history as natural products [41]. Fiorentino and his coworkers have isolated 18 lignan compounds (78-95) from *C. parqui* [42]. Additionally, seven glycosides (96-102) have been isolated from the methanolic leaf extract of *C. diurnum* [43]. The structures of lignan compounds reported in *Cestrum* species are illustrated in **Figure 4.**

3.5. Miscellanous phenolic compounds

Phenolic compounds detected in *Cestrum* species have a wide variety of structures and functional characteristics [44]. According to previous studies, phenolic compounds acids, aldehydes, have a variety of promising activities, including anti-ageing, antiinflammatory, antioxidant, and anti-proliferative agents [45]. **Table 1** and **Figure 5** describe 16 phenolic compounds (103-118) isolated from *C. parqui* [46].

3.6. Volatile oil, fixed oil and fatty acid compounds

The production of essential oils is considered as one of the most important characteristics of different species of *Cestrum* [12]. **Table 2** describes the volatile constituents present in *Cestrum*.

3.7. Vitamin $D_{3.}$

Day jasmine, or *C. diurnum* contains a calcinogenic glycoside known as 1, 25-dihydroxycholecalciferol or 1, 25-dihydroxyvitamin D3 [10].

Table 1: Phytochemical constituents of several Cestrum species

No.	Compounds name	Species	Ref.	
	Saponins	_		
1	Nocturnoside A	C. nocturnum	[26]	
2	Diurnoside I	C. diurnum	[27]	
3	Nocturnoside B	C. nocturnum	[28]	
4	spirosta-5,25 (27)-diene-1 β , 2 α , 3 β , 12 β -tetrol	C. sendtenerianum	[29]	
5	1β, 2α, 12β-trihydroxyspirosta-5, 25 (27)-diene-3β-yl O- β- D- galactopyranoside	C. sendtenerianum	[29]	
6	spirosta-5,25(27)-dien-1 β ,2 α ,3 β triol 3-O- α - L-rhamnopyranosyl -(1 \rightarrow 2)- β - D-galactopyranoside	C. sendtenerianum	[30]	
7	(25 <i>R</i>)-spirost-5-en-1 β ,2 α ,3 β -triol 3-O- α -L-rhamnopyranosyl- (1 \rightarrow 2)- β - D-galactopyranoside	C. sendtenerianum	[30]	
8	5α-spirost-25(27)-en-1β,2α,3β-triol 3-O-α-L-rhamnopyranosyl- (1→2)-β- D-galactopyranoside	C. sendtenerianum	[30]	

I. N. Alrabayah et.al.

9	$(25R)$ - 5α -spirostan- 1β , 2α , 3β -triol 3-O- α -L -rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-galactopyranoside	C. sendtenerianum	[30]
10	spirosta-5,25(27)-dien-1 β ,2 α ,3 β -triol 3-O- α -L-rhamnopyranosyl- (1 \rightarrow 2)-O-[β -D-glucopyranosyl-(1 \rightarrow 4)]- β - D-galactopyranoside	C. sendtenerianum	[30]
11	(1.92) (1.92) β glucopytanosyl (1.91) β β glucopytanoside (25 <i>R</i>)-spirost-5-en-2 <i>a</i> ,3 β -diol 3-O- β - D-glucopyranosyl-(1 \rightarrow 2)- O- [β - D-xylopyranosyl-(1 \rightarrow 3)]-O- β - D-glucopyranosyl- (1 \rightarrow 4)- β -D-galactopyranosid	C. nocturnum	[18]
12	$(25R)$ -spirost-5-en- $2\alpha_{,3}\beta_{,1}$ 17α -triol 3-O- β -D-glucopyranosyl- $(1\rightarrow 2)$ -O- $[\beta$ -D-xylopyranosyl- $(1\rightarrow 3)$] -O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranosid	C. nocturnum	[18]
13	(25 <i>R</i>)-spirost-5-en- 2α , 3β -diol 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- O- β -D-glucopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3)]- O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranosyl-(1 \rightarrow 3)]-	C. nocturnum	[18]
14	$(25R)$ -spirost-5-en-2 α ,3 β ,15-triol 3-O- β -D-glucopyranosyl- $(1\rightarrow 3)$ -O- β -D-glucopyranosyl- $(1\rightarrow 2)$ -O- [β - D -xylopyranosyl- $(1\rightarrow 3)$]-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside	C. nocturnum	[18]
15	(25 <i>R</i>)-spirost-5-en- 2α , 3β , 17α -triol 3-O- β -D- glucopyranosyl- (1 \rightarrow 3)-O- β -D-glucopyranosyl-(1 \rightarrow 2)-O- [β - D -xylopyranosyl- (1 \rightarrow 3)]-O- β - D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside	C. nocturnum	[18]
16	(25 <i>R</i>)-spirost-5-en-3 β -ol 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-O- [O- α -L-rhamnopyranosyl-(1 \rightarrow 4))- α -L- rhamnopyranosyl- (1 \rightarrow 4)]- β -D-glucopyranoside	C. nocturnum	[18]
17	(25 <i>R</i>)-spirost-5-en-2 α ,3 β -diol 3-O- α - L-rhamnopyranosyl- (1 \rightarrow 2)-O- [O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- α - L- rhamnopyranosyl-(1 \rightarrow 4)]- β - D-glucopyranoside	C. nocturnum	[18]
18	Cesdiurin I	C diurnum	[31]
19	Cesdiurin II	C. diurnum	[31]
20	Cesdiurin III	C. diurnum	[31]
21	Cestruside A	C. hediundinum	[32]
22	Cestruside B	C. hediundinum	[32]
23	Pennogenin 3-O- β -chacotrioside	C. ruizteranianum	[33]
24	$(25R, 26R)$ -spirost-5-ene-3 β , 17 α .26 -triol 3-O- β -chacotrioside	C. ruizteranianum	[33]
25	Methyl protodioscin	C. ruizteranianum	[33]
26	Protodioscin	C. ruizteranianum	[33]
27	26-O- β -D-glucopyranosyl-(25 <i>R</i>)-furost-5-ene-3 β ,17 α ,22,26-tetrol 3- O- β -chacotrioside.	C. ruizteranianum	[33]
28	26-O-β-D-glucopyranosyl-22- methoxy-(25 <i>R</i>)-furost-5-ene- 3 β ,26-diol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- α -L- rhamnopyranosyl-(1 \rightarrow 4)-[α -L -rhamnopyranosyl-(1 \rightarrow 2)]- β -D-	C. ruizteranianum	[33]
	gluconvranoside		
29	$26-O-\beta - D$ -glucopyranosyl-(25 <i>R</i>)-furost-5-ene-3 <i>B</i> .22.26-triol-	C. ruizteranianum	[33]
	3-O- α -Lrhamnopyranosyl- $(1\rightarrow 4)$ - α -L rhamnopyranosyl- $(1\rightarrow 4)$ - [α -Lrhamnopyranosyl- $(1\rightarrow 2)$]- β -D -glucopyranoside		[]
30	(25 <i>R</i>)-spirost-5-ene- 3β , 26β -diol 3-O- α - L -rhamnopyranosyl- (1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 4)-[(1 \rightarrow 2)- α -L- rhamnopyranosyl]- β - D -glucopyranoside	C. laevigatum	[33]
31	(25 <i>R</i>)-spirost-6- ene- 3β , 5β -diol 3-O- α - <i>L</i> -rhamnopyranosyl-(1 \rightarrow 4)- α - L-rhamnopyranosyl-(1 \rightarrow 4)-[(1 \rightarrow 2)- α -L- rhamnopyranosyl]- β -D-glucopyranosid	C. laevigatum	[35]
32	Chonglouoside SL-5	C. laevigatum	[35]

Egypt. J. Chem. 67, No 1. (2024)

378

33	Formosanin C	C. laevigatum	[35]
34	Diosgenin O- α - L-rhamnopyranosyl- $(1 \rightarrow 4)$ - α -L-	C. laevigatum	[35]
	rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosid		
35	26-O-β- D -Glucopyranosyl-(25 S)-5α-furost-20-	C. laevigatum	[34]
	ene, 2α , 3β -diol 3-O- β -D-galactopyranoside		
36	26-O- β -D-Glucopyranosyl-(25 <i>R</i>)-5 α -furost-20-	C. laevigatum	[34]
	ene, 2α , 3β -diol 3-O- β -D-galactopyranoside		
37	26-O-β- D-Glucopyranosyl-(25 S)-5α-furost-20-ene,2α,3β-diol	C. laevigatum	[34]
	3-O- β -D galactopyranosyl-(1 \rightarrow 4)- β -D -galactopyranoside		
38	26-O- β -D-Glucopyranosyl-(25 <i>R</i>)-5 α -furost-20-ene, 2 α , 3 β -diol 3-	C. laevigatum	[34]
	O- β -D galactopyranosyl-(1 \rightarrow 4)- β - D- galactopyranoside		
39	$(25 S)$ -5 α -spirostan-2 α ,3 β -diol-3-O- β - D- galactopyranoside	C. laevigatum	[34]
40	$(25 R)$ - 5α -spirostan- 2α , 3β -diol- 3 -O- β - D-galactopyranoside	C. laevigatum	[34]
41	$(25 S)-5\alpha$ -Spirostan- 2α . 3β -diol 3 -O- β - D- glucopyranosyl-	C. laevigatum	[34]
	$(1 \rightarrow 2)$ -a-L-rhampopyranosyl- $(1 \rightarrow 4)$ - β -D -galactopyranoside	0	
42	(25 R)-5q-Spirostan-2q 3R-diol 3-O-B- D-glucopyranosyl-	C. laevigatum	[34]
	$(1 \rightarrow 2)$ - <i>q</i> -L-rhamnonyranosyl- $(1 \rightarrow 4)$ - <i>β</i> -D-galactonyranoside		L- 1
43	$(1 \rightarrow 2)$ w E mannopyranosyr $(1 \rightarrow 1)$ p E galactopyranosyle (25 S)-5a-Spirostan-2a 3B-diol 3-O-B- D-glucopyranosyl-	C. laevigatum	[34]
	$(1 \rightarrow 4)$ - <i>B</i> -D galactonyranosyl - $(1 \rightarrow 4)$ - <i>B</i> -D galactonyranoside	er nie rigennin	[0.]
44	$(1^{-}, +)^{-}D^{-}$ galactopyranosyl $(1^{-}, +)^{-}D^{-}$ galactopyranosyl $(25^{-}R)^{-}$ 5g Spirostan 2g 3g dial 3 0 g D glucopyranosyl	C laevioatum	[34]
	$(1 A) \ \beta \ D$ galactenyranosyl $(1 A) \ \beta \ D$ galactenyranosyl	e. luc vigulum	[31]
45	$(1 \rightarrow 4)$ -p-D galactopyranoside (25 R)-5q-spirostan-18 2q 3R-triol 3-O-R-D-galactopyranoside	C schlachtandahlii	[34]
46	(25 R)-5 <i>a</i> -spirostan-1 <i>b</i> 2 <i>a</i> 3 <i>b</i> -triol 3-O- <i>a</i> -L-rhamnonyranosyl-	C. schlechtendahlii	[34]
10	$(1 \rightarrow 2) - \beta - D$ -galactonyranoside	e. senteententaantit	[3,1]
47	Parquispiroside	C. paraui	[37]
48	Parquifuroside	C. parqui	[37]
49	Capsicoside D	C. parqui	[37]
50	22-OMe-capsicoside D	C. parqui	[37]
51	$(24S,25S)$ -spirost-5-en- 2α , 3β , 12β ,24-tetrol 3-O- β -D-	C. newelli	[38]
	glucopyranosyl- $(1\rightarrow 4)$ - β -D-galactopyranoside		
52	(24S)-spirosta-5,25(27)-dien- 2α , 3β , 12β ,24-tetrol 3-O- β -	C. newelli	[38]
	Dglucopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranoside	~	50.07
53	spirosta-5,25(27)-dien- 2α , 3β -diol 3-O- β -D-glucopyranosyl-	C. newelli	[38]
54	$(1 \rightarrow 4)$ - β -Dgalactopyranoside	C	[20]
54	$26 - [(\beta - D-glucopyranosyl)oxy] - 2\alpha - hydroxy - 22\alpha - 1$	C. newelli	[20]
	metnoxyturosta-5,25(27)-dien-3 β -yi-O- β -D-glucopyranosyi-		
55	$(1 \rightarrow 4)$ -p-D-galactopyralloside	C nowelli	[38]
55	$20 - [(\beta - D - glucopyranosyl)(0Xy] - 2\alpha - llydroxy - 22\alpha - mothoxyl furgets 5 25(27) dian 3 \beta vl O g L rhampopyranosyl$	C. <i>newetti</i>	[30]
	$(1 \rightarrow 2) \cdot O \cdot [a - L - rhamnopyranosyl-$		
	$(1 \rightarrow 2)$ -O-[u-L-mannopyranosyl- $(1 \rightarrow 4)$]- <i>B</i> - D-gluconvranoside		
56	(1 + 1) p D glucopyranosul 26. $[(\beta_1 - D_2 - \beta_1) - \beta_2 $	C. newelli	[38]
00	$5 20(22) 25(27)$ -trien-3 <i>R</i> -vlO- <i>R</i> -D-gluconvranosvl-(1 \rightarrow 4)- <i>R</i> -D-	et nerretur	[00]
	s,20(22),25(27)-titeit-5p-yt0-p-D-giucopyranosyi-(1→4)-p-D- galactonyranoside		
57	26- [(B- D-glucopyranosy])oxy]-2a-hydroxyfurosta-	C. newelli	[38]
01	$5 20(22) 25(27)$ -trien-38-vlO-q-L-thampopyranosvl- $(1 \rightarrow 2)$ -O-	0. 1101/0111	[20]
	$[\alpha_{-1}]$ rhamponyranosyl $(1 \rightarrow 4)$ [β_{-1}] gluconyranoside		
58	$[\alpha-1-1]$ $[\alpha-1$	C nowelli	[38]
50	$(220)^{-20} - [(p^{-}D^{-}g)(copy)anosyl(0xy]^{-22-nyu(0xycholest-3-ell-3\beta_v)] - O_{a} - [(p^{-}D^{-}g)(copy)] - O_{a} - [(p^{-}D^{-}g)(copy)] - O_{a} - [(p^{-}D^{-}g)(copy)] - O_{a} - O_{$	0. newelli	[30]
	$(1 \rightarrow 4)$]- β -Doluconvranoside		
59	$(228,25R)$ -26-[(β -D-glucopyranosyl) oxyl-22-hydroxycholest-5-	C. newelli	[38]
	(L 1

60	en- 3β -y-O- α L-rhamnopyranosyl- $(1\rightarrow 2)$ -O- $[\alpha$ -L- rhamnopyranosyl- $(1\rightarrow 4)$]- β - D-glucopyranoside $(22S,25R)$ - 26β - D-glucopyranosyl) oxy]-16,22- dihydroxycholest-5-en- 3β -ylO- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -O- $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 4)$]- β -D glucopyranoside	C. newelli	[38]	
	Alkaloids			
61	Nicotine	C. nocturnum,	[39]	
		C. diurnum		
62	Nornicotine	C. nocturnum, C. diurnum	[39]	
63	Cotinine	C. nocturnum, C. diurnum	[39]	
64	Myosmine	C. nocturnum, C. diurnum	[39]	
65	1-Carbamoyl pyrrolidin-2-one	C. nocturnum	[39]	
66	Solanidine	C. purpureum	[10]	
67	Solasodine	C. purpureum	[10]	
68	Cestrumine A	C. hediundinum	[32]	
69	Cestrumine B	C. hediundinum	[32]	
	Flavonoids			
70	4',5-dihydroxy-7-methoxyflavonol 3-O- [6-O-(E)-3,5- dimethoxy-4-hydroxycinnamoyl- β -D-glucopyranosyl] -(1 \rightarrow 2)- O-[α -L-rhamnopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside	C. nocturnum	[18]	
71	4',5- dihydroxy-7-methoxyflavonol 3-O-β-D-xylopyranosyl- (1 \rightarrow 2)-O-[α -L-rhamnopyranosyl-(1 \rightarrow 6)]-β-D-glucopyranoside	C. nocturnum	[18]	
72	Nicotiflorin	C. hediundinum	[32]	
73	Rutin	C. hediundinum	[32]	
74	Kaempferol	C. nocturnum	[16]	
75	Kaempferol 3-O- α -rhamnoside	C. nocturnum	[16]	
76	Kaempferol 3-O- β -glucoside-7-O- α -rhamnoside	C. nocturnum	[16]	
77	Kaempferol 3,7-di-O-α-rhamnoside	C. nocturnum	[16]	
=0	Lignans		[40]	
78	(+)-pinoresinol	C. parqui	[42]	
89 00	(+)-mediaresinol	C. parqui C. parqui	[42]	
0U 01	(+)-synnigatesinon Suringeresinol 4 Ω β D gluconvergeside	C. parqui C. parqui	[42]	
01 07	()) laricizesinol	C. parqui	[42]	
02 83	(+) Justiciresinol	C. parqui	[42]	
84	5'-methoxylaricitesinol	C. parqui	[42]	
85	(-)-herchemol	C. parqui C. parqui	[42]	
86	Cis-dehydrodiconiferyl alcohol	C. parqui	[42]	
87	Trans-dehydrodiconiferyl alcohol	C. parqui	[42]	
88	(-)-simulanol	C. paraui	[42]	
89	Cis- herpetotriol	C. paraui	[42]	
90	Trans- herpetotriol	C. parqui	[42]	
91	Dimethyl (7'E)-3,3'-dimethoxy-4,4'-oxyneolign-7'-ene-9,9'- dioate	C. parqui	[42]	
92	9'-nor-3',4,4'-trihydroxy-3,5-dimethoxylign-7-eno-9,7'-lactone	C. parqui	[42]	
93	<i>threo</i> -4',4",7",9"-tetrahydroxy-3,3',3",5'-tetramethoxy-4,8"-oxy- 7,9':7',9-diepoxylignan	C. parqui	[42]	

94	<i>erythro</i> -4',4",7",9"-tetrahydroxy-3,3',3",5'-tetramethoxy-4,8"-	C. parqui	[42]
95	erythro-4',4",7",9"-tetrahydroxy-3,5,3',3",5'-pentamethoxy-4,8"-	C. parqui	[42]
	oxy-7,9':7',9-diepoxylignan		
96	Cestrumoside.	C. diurnum	[43]
97	Berchemol-4'-O- β -glucopyranoside.	C. diurnum	[43]
98	Liriodendrin	C. diurnum	[43]
99	Dehydrodiconiferyl alcohol-4-O- β -glucopyranoside.	C. diurnum	[43]
100	(–)-Lyoniresinol 3a-O- β -glucopyranoside.	C. diurnum	[43]
101	(+)-Lyoniresinol 3a-O- β -glucopyranoside.	C. diurnum	[43]
102	Citroside B	C. diurnum	[43]
103	4-hydroxyDefizatenyde	C. paraui	[46]
104	3.5-Dimethoxybenzaldehyde	C. paraui	[46]
105	4-hvdroxybenzoic acid	C. paraui	[46]
106	methyl 4-hydroxybenzoate	C. parqui	[46]
107	Vanillic acid	C. parqui	[46]
108	Syringic acid	C. parqui	[46]
109	Methyl vanillate	C. parqui	[46]
110	Methyl syringate	C. parqui	[46]
111	Tirosol	C. parqui	[46]
112	3',5'-dimethoxy-4'-hydroxy-	C. parqui	[46]
	(2-hydroxy) acetophenone	* *	
113	<i>p</i> -coumaric acid	C. parqui	[46]
114	Caffeic acid	C. parqui	[46]
115	methyl ester caffeic acid	C. parqui	[46]
116	methyl ferulate	C. parqui	[46]
117	N-(p-carboxymethylphenyl)-p-hydroxybenzamide	C. parqui	[46]
118	Rosmarinic acid	C. parqui	[46]

 Table 2: Volatile constituents of different Cestrum species

No.	Compunds name	Species	Ref.
1	Linalool	C. nocturnum	[47]
2	Benzaldehyde	C. nocturnum	[47]
3	benzyl alcohol	C. nocturnum	[47]
4	phenylacetaldehyde	C. nocturnum	[47]
5	cis-jasmone	C. nocturnum	[47]
6	benzyl acetate	C. nocturnum	[47]
7	methyl jasmonate	C. nocturnum	[47]
8	palmitic acid	C. diurnum	[13]
9	stearic acid	C. diurnum	[13]
10	oleic acid	C. diurnum	[13]
11	trans-2-Hexenal	C. diurnum	[10]
		C. nocturnum	
12	cis-3-hexenyl acetate	C. diurnum	[10]
	-	C. nocturnum	
13	cis-3-hexenol	C. diurnum	[10]
		C. nocturnum	
14	trans-2-hexenol	C. diurnum	[10]
		C. nocturnum	
15	L-arabinitol	C. nocturnum	[48]
16	trans-Z-α-bisabolene epoxide	C. nocturnum	[48]

I. N. Alrabayah et.al.

17	isoeugenol	C. nocturnum	[48]
18	tetradecynoic acid	C. nocturnum	[48]
19	D-mannitol	C. nocturnum	[48]
20	Methoxyeugenol	C. nocturnum	[48]
21	heneicosane	C. nocturnum	[48]
22	Phytol	C. diurnum	[49]
23	Octadecyl acetate	C. diurnum	[49]
24	Tricosane	C. diurnum	[49]
\mathbf{R}_1 \mathbf{R}_2			

 K1
 K2

 18
 H
 S1

 54
 OH
 S1

 55
 OH
 S2

2

	\mathbf{r}_1	K ₂	К3	\mathbf{K}_4	
5	OH	Н	Н	Н	$\Delta^{5,25(27)}$
6	Н	Н	Rha	Н	$\Delta^{5,25(27)}$
7	Н	Н	Rha	Н	Δ^5
8	Н	Н	Rha	Н	$\Delta^{5, 25(27)}$
9	Н	Н	Rha	Н	
10	Н	Н	Rha	β -D-Glc	$\Delta^{5, 25(27)}$
21	OH	Н	Rha	Н	$\Delta^{25(27)}$
22	OH	Н	Rha	Н	$\Delta^{5,25(27)}$
45	Н	OH	Н	Н	
46	Н	OH	Rha	Н	

Figure 1: Structure of saponins reported in *Cestrum* species.

Figure 2: Structure of alkaloids reported in *Cestrum* species.

Figure 4: Structure of lignans reported in *Cestrum* species.

. 101 387

118

Figure 5: Structure of other phenolic compounds reported in *Cestrum* species.

Pharamacological activities

Genus *cestrum* has showed promising pharmacological activities such as analgesic, antiinflammatory [50] and anti-diabetic [51]. The saponin content of the *Cestrum* L. species may be connected to several important biological activities., whether it is the saponin rich fraction or the pure separated components [52] (**Table 3**)

4.1. Anti-microbial activity

A methanolic extract of *C. nocturnum* has antimicrobial activity against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Candida albicans*, and *Aspergillus niger*. On the other hand, the n-butanol extract showed stronger activity against the previous organisms. In addition, the water and *n*butanol extracts of the leaves of *C. elegans* revealed noticeable anti-microbial activity against the same strains [11].

Different fractions (*n*-hexane, chloroform, ethyl acetate, methanol, and essential oil) of the flowers of *C. nocturnum* have been tested on eleven foodborne pathogenic bacteria and showed antibacterial activity against. The oil had a strong inhibitory activity against *S. aureus*, *Listeria monocytogenes*, *Bacillus subtilis*, *Salmonella typhimurium*, and *Escherichia coli* with inhibition zones that ranged in diameter from 9.8-18.2 mm. When compared to the conventional antibiotic streptomycin, methanol extract had the highest antibacterial efficacy against

S. aureus, *L. monocytogenes*, and *B. subtilis*, with corresponding width zones of inhibition of 18.1, 18.4, and 17.0 mm [12].

Screening the antimicrobial activity of the essential oil of *C. diurnum* leaves against pathogenic strains of G+ve (*S. aureus* and *B. subtilis*) and G-ve (*E. coli* and *P. aeruginosa*) bacteria were conducted and showed strong *in-vitro* effects against *P. aeruginosa* and *S. aureus* [13].

4.1. Anti-inflammatory activity

C. diurnum n-hexane and methanol extracts contain ursolic acid, a pentacyclic triterpenoid with anti-inflammatory properties. It works as an immunomodulator by decreasing THelper-1 (T-h1) cytokines such as IL-1, IFN-, and TNF- (pro-inflammatory cytokines) and raising THelper-2 (T-h2) cytokines (anti-inflammatory agents), explaining its usage in arthritis [53].

Additionally, the *C. parqui* methanol: water (1:1) extract of the aerial parts revealed significant inhibition of the carrageenan-induced rat paw oedema [14].

4.3. Anticancer activity

The aerial parts of *C. nocturnum* were successively extracted with chloroform, ethyl acetate, and water then screened against MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer, HCT-15 (colon carcinoma), HeLa (cervical carcinoma), and HepG2 (hepatocellular carcinoma) cell lines. The chloroform fraction demonstrated the maximum cytotoxicity against NCI-H460, HCT-15, and HepG2 cell lines. On the other hand, the ethyl acetate fraction showed the greatest cytotoxicity against cervical cancer cell lines [16].

The methanol extract of *C. diurnum* L. has been evaluated for cytotoxic activity using the brine shrimp lethality bioassay. The extract had LC_{50} values of 0.074 g/ml and LC_{90} values of 4.85 g/ml after 2 hours, and all shrimp died after 4 hours at the same dose [17].

The isolated compounds from *C. nocturnum* were investigated for their cytotoxic effects on normal human gingival fibroblasts and HSC-2 oral squamous cell carcinoma. Saponins showed remarkable activity against HSC-2 cells (human oral squamous cell carcinoma) but were weakly

active against normal human gingival fibroblasts [18].

4.4. Insecticidal activity

C. nocturnum water and ethanol extracts of the leaves have been tested against *Tribolium confusum* and *Tribolium castaneum*. The alcoholic extract has much higher insecticidal efficacy against *Tribolium* sp [19].

C. parqui has been demonstrated to have substantial toxicity to neonate larvae, reducing population growth at concentrations over 0.6%. the aqueous extract reduces the reproductive capacity of adults, signaling a major impact on progeny [20].

The different fractions of *C. diurnum* have been assayed for biocontrol of the larval form of *Anopheles stephensi*. The chloroform: methanol (1:1 in v/v) extract had the greatest effectiveness as a biocontrol agent against the larval stages [21].

4.5. Anti-viral

The isolated compounds of C. elegans, including saponins and flavonoids, were evaluated against the Hepatitis A virus. One of the isolated steroidal saponin and flavonoid showed the highest antiviral activities with 34.3% and 25% antiviral activity, respectively. Mechanistically, the compounds interfered with the virus envelope glycoproteins, blocking the binding and fusion processes during virus-cell contacts, which is how the virus spreads [54]. The essential oil extracted from C. diurnum by different methods, including steam distillation, hydrodistillation, and microwave-assisted hydrodistillation, were assayed against HCoV-229E. The steam distillation extracted EO showed a promising antiviral activity with IC₅₀ of 10.93 µg/mL, whereas, the other oil samples showed a moderate activity with IC₅₀ values of 119.9 and 148.2 µg/mL, respectively [49]. And Alrabayah et al; 2022 have tested alcoholic leaf extract and zinc oxide nanoparticles and found promising anti-viral activities against HCoV-229E with IC₅₀ of 61.15 µg/mL, 7.01 µg/mL and 2.41 µg/mL for combinations. [55]

Species	Tested sample	Reference					
	Anti-microbial activity						
C. nocturnum	Methanolic extract and <i>n</i> -butanol extract of the leaves	[8]					
C. nocturnum	<i>n</i> -Hexane, chloroform, ethyl acetate, methanol, and essential oil of the flower.	[9]					
C. diurnum	Essential oil of leaves extracted using hydro- distillation.	[10]					
	Anti-inflammatory activity						
C. diurnum	<i>n</i> -Hexane and methanol of the leaves	[50]					
C. parqui	methanol: water (1:1) of the aerial parts	[11]					
	Anticancer activity						
C. nocturnum	Chloroform and ethyl acetate fractions from 80 % methanol extract of the aerial parts	[13]					
C. diurnum	Methanol extract of the aerial parts	[14]					
C. nocturnum	Flavonol glycosides and saponins	[15]					
Insecticidal activity							
C. nocturnum	Water and ethanol extract of the leaves	[16]					
C. parqui	<i>n</i> -Hexane, acetone, methanol/water (80:20), and aqueous extracts of the leaves.	[17]					
C. diurnum	Pet. ether, hexane, ethyl acetate, (1:1 in v/v) CHCl _{3:} methanol, acetone and absolute alcohol extract of the leaves	[18]					
	Anti-viral						
C. elegans	Dried flowers 85% MeOH	[51]					
C. diurnum	Essential oil	[52]					

Table 3: Pharmacological activities of different Cestrum species

4. Conclusion

The phytochemical, pharmacological, and morphological information on the genus *Cestrum* is reviewed and collected. A review of the literature confirms the presence of volatile oils, lignans, phenols, and steroidal saponins as well as alkaloids. In the near future, we hope to see more and more progress in studies on this genus because of its

5. References

pharmacological activities.

1. Partap S, Kumar A, Sharma NK, Jha K: Luffa Cylindrica: An important medicinal plant. Journal of Natural Product and Plant Resources 2012, 2(1):127-134.

and

promising isolated chemical compounds

Receive Date: 29 May 2023, Revise Date: 22 June 2023, Accept Date: 06 July 2023 DOI: <u>10.21608/EJCHEM.2023.214022.8048</u>

^{*}Corresponding author e-mail: ibrahimrabay3a@gmail.com

^{©2024} National Information and Documentation Center (NIDOC)

- Maroyi A: Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. Journal of ethnobiology and ethnomedicine 2013, 9(1):1-18.
- Gad, M.; Hassouna, H.Z.; Mahmoud, K.; Abd-Rabou, A.A.; Abdel-Azeem, A.S.; Hegazy, A.M.; Abdel-Lattife, M.S.; Abdel-Rahim, E.A.; Ahmed, F.A.; Shim, J.-H.; Zaky, A.A. *In Vitro* Anti-Colorectal Cancer and Anti-Microbial Effects of *Pinus roxburghii* and *Nauplius graveolens* Extracts Modulated by Apoptotic Gene Expression. Separations 2022, 9, 393.
- Gad, M.; Hassouna, H.Z.; Mahmoud, K.; Abd-Rabou, A.A.; Abdel-Azeem, A.S.; Hegazy, A.M.; Abdel-Lattife, M.S.; Ahmed, F.A.; Oz, F.; Proestos, C.; Zaky, A.A. *Pinus roxburghii* and *Nauplius graveolens* Extracts Elevate Apoptotic Gene Markers in C26 Colon Carcinoma Cells Induced in a BALB/c Mouse Model. Separations2022, 9, 277.
- Gad, M.; Hassouna, H.Z.; Mahmoud, K.; Abd-Rabou, A.A.; Abdel-Azeem, A.S.; Hegazy, A.H.; Adel-Lattife, M.S.; Ahmed, F.A. Preliminary study on the toxicological impacts of *P. roxburghii* and *N. graveolens* extracts on albino mice. Egypt. J. Chem. 2021, 64, 3489–3498.
- Suresh P, Poornima K, Kalaiarasan P, Sivakumar M, Subramanian S: Occurrence of barley root knot nematode, Meloidogyne naasi in orange jessamine (*Cestrum aurantiacum* L.) in Nilgiris, Tamil Nadu, India: A new record. Journal of Entomology and Zoology Studies 2017, 5(6):629-634.
- Montero-Castro JC, Delgado-Salinas A, De Luna E, Eguiarte LE: Phylogenetic analysis of *Cestrum* section Habrothamnus (Solanaceae) based on plastid and nuclear DNA sequences. Systematic Botany 2006, 31(4):843-850.
- Shaista A, Amrita P: Delicate, fragrant, lady of the night—a medicinal gift. Journal of Medicinal plants studies 2016, 4(6):13-17.
- Patil CD, Patil SV, Salunke BK, Salunkhe RB: Bioefficacy of *Plumbago zeylanica* (Plumbaginaceae) and *Cestrum nocturnum* (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia

reticulata. Parasitology research 2011, 108:1253-1263.

- Begum AS, Goyal M: Phcog Mag.: Review Article Research and Medicinal Potential of the genus *Cestrum* (Solanaceae)–A Review. Pharmacognosy Reviews 2007, 1(2).
- 11. Nasr SM, Ghareeb MA, Mohamed MA, Elwan NM, Abdel-Aziz AE-WA, Abdel-Aziz MS: High-Performance Liquid Chromatography-Fingerprint Analyses, *In vitro* Cytotoxicity, Antimicrobial and Antioxidant Activities of the Extracts of Two *Cestrum* Species Growing in Egypt. Pharmacognosy Research 2018, 10(2).
- Al-Reza SM, Rahman A, Kang SC: Chemical composition and inhibitory effect of essential oil and organic extracts of *Cestrum nocturnum* L. on food-borne pathogens. International journal of food science & technology 2009, 44(6):1176-1182.
- Bhattacharjee I, Ghosh A, Chandra G: Antimicrobial activity of the essential oil of *Cestrum diurnum* (L.)(Solanales: Solanaceae). African Journal of Biotechnology 2005, 4(4):371-374.
- 14. Shehnaz D, Hamid F, Baqai FT, Uddin Ahmad V: Effect of the crude extract of *Cestrum parqui* on carrageenin-induced rat paw oedema and aggregation of human blood platelets. Phytotherapy Research 1999, 13(5):445-447.
- Khatun A, Rahman M, Nesa L, Looi CY, Wong WF, Hazni H, bin Mahdzir MA, Uddin SJ, Awang K, Shilpi JA: Anti-inflammatory and NFkB inhibitory activity of aerial parts of *Cestrum diurnum*. 2020.
- 16. Rashed KN, Ćirić A, Glamočlija J, Calhelha RC, Ferreira IC, Soković M: Identification of the bioactive constituents and the antibacterial, antifungal and cytotoxic activities of different fractions from *Cestrum nocturnum* L. 2018.
- Khatun A, Chowdhury UK, Jahan A, Rahman M: Cytotoxic and thrombolytic activity of the aerial part of *Cestrum diurnum* L.(Solanaceae). PharmacolOnline 2014, 1:109-113.
- Mimaki Y, Watanabe K, Ando Y, Sakuma C, Sashida Y, Furuya S, Sakagami H: Flavonol Glycosides and Steroidal Saponins from the

Leaves of *Cestrum nocturnum* and Their Cytotoxicity. Journal of Natural Products 2001, 64(1):17-22.

- Jawale C, Dama L: Insecticidal potential of *Cestrum* sp.(Solanaceae: solanales) against Tribolium castaneum and Tribolium confusum (herbst)(Coleoptera-tenebrionidae). Int J Res 2010, 3:155-161.
- Zapata N, Budia F, Viñuela E, Medina P: Insecticidal effects of various concentrations of selected extractions of *Cestrum parqui* on adult and immature Ceratitis capitata. Journal of Economic Entomology 2006, 99(2):359-365.
- Ghosh A, Chandra G: Biocontrol efficacy of *Cestrum diurnum* L.(Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Natural product research 2006, 20(04):371-379.
- Chaieb I, Tayeb W: Comparison of the molluscicidal activity of *Cestrum parqui* (Solanaceae) and Quillaja saponaria (Quillajaceae) saponins. Tuni J Med Plants Nat Prod 2009, 2:31-35.
- Abouelnour AN, Elsayed AS, El-Demerdash MM: Morphological, phytochemical, and therapeutic potentials investigation of some species of *Cestrum* L.(Solanaceae family). Bulletin of Faculty of Science, Zagazig University 2022.
- 24. Lacaille-Dubois M, Wagner H: Bioactive saponins from plants: an update. Studies in natural products chemistry 2000, 21:633-687.
- 25. Barbosa ADP: An overview on the biological and pharmacological activities of saponins. Int J Pharm Pharm Sci 2014, 6(8):47-50.
- 26. Ahmad VU, Baqai FT, Fatima I, Ahmad R: A spirostanol glycoside from *Cestrum nocturnum*. Phytochemistry 1991, 30(9):3057-3061.
- Ahmad VU, Baqai FT, Ahmad R: A tigogenin pentasaccharide from *Cestrum diurnum*. Phytochemistry 1993, 34(2):511-515.
- Ahmad VU, Baqai FT, Ahmad R: A diosgenin tetrasaccharide from *Cestrum nocturnum*. Zeitschrift für Naturforschung B 1995, 50(7):1104-1110.
- 29. Haraguchi M, Motidome M, Morita H, TAKEYA K, ITOKAWA H, MIMAKI Y, SASHIDA Y: New polyhydroxylated steroidal sapogenin and

Egypt. J. Chem. 67, No 1. (2024)

saponin from the leaves of *Cestrum sendtenerianum*. Chemical and pharmaceutical bulletin 1999, 47(4):582-584.

- Haraguchi M, Mimaki Y, Motidome M, Morita H, Takeya K, Itokawa H, Yokosuka A, Sashida Y: Steroidal saponins from the leaves of *Cestrum sendtenerianum*. Phytochemistry 2000, 55(7):715-720.
- Fouad MA, Mohamed KM, Kamel MS, Matsunami K, Otsuka H: Cesdiurins I–III, steroidal saponins from *Cestrum diurnum* L. Journal of natural medicines 2008, 62:168-173.
- 32. Kawano M, Otsuka M, Umeyama K, Yamazaki M, Shiota T, Satake M, Okuyama E: Antiinflammatory and analgesic components from "hierba santa," a traditional medicine in Peru. Journal of Natural Medicines 2009, 63(2):147-158.
- 33. Galarraga E, Mitaine-Offer A-C, Amaro-Luis JM, Miyamoto T, Tanaka C, Pouységu L, Quideau S, Rojas LB, Lacaille-Dubois M-A: Steroidal saponins from the fruits of *Cestrum ruizteranianum*. Natural product communications 2011, 6(12):1825-1826.
- 34. Ribeiro PR, Braz-Filho R, Araújo AJ, Costa-Lotufo LV, Souza LG, Nobre Junior HV, Silva CRd, Andrade Neto JBd, Silveira ER, Lima MAS: New epimeric spirostanol and furostanoltype steroidal saponins from *Cestrum laevigatum* L. Journal of the Brazilian Chemical Society 2016, 27:2170-2180.
- 35. Ribeiro PRV, Araújo AJ, Costa-Lotufo LV, Braz-Filho R, Junior HVN, da Silva CR, de Andrade Neto JB, Silveira ER, Lima MAS: Spirostanol glucosides from the leaves of *Cestrum laevigatum* L. Steroids 2016, 106:35-40.
- 36. Ta CAK, Guerrero-Analco JA, Roberts E, Liu R, Mogg CD, Saleem A, Otárola-Rojas M, Poveda L, Sanchez-Vindas P, Cal V: Antifungal saponins from the maya medicinal plant Cestrum schlechtendahlii G. Don (Solanaceae). Phytotherapy Research 2016, 30(3):439-446.
- 37. Mosad RR, Ali MH, Ibrahim MT, Shaaban HM, Emara M, Wahba AE: New cytotoxic steroidal saponins from *Cestrum parqui*. Phytochemistry Letters 2017, 22:167-173.

- 38. Iguchi T, Takahashi N, Mimaki Y: A Total of Eight Novel Steroidal Glycosides Based on Spirostan, Furostan, Pseudofurostan, and Cholestane from the Leaves of *Cestrum newellii*. Molecules 2020, 25(19):4462.
- 39. Halim A, Collins R, Berigari M: Alkaloids produced by Cestrum nocturnum and *Cestrum diurnum*. Planta medica 1971, 20(03):44-49.
- Chattaraj M, Sinha N: Isolation and characterization of chemical constituent from the leaves of *Cestrum nocturnum*. Journal of Metallurgy and materials Science 2004, 46(4):243-245.
- MacRae WD, Towers GN: Biological activities of lignans. Phytochemistry 1984, 23(6):1207-1220.
- Fiorentino A, DellaGreca M, D'Abrosca B, Oriano P, Golino A, Izzo A, Zarrelli A, Monaco P: Lignans, neolignans and sesquilignans from *Cestrum parqui* l'Her. Biochemical systematics and ecology 2007, 35(6):392-396.
- Mohamed KM, Fouad MA, Matsunami K, Kamel MS, Otsuka H: A new norlignan glycoside from *Cestrum diurnum* L. Arkivoc 2007, 13:63-70.
- Haminiuk CW, Maciel GM, Plata-Oviedo MS, Peralta RM: Phenolic compounds in fruits-an overview. International Journal of Food Science & Technology 2012, 47(10):2023-2044.
- 45. Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y: An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21(10):1374.
- 46. D'Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Zarrelli A: Low molecular weight phenols from the bioactive aqueous fraction of *Cestrum parqui*. Journal of Agricultural and Food Chemistry 2004, 52(13):4101-4108.
- Buchbauer G, Jirovetz L, Kaul VK: Volatiles of the Absolute of *Cestrum nocturnum* L. Journal of Essential Oil Research 1995, 7(1):5-9.
- 48. Al-Reza SM, Rahman A, Cho Y-S, Kang SC: Chemical composition and antioxidant activity of essential oil and organic extracts of *Cestrum nocturnum* L. Journal of Essential Oil Bearing Plants 2010, 13(5):615-624.

- Bahgat DM, Gad HA, Al-Sayed E, Mahmoud SH, Mostafa A, Mahfouz NM, Eldahshan OA, Nasser B. Singab A: Essential Oil of *Cestrum diurnum* L.: GC/MS Analysis, in Vitro and in Silico Anti-HCoV-229E Effects and Inhibitory Activity against LPS-Induced Inflammation. Chemistry & Biodiversity 2023, 20(4):e202201045.
- 50. Khatun A, Rahman M, Nesa M, Looi CY, Wong WF, Hazni H, bin Mahdzir MA, Uddin SJ, Awang K, Shilpi JA: Analgesic, antiinflammatory and NF-κB inhibitory activity of aerial parts of *Cestrum diurnum*. Clinical Phytoscience 2022, 8(1):1-9.
- 51. Kamboj A, Kumar S, Kumar V: Evaluation of antidiabetic activity of hydroalcoholic extract of *cestrum nocturnum* leaves in streptozotocininduced diabetic rats. Advances in Pharmacological Sciences 2013, 2013.
- 52. Bahgat DM, Gad HA, Elsayed E, Eldahshan OA, Singab A-N: Biologically Active Saponins of Genus *Cestrum* L.: A Comprehensive Review. Archives of Pharmaceutical Sciences Ain Shams University 2022, 6(1):98-113.
- 53. Ahmad SF, Khan B, Bani S, Suri K, Satti N, Qazi G: Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2 cytokine production. Pharmacological research 2006, 53(3):233-240.
- 54. Nasr SM, Elwan NM, Abdel-Motagaly M, Abdel-Aziz A-WA, Ghareeb M: Phytochemical investigation and differential effects of *Cestrum elegans* isolated compounds as antimicrobial and virucidal against hepatitis A virus. Egyptian Journal of Chemistry 2021, 64(7):3729-3738.
- 55. Alrabayah, I. N., Elhawary, S. S., Kandil, Z. A., El-Kadder, E. M. A., Moemen, Y. S., Saleh, A. M., & El Raey, M. A. (2022). Green Synthesized Zinc Oxide Nanoparticles Based on *Cestrum diurnum* L. of Potential Antiviral Activity against Human Corona 229-E Virus. Molecules, 28(1), 266.