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Abstract 

The global demands for seafood products are steadily increasing and consequently numerous amounts of solid and liquid 

byproducts are generated that usually discarded leading to serious problems including loss of nutrients and environmental 

pollution that consequently negatively affect the human health. These byproducts are considered as an undiscovered treasure 

having the potentiality for the production of various probiotics as well as several biomaterials possessing multiple functional 

and biological activities. Nitrogenous compounds, lipids, polysaccharides and minerals are the main constitutive components 

that can be recovered or converted to value added products with potential nutritional, biomedical and pharmaceutical 

applications. Biological conversions via microbial fermentation and/or enzymatic treatment are eco-friendly economic 

processes that are widely applied leading to the production of bioactive protein hydrolysates, chitin based products and 

various industrial enzymes. In addition, algae based bioconversion is an efficient method for the valorization of seafood 

industry effluents via the production of various bio-refineries. 
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1. Introduction 

The overgrowth in the human population enforces a 

global interest for the use of seas, oceans and marine 

resources for sharing a blueprint for the prosperity of 

people as well as sustainable development [1]. 

Seafood industry including either finfish or shellfish, 

has become one of the main sectors in food industry 

in which the global output of capture fisheries had 

been increased from 20 million ton in 1950 to 81.5 

million ton in 2014 [2] reaching its highest recorded 

value (96.4 million ton live weight) in 2018 [1]. 

Additionally, the aquaculture sector provides 16% of 

the edible animal protein and has been estimated as a 

crucial component for providing food security for 9.8 

billion people all over the world by 2050 [3]. 

In seafood industry, 80% of the total harvest has been 

processed into dried, smoked, frozen, marinated and 

other products in which several pre-processing 

operations including removal of heads, shells, scales, 

skin, gut and fins in addition to washing, filleting and 

others have been performed. These processes produce 

numerous amounts of solid and liquid byproducts that 

usually discarded causing environmental pollution 

and negatively affect the human health. In addition to 

incineration of these solid byproducts causing air 

pollution, huge amounts of by-catch are dumped in 

the oceans or nearby land. Microbial anaerobic 

fermentation of the dumped organic matters leads to 

the release of CO2, CH4, NH3, amines and H2S that 

significantly contributes in the climate changes. Also 

these solid byproducts negatively affect the aquatic 

life via alteration of the color and odor of the 

surrounding environment. Discharge of untreated 

effluents in the soil directly affect the inhabited 

microorganisms as it increases the moisture, salinity, 

carbon content and electric conductivity. Moreover, 

high levels of nitrogen, phosphorus, fat, oil and 

grease may lead to drinking water shortage, 

eutophication, biotic depletion, algal blooms, 

acidification of water, destruction of habitats, 

outbreaks of various diseases and corals siltation. 

Therefore, dealing with this huge amount of the 

produced wastes is a great challenge [4]. 

Solid byproducts including skin, viscera, bones, 

heads and other corporal structures reach about 65% 

of the total weight while liquid byproducts are the 

effluents produced during washing, cooking and 

thawing processes [5]. These byproducts are 
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considered as an undiscovered treasure having the 

potentiality for the production of various biomaterials 

possessing several functional and biological 

activities. The valorization of these byproducts and 

their utilization in other industries is one of the main 

avenues that can close the loop in seafood production 

[6-10].  

 

The problem of discarding the seafood byproducts is 

an emerging issue that indirectly increases the 

pressure on fisheries enforcing the search of an eco-

friendly applicable solution to solve this problem via 

the adaptation of a circular economy based on 

business models [1]. Table (1) illustrated the negative 

and the positive issues that inherent the problem of 

seafood byproducts. 

 
Table (1): The negative and the positive issue that 

inherent the problem of seafood byproducts (modified 

from Caruso et al., [6]).  

Negative issue Positive issue 

Environmental impact The utilization of these 

byproducts contributes in 

their safe disposal. 

Loss of nutrients These nutrients can be 

exploited in nutritional, 

pharmaceutical, industrial 

sectors (i.e., biorefinery). 

Operational cost of its 

exploitation 

Biotechnological studies 

can enhance the 

operational quality as 

well as its efficiency. 

 

Solid byproducts 

 

Fish composition is largely varied depending on 

several variables including the species, state of 

nutrition, health, age and season of collection [11]. 

The average percentage of the discarded seafood 

parts is illustrated in table (2). 
Table (2): Average weight percentage of the discarded 

seafood parts. 

Type Discarded 

part 

Average 

weight 

percentage 

(%) 

Reference 

Finfish Head 21 Caruso et 

al., [6] Bones 14 

Fins 10 

Gut 7 

Liver 5 

Skin 3 

Ovaries 4 

Shellfish Shell and 

head 

35-45 Suryawanshi 

et al., [12] 

 
 

Source for probiotics 

Probiotics are defined according to the Food and 

Agriculture Organization of the United Nations and 

World Health Organization [13] as “live 

microorganisms which when administered in 

adequate amounts confer a health benefit on the host” 

via the direct or the indirect influence on the 

composition of the intestinal microbiota. Fish 

gastrointestinal tract, gills and skin microbiota 

represent a rich source of probiotic bacteria [14] in 

which their isolation and their synthesized bioactive 

compounds attract the research interest. Different 

activities including antimicrobial [15-16] and 

antitumor [17] have been reported for various 

biomolecules produced by probiotics isolated from 

fish organs. Additionally, Floris et al., [16] estimated 

gilthead seabream intestinal microflora as 

biosurfactant producers with antimicrobial activity. 

Microbial surfactants produced by marine 

microorganisms have attracted a great interest in the 

21st century as they possess multiple therapeutic 

functions including antifouling, anti-adhesive, 

antimicrobial, antithrombotic and antitumor [18]. The 

strains that have been isolated from fish organs are 

summarized in table (3). 
 

Fishmeal production 

Seafood byproducts are rich in nutritionally valuable 

ingredients with average values illustrated in table 

(4). In the last two decades, the utilization of fishery 

by-catch or processing byproducts as a fishmeal 

(prepared by drying followed by grinding) 

participating in the production of feed for 

aquaculture, poultry, ruminants and pets had been 

examined and well established [19-20]. 
Table (3): The microbial strains isolated from fish 

organs. 

Gram positive strain 

Lactobacillu
s 

fructivorans 

Lactobacillus 
pentosus 

Lactobacillus 
delbrueckii 

Enterococcus 
faecium 

Bacillus sp. Paenibacillus 
sp. 

Micrococcus 
sp. 

Macrococcus 
sp. 

Leuconostoc 

sp. 

Brochothrix 

sp 

Carnobacteriu

m sp. 

Arthrobacter 

arilaitensis 
Anoxybacillu

s sp. 

Staphylococc

us sp. 

Actinobacteri

a 

 

Gram negative strain 

Citrobacter 

freundii 

Plesiomonas 

shigelloides 

Enterobacter 

sp. 

Shewanella 

xiamenensis 

Hafnia alvei Vibrio sp. Aeromonas 
sp. 

Psychrobacte
r sp 

Agrobacteriu

m sp. 

Photobacteriu

m sp. 

Acinetobacter 

sp. 

Azospirillum 

orizae 
Erwinia 

persicina 

Sphingomona

s sp. 

Pseudomonas 

sp. 

Cyanobacteri

a 

Yeast 

Candida sp. Saccaromyces 

cerevisiae 

Debaryomyce

s hansenii 

Leucosporidiu

m sp. 

Kodamea 
ohmeri 

Pichia sp. Rhodotorula 
sp. 
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Table (4): Average composition of seafood processing 

discards [4]. 

Nutrient Average percentage 

(%) 

Crude protein 57.9 ± 5.3 

Fat 19.1 ± 6.1 

Crude fiber 1.2 ± 1.2 

Ash 21.8 ± 3.5 

Sodium 0.6 ± 0.1 

Potassium 0.7 ± 0.1 

Phosphorous 2.0 ± 0.6 

Calcium 5.8 ± 1.3 

 

Source for their constitutive compounds 

 

In the last few years, the extraction of seafood 

derived compounds and their applications in various 

fields of life including food, agricultural and medical 

sectors have attracted growing interests [4]. There are 

various compounds that can be extracted from either 

finfish or shellfish byproducts and can be classified 

under four main groups including nitrogenous 

compounds, lipids, polysaccharides and minerals. 

 

Nitrogenous compounds 

 

Diverse proteins, peptides and amino acids are the 

main constitutive components of the nitrogenous 

fraction possessing valuable nutritional and 

functional properties including emulsifying, foaming 

and texture improving agents in addition to 

possessing various biological activities including 

antioxidant and antimicrobial activities [20]. In 

general, fish proteins are easy digestible with high 

nutritional value. They are composed of well-

balanced composition of essential amino acids as 

valine, lysine and phenylalanine [22].  

 

 Proteins 

 The increasing demands for protein either 

for meeting the human or animal requirements 

enforces the research interest for its recovery from 

novel sources [23]. Seafood solid byproducts consist 

of about 60% proteins with high nutritional value 

(containing essential amino acids) that can be 

recovered retaining its native properties or converted 

to amino acid and polypeptides [4]. Isoelectric 

solubilization precipitation is a mild technique in 

which dilute acid (pH 2.5-3.5) or dilute alkali (pH 

10.8-11.5) are used in the homogenization and 

solubilization of seafood byproducts followed by 

precipitation and filtration of the dissolved proteins. 

It has been efficiently used in the recovery of 

sarcoplasmic and myofilbrillar proteins from 

different byproducts of various species of finfish and 

shellfish with up to 95% recovery yield (Table 5) 

[20]. 
 

Table (5): Seafood byproducts and protein recovery 

yield. 

Source Extraction 

method 

Yield 

(%) 

Reference 

Tilapia 

frame 

Alkaline 68 Chomnawang 

Yongsawatdigul, 

[24] 

Bighead 

carp 

Acidic 74.8 Chang et al., [25] 

Common 

carp 

Acidic 

 

Alkaline 

76.3 

 

87.6 

Tian et al., [26] 

Mackerel sequential 

acid/ alkaline 

95–

100 

Álvarez et al., 

[27] 

Pangas 

processing 

waste 

Acidic 

 

Alkaline 

59 

 

69 

Surasani et al., 

[28] 

Catfish 

heads 

 

Catfish 

frames 

Alkaline 

 

Alkaline 

36–55 

 

53 

Tan et al., [29] 

Green crab Alkaline 83 Khiari et al., [30] 

 

 Apart from myofibrillar protein, marine 

collagen represents a biocompatible alternative to the 

mammalian one. In general, collagen compromises 

30% of the total protein exists in most organisms and 

it compromises 70% of the skin dry weight. Seafood 

byproducts are a collagen-rich source possessing 

various nutraceutical and functional properties [31-

32]. Melgosa et al., [33] reported the preparation of 

collagen-rich protein extract from cod frames 

possessing anti-inflammatory activity.  In addition, 

fish scales collagen is a natural biomaterial find 

application in various fields including drug delivery 

[34], wound healing [35], corneal tissue engineering 

[36] and oral mucosa regeneration [37]. 

 

 Gelatin is a more soluble protein that 

structurally constructed connective tissues. Dara et 

al., [38] reported that the gelatin extracted from big 

eye tuna skin was suitable in nutraceutical and 

biomedical applications as it possessed good gelling 

properties. Valcarcel et al., [39] indicated seabream 

skin byproducts as suitable raw materials for the 

production of gelatin.   

 

 Enzymes  

Enzymes are highly specific protein molecules that 

catalyze various biochemical reactions providing eco-

benign, easy controllable and efficient processes. 

Viscera of fish are rich in enzymes including 

proteases (pepsin, trypsin, trypsin-like enzymes, 

collagenase, peptidase and elastase), chitinase, lipase 

and others. The isolated enzymes mainly exhibit high 

thermal activity and stability with high stability at 

wide pH range that make them suitable candidates in 

various food, detergent and pharmaceutical industries 
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[40-42]. The isolated enzymes and their potential 

applications are illustrated in table (6). 

 
Table (6): Isolated enzymes and their potential 

applications [20]. 

Enzyme Source Application 

Proteases Fish 

intestines and 

shrimp heads 

Recovery of 

seafood 

byproducts 

constituents and 

production of fish 

protein 

hydrolysate 

Lipases Fish discards Production of 

omega-3-enriched 

triglycerides 

Chitinases Shellfish Production of 

chitin hydrolysis 

products 

Lysozyme Arctic scallop 

shell, crab 

shell 

Bacteriostatic 

agent 

Catalase, 

glutathione 

peroxidase 

Marine 

mussel 

Antioxidants 

5′-

nucleotidase, 

Nucleoside 

phosphorylase 

Fishery 

byproducts 

Construction of 

biosensors to 

measure amines, 

nucleotides, and 

others 

 

Lipids and co-products  

 Oil production 

 Fishery byproducts contain a varied amount 

of lipids (up to 30%) that present in the form of fish 

oil. The oil extracted from fish byproducts is a good 

quality one that can be exploited in pharmaceutical 

and food industries. It contains two main 

polyunsaturated fatty acids, eicosapentaenoic acid 

and docosahexaenoic acid that are classified as 

omega-3 fatty acids [43]. Bio-oils gained a global 

interest for either their lonely use or in blend with 

petroleum fuel. The use of biomasses in the 

production of bio-fuels has attracted the research 

focus from the prospective of their valorization and 

environmental protection. Fish oil produced from 

seafood byproducts can be considered as a 

convenient source for fuel production [44-45].  

 

 Carotenoids 

 They are red orange pigments present in 

crustaceans as well as salmon and trout. They are 

either hydrocarbon in nature as β-carotene and 

xanthophylls or oxygenated derivatives as 

astaxanthin and canthaxanthin. Crustacean shells are 

an important source of natural astaxanthin that has 

been reported as potent antioxidant [46]. In general, 

antioxidants are compounds that can be used to 

overcome the deleterious effects of free radicals in 

the biological systems [47]. Solvent extraction is the 

commonly applied method for the extraction of 

astaxanthin from crustaceans. Recently, the searching 

for a new eco-friendly sustainable technique as well 

as adjuvant treatments for the extraction process has 

attracted the research focus for example; microbial 

fermentation [48], ultrasound-assistance [49], 

enzymatic treatment [50] and microwave pre-

treatment [51]. 

 

Polysaccharides 

 

Crustacean shell is the primary source of chitin, 

linear polysaccharide of N-acetyl-D-glucosamine 

units linked by β-1,4-glycosidic bonds [52], prepared 

via several manipulation steps including 

deproteinization, demineralization and discoloration 

with a recovery yield of about 25% [53]. Chitin has 

attracted a growing interest due to its various food, 

agricultural and pharmaceutical applications in 

addition to its applicability in the production of 

valuable products including chitosan (de-acetylated 

derivative), N-acetyl glucosamine, 

chitooligosaccharide and various biologically active 

chitinolytic enzymes [54]. Chemical extraction is the 

commercial process that still applied for the 

preparation of chitin [55] but the development of 

green extraction processes gained more attention [56-

57] preferring the use of enzymes and acid producing 

bacteria since the biological process produce product 

of better quality under mild and economic conditions 

[58-59] (Figure 1). 

 
Figure (1): Recovery of chitin and its application. 

 

Glycosaminoglycans are linear polysaccharides 

composed of disaccharide repeating units of amino 

sugars covalently linked to uronic acid. In the last 

two decade, the researchers investigate their potential 

applications in which they have been reported to 

possess various structural and functional properties 

including antitumor, anticoagulant and anti-

inflamatory activities in addition to their applicability 

in tissue engineering [60-61]. Among them, 
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hyalouronic acid and chondroitin sulphate are the 

main groups that have been extracted from seafood 

byproducts [62]. Murado et al., [63] reported the 

extraction of hyalouronic acid from fish eyeball and 

Vazquez et al., [64] reported the extraction of 

chondroitin sulphate from the cartilage of blackmouth 

catfish. 

 

Minerals 

Bone composed of about 70% minerals so bone-rich 

byproducts are a significant source of minerals. Tang 

et al., [65] reported the production of fermentable 

solution rich in calcium salts by the fermentation of 

grass fish bones using Leuconostoc mesenteroides 

suggesting its applicability as calcium supplement.  

Hydroxyapatite is an inorganic material widely 

distributed in hard tissues for supporting their 

structure [66]. It has been reported to be applied in 

some biomedical field including bone tissue 

engineering, periodontal repair and dyes biosorbant 

[9]. Fish scales are efficient byproducts used for its 

preparation [67-68].   

 

Conversion of the constitutive components 

Protein hydrolysates, chitin based products and 

enzymes are the major value added products that 

resulted from the conversion of the components of 

seafood byproducts. The use of microorganisms or 

enzymes is the main employed conversion process. 

 

Major conversion techniques 

 Microbe-mediated conversion 

 The use of microorganisms in the 

conversion processes is named as fermentation in 

which several products have been produced. In the 

fermentation process, the cultural and the nutritional 

conditions are crucial variables that influence the 

growth of the microorganisms as well as their 

released metabolic products. In the last two decade, 

statistical models have been widely employed in 

fermentation technology to adjust its condition for 

optimizing the productivity of the desired product 

[69]. Response surface methodology that described 

by Box and Wilson, [70] as well as artificial neural 

networks are the most popular mathematically based 

techniques that has been applied in the optimization 

processes [71]. The use of microorganisms in the 

fermentation of seafood byproducts is estimated as an 

efficient technique for their bioremediation that 

resulted in the production of valuable products 

including enzymes, antioxidant compounds, protein 

hydrolysate and others [72]. Enzymes, liquid 

fertilizers, glutamic acids, pigments and biologically 

active oligosaccharides are the main valuable 

products produced by the microbial conversion of 

seafood byproducts (Table 7). 

 Enzyme- mediated conversion 

 In general, hydrolases are the most famous 

group of enzymes used in biotechnological 

applications. Specifically, proteases are widely 

applied in the conversion of seafood byproducts [31]. 

In addition, glycoside hydrolases and lipases give rise 

to various biologically active hydrolysates by the 

conversion of seafood constitutive ingredients [83-

84]. Proteins, pigment, chitin, chitooligosaccharides 

and deodorized oil are the main products produced by 

the enzymatic conversion of some seafood 

byproducts (Table 8).  

 

Major conversion products 

 Protein hydrolysate and bioactive peptides 

The protein content in seafood byproduct is an 

efficient source for the production of peptide-rich 

hydrolysates possessing various functional properties 

including emulsifying, foaming, rheological, textural 

and physical properties in addition to various 

biological activities including antimicrobial, 

antioxidant, anticancer, antidiabetic, anticoagulant 

and antihypertensive in addition to hepato and cardio 

protective agents [91].  

 

 Chitin based products 

 Chitosan is the de-acetylated derivative of 

chitin with the presence of less than 20% N-acetyl-D-

glucosamine units. It is a non-toxic biopolymer 

extensively applied in various fields including 

biomedical, pharmaceutical, agricultural, food and 

feed industries in addition to possess various 

biological activities including anti-inflammatory, 

immune-modulatory [92], antitumor [93] and 

antimicrobial [94]. 

 N-acetyl glucosamine (chitin mono-

constituent sugar) is a clinical drug for the treatment 

of rheumatoid arthritis. In addition, it possesses 

antimicrobial, antioxidant and anticancer activities 

with potential food, agricultural, medical and 

pharmaceutical applications [95]. Currently, the 

conversion of crustacean byproducts to N-acetyl 

glucosamine attracts a growing interest as it can be 

exploited in the production of bioethanol [10]. 

 Chitooligosachharides are water soluble 

homo- or hetero-oligomers of D-glucosamine and N-

acetyl-D-glucosamine with an average molecular 

weight less than 3900Da [96]. They have been 

estimated to possess various biological activities 

including prebiotic, antioxidant [82, 97], antitumor 

[98], neuroprotective [99-100], antifungal [101-102], 

antibacterial [103], immuno-modulatory [92], 

hepatoprotective [104] and hypolipidemic effect 

[105]. 

 Enzymes 

 Nowadays, green chemistry is attracting a 

great interest. Industrial enzymes have been 

considered as a green route for protecting the 

environment and popular health but the cost is a 
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significant barrier that restricted its application. The 

reduction of the cost via the use of seafood 

byproducts as a substrate for the production of 

enzymes instead of using the refined one is attracting 

the research focus [54].  

 Proteases are the most popular class of 

enzymes that widely applied in various 

biotechnological processes including amino acid 

analysis, detergent, cosmetics, food and feed 

production [106]. Proteases in general are a complex 

group of enzymes that specifically catalyze the 

hydrolysis of proteins converting them to peptide 

chains and/or amino acids [107]. Ramkumar et al., 

[77] reported the use of fish gut waste as an efficient 

substrate for the microbial production of protease 

using Bacillus licheniformis. 

 Shrimp byproducts have also been reported 

as an efficient substrate for inducing the microbial 

production of various chitinolytic [54] and 

chitosanolytic [81] enzymes as well as chitin 

deacetylase [108]. Chitinases and chitosanases are 

chitin and chitosan specific hydrolytic enzymes that 

lead to the production of their monomer constituents 

as well as chitooligosaccharides while chitin 

deacetylases are the enzymes responsible for the 

deacetylation of chitin for chitosan production [109].   

 

Liquid byproduct 

The operations carried out during the processing of 

seafood result in the production of wastewater or 

effluents reach in soluble organic matters, salts and 

colloidal substances with high content of Chemical 

Oxygen Demand generated mainly from 

biodegradable lipids and proteins [110]. A variation 

in the volume of wastewater results from different 

processing operations was estimated and the average 

volumes are illustrated in table (9).  

 
Table (9): The average volume of wastewater results 

from different seafood processing operations.  

 
Operating process Volume of 

wastewater 

(m3/ton raw 

material) 

Reference 

Precooking of fish to be 

canned 

Unloading fish for canning 

Sterilization of cans 

Handling and storage of fish 

Scaling of white fish 

Oily fish skinning 

Marine finfish 

Frozen fish thawing 

Shrimp freezing 

Blue crab, mechanized plant 

0.07-0.27 
 

2-5 

3-7 
10-12 

10-15 

0.2-0.9 
14.0 

5.0 

7.0 
29-44 

Arvanitoyannis 
and Kassaveti, 

[111] 

Processing of tuna 3.0 Fluence, [112] 

Canning of sardine 

White fish filleting 

Oily fish filleting 

Skinning of knobbed fish 

Filleting of un-gutted oily fish 

15.0 
5–11 

5–8 

17.0 
1–2 

Venugopal and 
Sasidharan, 

[113] 

 

Algae based bioconversion 

 

Microalgae is one of the resources that attracted the 

research focus for its economic biomass production 

as it can incorporate in the production of biofuels, 

animal feed, pharmaceutical and health products 

[114]. Gao et al., [115] indicated the feasibility of the 

production of algal biomass (Chlorella sp.) using 

seafood processing wastewater. 

 

Source of biologically active compounds 

 

Seafood liquid byproducts (cooking juice and 

stickwater) can be used as a source for the production 

of various bio-molecules including nitrogenous 

compounds, carotenoids, lipids and flavors that can 

be exploited in several biotechnological processes. 

 

 Cooking juice 

 Cooking juice or cooking wastewater is the 

effluent resulted from fish cooking operations 

performed mainly during canning processes. Tuna or 

small pelagic fish (sardine and anchovy) are the main 

traditional raw material. Hsu et al., [116] reported 

that the yield of cooking juice (with about 4% of 

water-soluble protein) produced every day was in the 

range of 15 to 27 ton for each fish canning plant. 

Tang et al., [117] reported the production of 1.5 ton 

of cooking wastewater for each ton of processed 

anchovy containing 5g/L of crude protein in addition 

to essential amino acids. Additionally, P´erez-Santín 

et al., [118] reported that the industrial shrimp 

cooking juice contains 13.5% protein.  

 

 

 Stickwater 

 Stickwater is the effluent resulted during the 

preparation of fishmeal. It represents 60% of the fish 

weight and composed of 5-9% protein content [119].    

 

Nitrogenous compounds  

Seafood effluents contain a considerable amount of 

soluble proteins that can be recovered and 

concentrated or used for the production of protein 

hydrolysates containing biologically active peptides. 

 

Production of bioactive peptides 

 Enzymatic hydrolysis 

 The hydrolysis of protein-reach seafood 

byproducts leads to the production of peptides varied 

in their size as well as their composition and 

consequently their bioactivity [120]. The selection of 

the hydrolysis conditions is the crucial step in the 

application of enzymes in which the enzyme-

substrate ratio, hydrolysis period and the temperature 

of the reaction have been reported as the main 

influencing variables [121]. The application of 
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proteolytic enzymes in the hydrolysis of seafood 

liquid byproducts has been previously studied 

manifesting its applicability as a valuable source for 

the production of bioactive peptides. P´erez-Santín et 

al., [118] reported the use of proteolytic alcalase in 

the hydrolysis of shrimp cooking juice and 

production of bioactive peptides. Hung et al., [122] 

reported the production of biologically active protein 

hydrolysate from the hydrolysis of cooking juice of 

the industrial manufacturing of tuna by applying 

protease followed by ultrafilteration. The 

combination of enzymatic hydrolysis and 

ultrafilteration had also been reported for the 

production of protein hydrolysate results from the 

hydrolysis of shrimp cooking water [123]. Mahdabi 

and Shekarabi, [124] reported the production of 

protein hydrolysate by the enzymatic hydrolysis of 

stickwater resulted from the preparation of kilka 

fishmeal using alcalase. 

 

 Membrane technology 

 The use of semi-permeable membranes in 

the separation of valuable molecules from seafood 

liquid byproducts is one of the efficient techniques 

that have been applied in the preparation of 

biologically active peptides. It possesses several 

advantages as it minimizes the denaturation of 

protein and it can be utilized for obtaining specific 

molecular weight peptides [125].    

 

Functional and biological activities  

 

The recovered protein as well as the produced 

peptides can be widely applied depending on the base 

of their structural features including molecular 

weight, amino acid composition, sequence and 

hydrophobicity. 

 

 Emulsifying and foaming agent 

 The protein recovered from herring industry 

wastewater with a molecular weight of 50 KDa can 

be used as a natural emulsifying agent [126]. In 

addition, Gringer et al., [127] indicated that the 

foaming as well as the emulsifying property of the 

proteins recovered by ultra-filtration of herring 

industry wastewater was not affected.  

      

 Antioxidant activity  

 Antioxidant peptides have been previously 

prepared from tuna cooking juice [116], shrimp 

cooking juice [118], herring industry wastewater 

[126] and from kilka stickwater [124]. Hsu et al., 

[116] attributed the antioxidant activity of the 

produced peptides to the presence of proton donating 

amino acids, histidine and proline. Additionally, 

Tremblay et al., [128] indicated that the cooking 

effluent of snow crab was composed of 59% protein 

that possessed antioxidant activity. 

 

 Antihypertensive activity 

 The peptides prepared by the enzymatic 

hydrolysis of the protein recovered by ultrafilteration 

from cuttlefish processing wastewater had been 

reported to possess antihypertensive activity [129]. 

 

 Antiproliferative activity 

 Mutations in general encourage 

carcinogenesis and proliferation of cells. 

Antiproliferative activity of peptides prepared from 

tuna cooking juice had been estimated against breast 

cancer cell line (MCF-7) without any cytotoxic 

activity against mammary epithelial cells [122]. The 

molecular weight of the produced peptide was greater 

than 2.5 KDa and composed mainly of hydrophobic 

amino acids. Huang et al., [130] indicated that 

hydrophobic peptides could penetrate into the 

hydrophobic core of the cell membrane participating 

in antiproliferative activity. In addition, Hung et al., 

[122] attributed the antiproliferative activity of the 

produced peptide to the induction of the expression of 

caspase 3 that activated cancer cell apoptosis.  

 

Carotenoids 

 

Shrimp cooking fluids can be used to isolate the 

carotenoid, astaxanthin that can exist freely or with 

esterified derivative possessing antioxidant activity 

[118].  

 

Lipids 

 

Fish processing effluents contain considerable 

amount of lipids that can be isolated and exploited in 

various applications. Bechtel, [131] reported that 

pollock, cod and salmon stickwater contain variable 

amount of lipids and Garcia-Sifuentes et al., [132] 

concentrated sardine stickwater in which the fat 

content reached 18%. Additionally, Alkaya and 

Demirer, [133] reported that gutting process water 

recycling system contains valuable fish oil/grease by-

product and Monteiro et al., [134] reported the 

application of High hydrostatic pressure for the 

extraction of polyunsaturated fatty acid from fish 

canning effluents.     

 

Flavor compounds 

 

Flavor compounds are mainly used either to add 

aroma or taste. Aromatic compounds are usually 

volatile in nature with molecular weight less than 

400Da as aldehydes and ketones while taste-adding 

compounds are mostly water soluble consisting of 

organic acids, amino acids and sugars [128]. 

Crustacean effluents including shrimp and crab are 

attractive proposition for the production of natural 

flavoring products [135, 128].  
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Bio-refinery approaches 

 

Seafood byproducts are a treasure rich with various 

valuable products that can be a promising renewable 

biomass for bio-refineries. The International Energy 

Agency defined bio-refinery as the “sustainable 

processing of biomass into a spectrum of bio-based 

products (food, feed, chemicals, and materials) and 

bio-energy [136]. Several bio-refinery approaches 

have been designed for the utilization of seafood 

byproducts as illustrated in table (10). 

 
Table (10): Bio-refinery approaches for seafood 

byproducts. 

Bio-refinery Products Refrences 

Cultivation of 

alga 

Astaxanthin, 

single cell 

protein (SCP) 

 

Various products 

Khoo et al., 

[137] 

 

 

Mitra and 

Mishra, [138] 

Lactic 

fermentation 

Astaxanthin, 

hydrolyzed 

protein and 

chitin 

Routray et al., 

[78] 

Anaerobic 

fermentation 

with cow dung 

Methane, Liquid 

mineral fertilizer 

Kratky and 

Zamazal, 

[139] 

Coupled 

alcalase 

hydrolysis and 

bacterial 

fermentation 

Gelatin, oils, 

FPH, bioactive 

peptides, and 

fish peptones 

Vázquez et al., 

[58] 

Sequential 

extraction by 

ISP followed by 

enzyme 

Collagen, 

myofibrillar 

proteins 

Abdollahi et 

al., [140] 

Sequential 

treatment of 

crustacean 

shells 

Chitin, proteins, 

lipids, 

carotenoids and 

CaCO3 

Hülsey, [141] 

 

 

Conclusion 

 

In a world of stagnating oceanic resources and 

increasing of environmental problems, it is 

imperative that seafood processing needs to be eco-

friendly and economic. Management of the produced 

byproducts can significantly help seafood industry 

realize objectives of food security and environmental 

protection. In this article, seafood byproducts have 

been estimated as a potential resource for the 

production of various biomaterials that find 

applications in food, agricultural and biomedical 

fields. These byproducts either solid discards 

including skin, viscera, bones, heads and other 

corporal structures or liquid effluents produced 

during washing, cooking and thawing processes are 

source for diverse proteins, peptides, amino acids, 

oils, pigments, polysaccharides and minerals that 

possess various nutritional, functional and biological 

activities. In addition, Fish gastrointestinal tract, gills 

and skin microbiota represent a rich source of 

probiotic bacteria capable for the production of 

various bioactive compounds. For more economic 

approaches, integrated refinery-type processes for the 

extraction of multiple products are widely applied.  
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