

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Theoretical Calculations and Molecular Design of Novel Quinoline Derivatives as Antibacterial Drugs

Maryam Jamaal Kassar ^a and Mohammed Oday Ezzat,^b *

^aDepartment of Chemistry, College of Education for Pure Sciences, University of Anbar, Ramadi, Anbar, Iraq. ^bDepartment of Chemistry, College of Education for Women, University of Anbar, Ramadi, Anbar, Iraq

Abstract

Antibacterial drug efficacy decrease is a consistent problem in both basic and advanced medicine. Every year, approximately 214,000 infants die caused of antibacterial-resistant bacteria. As a consequence, the development of commonly available drugs is essential. For considerations such as high accuracy, reducing time and effort, and high cost, starting from a theoretical chemical study to find alternative treatments is preferable. In this study, 683 Quinoline derivatives are designed and controlled by chemical programs that obey the laws of quantum chemistry and classical mechanics. Molecular-level theory were used. Using Molecular Docking and ΔG , the best 69 Quinoline derivatives were determined. Compounds (H1-H20) showed distinct activity against the New Delhi Metallo- β -Lactamase-1 protein from Klebsiella pneumoniae were H1(ΔG =-8.115). (G1-G20) against Gyrase B from E. coli were G1 (ΔG =-9.611). (W1-W20) against S1:DHFR from Staphylococcus aureus were W1 (ΔG =-8.254). (N1-N20) against Azobenzene from Bacillus subtilis reductase were N1 (ΔG =-6.69). Several compounds have also shown activity against more than one protein like H2 (N15W17). A DFT study was followed to find HOMO (-0.20 to -0.26 eV), LUMO (-0.06 to -0.11 eV), Gap (0.10 to 0.17 eV) for the studied derivatives. These values have been used to determine several molecular properties such as Ionization Potential, Softness and Hardness. Drug-Likeness Predictions (ADME) were applied to show that it obeyed Lipinski's Rule in terms of molecular mass, log *P*, Hydrogen bonding donors, and acceptors. It was found that all the values obtained are within the acceptable values for the use of suggested Quinoline derivatives as medicine.

Keywords: Quinoline Derivatives, Fluoroquinolones, Molecular Docking, DFT study, ADME.

1. Introduction

Antibacterial efficacy, which has revolutionized medicine and saved millions of lives, in jeopardy due to the fast rise of resistant bacteria around the world. It happens when bacteria develop is in the ability to defeat the commercially available drugs to kill them and then continue to grow [1]. As a result, researching novel antibacterial drugs has become a main priority. From the sixties of the last century until now, Quinoline derivatives exhibited a variety of therapeutic and pharmacological activities, including antimalaria, anticancer, antioxidant, antiinflammatory, and cardiovascular effects, but it is antibacterial activity was unique [2].

Fluoroquinolones (class of Quinoline derivatives) became the most renowned in this field (with the presence of the substituted cyclopropyl and fluorine) against Gram-positive and Gram-negative bacteria at a similar degree. For these considerations, Fluoroquinolones were chosen as a starting point [3]. For a more efficient chemotherapy treatment, several researchers prefer to start with theoretical analysis and molecular design before moving on to the stage [4]. Computational quantum synthesis chemistry can calculate a diverse variety of electronic and thermodynamic parameters that chemists and physicists are interested in. Calculations (based on classical and quantum chemical models) can be used to predict the results of suggested experiments as well as to assist in the interpretation of existing systems. The biological reactions that are catalyzed with enzymes can be simulated by quantum biochemical model that decreases the free energy barrier for binding formation and the binding breaking, also determent the formation of an enzyme active site, as well as equilibrium or nonequilibrium states and lightcapturing chromophore. For reactivity of molecules,

*Corresponding author e-mail: <u>edw.mohamed_oday@uoanbar.edu.iq</u>.; (Mohammed Oday Ezzat). Receive Date: 23 July 2022, Revise Date: 15 August 2022, Accept Date: 30 August 2022. DOI: <u>10.21608/EJCHEM.2022.151949.6577</u>

©2023 National Information and Documentation Center (NIDOC).

Frontier Orbital Theory (DFT) is a useful method for predicting if aromatic substitutions will experience as electrophilic (electron-poor) or nucleophilic (electron-rich) systems. It provide a better understanding of the complex relationship's nature, but there are some limitations surrounding the use of DFT like complex calculations. For these difficulties and others, many chemical software are developed and each one has its own set of features and a different level of accuracy, intricacy, and accessibility [5].

In this research and to find an effective alternative antibacterial drug; 683 Quinoline derivatives were designed to be theoretically evaluated against four types of bacteria: Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. We hypothesize that these derivatives have a significant binding affinity (ΔG) with specific proteins within these bacteria. Therefore, we simulated the binding affinity between selected proteins and studied derivatives to determine their ability to inhibit the protein and stop its cellular role, and thus reduce bacterial growth. The proteins are: Azobenzene reductase from Bacillus subtilis, S1: Dihydrofolate reductase (S1: DHFR) from Staphylococcus aureus, Gyrase B from E. coli, New Delĥi Metallo-β-Lactamase-1 (NDM-1) from Klebsiella pneumoniae. For the simulation, Chem Draw, Chem3D, Gaussian 09, and admetSAR were used for drawing, analyzing and find top binding affinity, DFT (HOMO and LUMO), and determining Structural and electronic properties, as well as, finding in-silico drug-likeness.

2. Computational

Swissdock (a web service) of the Swiss Institute of Bioinformatics - Docking with standard procedure was used to dock the proteins: Azobenzene Reductase from Bacillus subtilis (PDB ID: 1NNI), S1: DHFR from Staphylococcus aureus (PDB ID: 2W9S), Gyrase B from E. coli (PDB ID: 3G7E) and NDM-1 from Klebsiella pneumoniae (PDB ID: 4HL2) with 683 Quinoline derivatives suggested to the active site of proteins. All compounds structures were drawn in ChemOffice (Chem Draw 20.0) with appropriate 2D orientation. MM2 Energy Minimization was estimate for each compound using Chem3D 20.0. MM2 compute steric energy, thermal energy, and other variables, as well as explain how the potential energy surface relates to model conformations [6].

Molecular-level theory is being used. Using the B3LYP/6-31G ++ (d,p) level of theory, the energyminimized ligand molecules were subsequently subjected to quantum mechanical treatment for geometry optimization and frequency computation.

Egypt. J. Chem. **66**, No. 5 (2023)

The DFT optimized structures were used as input for Swissdock. From the Protein Data Bank: the crystal structures of receptor molecule 1NNI (Azobenzene from Bacillus subtilis), Reductase 2W9S (Staphylococcus aureus S1:DHFR in complex with trimethoprim), 3G7E (Crystal structure of E. coli Gyrase B co-complexed with PROP-2-YN-1-YL {[5-(4-PIPERIDIN-1-YL-2-PYRIDIN-3-YL-1,3-THIAZOL -5-YL) -1HPYRAZOL -3-YL] METHYL} CARBAMATE inhibitor), and 4HL2 (NDM-1 of Klebsiella pneumoniae) were obtained [7]. Admetsar2 (a web service) were used for insilico drug-likeness prediction.

3. Results and discussion Molecular Docking

Docking is a molecular modeling prediction to explain how two or more ligands and proteins fit into each other. It is given by ΔG , A more negative ΔG represents a more suitable binding between compound and protein [8]. ΔG calculations indicated that for 80 compounds as a drug-likeness with antibacterial activity were as follows:

• Compounds H1 (N17W10) - H20 have the best activity against *Klebsiella pneumoniae* through their interaction with NDM-1 protein.

• Compounds G1-G20 have the best activity against *E. coli* through their interaction with Gyrase B protein.

• Compounds W1-W20 have the best activity against *Staphylococcus aureus* through their interaction with S1:DHFR protein.

• Compounds N1- N20 (G10) have the best activity against *Bacillus subtilis* through their interaction with Azobenzene Reductase protein.

Compound G1 has the highest binding affinity with protein, $\Delta G =-9.611$, (comparing Ciprofloxacin $\Delta G = -7.36$). Values were also high with W1, $\Delta G = -8.254$, and H1 (N17W10), $\Delta G = -8.115$. Lowest values with non-pathogenic bacteria (Bacillus subtilis) protein by N1, $\Delta G = -6.69$ [9]. Compounds H1 (N17W10), H2 (N15W17), H15 (N7W7) have a significant activity against three bacteria, while five compounds show good activity against two bacteria, which are: H5 (N12), N9 (H14), H10 (G14), G10 (N20), and N10 (H19). Thus, it can be used as a drug in a broader range than other compounds.

Hydrophobic interactions and H-bonding were the most prominent interactions between S1:DHFR and compounds with the participation of residues GLY93, PHE92, ILE5, PHE92, ILE5 and others, as shown in Fig. A.1. Hydrophobic interactions, Hbonding, and polar interactions were the most prominent interactions between GryB and the compounds with the participation of residues LEU130, LEU132, ILE94, MET95, VAL43, H2O, ASN46, PHE104 and others, as shown in Fig. B.1. π -cation, charge interactions and H-bonding were the most prominent interactions between Azobenzene Reductase and compounds with the participation of residues THR16, GLU73, TYR74, HIE75, SER76 and others, as shown in Fig. C.1. Chelation bonding, H-bonding and Pi-Pi stacking were the most prominent interactions between NDM-1 and compounds with the participation of residues

GLN123, LYS211, GLU152, ASN220, divalent ion Zn303, Zn302 and others, as in H2 (N15W17) Fig. D.1. Table 1 illustrates the most prevalent amino acid residues, as well as other molecules and ions that contributed to the protein-compound interactions.

Some derivatives are ranking top 20 binding affinity with more than one protein, their symbol contains the proteins that impact them with their sequence in terms of the binding affinity like N7W7H15, which have great activity against three proteins. as shown in table 2.

proteins	NDM-1	Gyrase B	S1:DHFR	Azobenzene Reductase
Residues relevant	Zn303, Zn302 (Chelation bonding), GLN123 & LYS211 & GLU152 & ASN220 (H-bonding), TRP93 & HIE122& HIS250 (π-π stacking).	VAL123,120,43,167 & PHE169 & MET95 & ILE78,94 & PRO79 (Hydrophobic interactions), PHE104 & ASN46 (H- bonding), ASP49,73 & ASN46 (Polar interactions).	GLY93 & PHE92 & ILE5,50,31 &LEU28 & VAL6 & ALA7 (Hydrophobic interactions), ASP27 & LEU20 & H2O &PHE92 & ILE5 (H- bonding).	ARG11 &ARG15 (charge interactions), ARG11 (π - cation), THR16 & GLU73 & TYR74 & HIE75 & SER76 (H-bonding).

Egypt. J. Chem. 66, No. 5 (2023)

Core	Azobenzene Reductase from <i>B.subtilis</i> (1NNI)	Staphylococcus aureus S1:DHFR (2W9S)	<i>E. coli</i> Gyrase B (3G7E)	New Delhi Metallo- beta-Lactamase-1 (4HL2)	
	⁰ ν _ζ N1 ΔG =-6.69	N ⁻⁰ NH2 W1 ΔG =-8.254	G1 ΔG =-9.611	OH O 	
	N2 ΔG =-6.423	³ 2 ₅ N NH ₂ W2 ΔG =-7.875	ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ο ο H H2N15W17 ΔG =-7.966	
	² γ, OH OH N3 ΔG =-6.357	³ W3 ΔG =-7.836	G3 ΔG =-9.362	$H3$ $\Delta G = -7.832$	
HO N N N N N	O O O H N4 ΔG =-6.259	NH ₂ 32 W4 ΔG =-7.734	ο ο ο ο ο ο ο ο ο ο ο ο ο ο	$\frac{1}{2}$	
λ H	OH γ N5 ΔG =-6.158	OH 32 W5 ΔG =-7.723	N·N δζ S G5 ΔG =-8.992	он он H5N12 ΔG =-7.61	
	HO N6 ΔG =-6.152	W6 ΔG =-7.664	66 ΔG =-8.819	H6 ΔG =-7.599	
	ο ο Ν7W7H15 ΔG =-6.063		N 	³ ² / ₂ , NH ₂ H7 ΔG =-7.487	
	Ο ΟΗ N8 ΔG =-6.032	W8 ΔG =-7.582	N·NH O 68 ΔG =-8.747	N N γ γ γ γ N OH H8 ΔG =-7.451	

Table (2) Chemical structure and ΔG of the studied compounds

Egypt. J. Chem. **66**, No. 5 (2023)

DFT Analysis

DFT, Density-functional theory, is an atomistic simulation calculating to find a wide range of important properties such as HOMOs are the highest occupied molecular orbitals, and LUMOs is the lowest lying unoccupied molecular orbitals, and the Gap between them in the molecular-level theory. This simulation predicts that a site where the LUMO is localized, is a good electrophilic site. So LUMO's value link to electron affinity. Similarly, that a site where the HOMO's is localized, is electrons most free to participate in the interactions. So ionization potential affects by HOMO's value. HOMO, LUMO and GAP measurements confirmed the tendency of molecules to behave as acids rather than bases, as well as molecules have great kinetic activity but low stability. The Figure (3.24) shown the HOMO and LUMO in G1, W1, H1 (N17W10), N1 HOMO values of all compound ranged from -0.20 to -0.26 eV, LUMO's values were -0.06 to -0.11 eV and the Gap were 0.10 to 0.17 eV. these features were employed in equations to find many molecular properties such ionization potential (I) and electron affinity EA:

$$I = -E_{HOMO}$$
(1),
EA= $-E_{LUMO}$(2)

The values of the studied compounds ranged (0.202-0.252) to the I, and ranged from (0.063 - 0.116) to the EA. To Electronegativity (μ), softness (S), Hardness (η), and index global electrophilicity (ω) finding, the equations (3),(4),(5), and (6) were used:

$$\mu = -\frac{1}{2} (E_{HOMO} + E_{LUMO}) \dots (3)$$

$$(S) = -\frac{2}{(E_{HOMO} - E_{LUMO})} \dots (4)$$

$$\eta = -\frac{1}{2} (E_{HOMO} - E_{LUMO}) \dots (5)$$

$$(\omega) = \frac{\mu 2}{2n} \dots (6)$$

Where the values were between (0.138- 0.173) for Electronegativity, between (12.31- 18.66) for softness, between (0.053-0.081) Hardness, and between (0.008- 0.013) for index global electrophilicity [11].

In-silico Drug-Likeness Predictions

Drug-likeness criteria are a set of standards for the structural properties of compounds that may be used to quickly calculate a molecule's drug-like qualities according to 'Lipinski's rule, before the compound is ever synthesized and evaluated. The five-parameter is a guideline for determining if a chemical molecule with a certain biological activity has qualities that would make it a likely orally active medication in humans. Where the drug must not violate more than one of the criteria related to molecular mass, log P, hydrogen-bond donors and acceptors.

For the 69 compounds, molecular mass were (356.33-411.39) when the domain between (86-829), log p were (1.6-5.65) the domain (-23.7-8.3), H-bond donors were (2-5) domain (under 7), H-bond acceptors

were (5-10), domain (under 15). These indicates that all of the values are within an acceptable ranges [12].

Fig (3-24): HOMO, LUMO and Gap for G1, W1, H1 (N17W10) and N1.

Human oral bioavailability (HOB)

Bioavailability refers to the rate and extent to which the Active Pharmaceutical Ingredient (API) is accessible at the target site. This is the closest thing to identifying a medicine's "optimal" bioavailability. The letter F stands for the fraction of the active drug that remains unchanged in the systemic circulation, The calculation is built on the presumption that the concentration of drug in blood or plasma is proportional to its concentration at the action site. Similarly, the compounds were classified based on their percent F values (F% \leq 50% as "reduced," F% \geq 50% as "high").

The bioavailability of N1-N20 (G10) quinolones ranged from 78% to 92%, W1-W20 quinolones from 71% to 89%, G1-G20 quinolones from 71% to 92%, and H1 (N17W10) -H20 quinolones from 70% to 92%. All of the results are shown in, which is considered

high based on the F% values, that were greater than 50%.

Human Intestinal Absorption (HIA)

One of the most relevant ADMET features is human intestinal absorption, it's also an important stage in the delivery of pharmaceuticals to their intended recipients. Various processes deliver drug molecules from the gastroenteric system to the blood circulation and allow them to pass through the gastroenteric membrane. Passive diffusion is the principal process, which is induced by a concentration difference. P-Glycoprotein (P-gp) is a common carrier of pharmaceuticals through the intestine, causing efflux⁹⁵. HIA was categorized into three parts: high (100–67%), middle (66–33%), and low (32–0%)⁹⁶. The HIA values for all of the quinolones examined ranged from 87% to 96%, which is a high percentage, as seen by the HIA values.

	· · · · ·	- F								
1. Comp.	2. N1	3. N2	4. N3	5. N4	6. N5	7. N6	8. N7	9. N8	10. N9	11. N10
12. LUMO	130.095	140.084	150.085	160.089	170.094	180.089	190.076	200.083	210.089	220.084
23. HOMO	240.245	250.215	260.236	270.237	280.225	290.243	300.236	310.237	320.234	330.241
34. GAP	35. 0.15	36. 0.13	37. 0.152	38. 0.147	39. 0.13	40. 0.154	41.0.16	42. 0.154	43.0.145	44. 0.157
45. IP/ eV	46. 0.245	47. 0.215	48. 0.236	49. 0.237	50. 0.225	51. 0.243	52. 0.236	53. 0.237	54. 0.234	55. 0.241
56. EA/ eV	57.0.095	58. 0.084	59. 0.085	60. 0.089	61. 0.094	62. 0.089	63. 0.076	64. 0.083	65. 0.089	66. 0.084
67. (μ) γ	68. 0.17	69.0.15	70, 0,161	71.0.163	72, 0,159	73. 0.166	74. 0.156	75. 0.16	76. 0.161	77. 0.163
78 n	79 0 075	80 0.065	81 0 076	82 0 074	83 0.065	84 0 077	85 0.08	86 0.077	87 0 072	88 0 079
89 S	90 13 37	91 15 33	92 13 18	93 13 59	94 15 37	95 12 97	96 12 51	97 13.02	98 13 83	99 12 74
100 (cc)	101 0.013	102 0.01	103 0.012	104 0.012	105 0.01	106 0.013	107 0.012	108 0.012	100 0.012	110 0.013
111 Bedev	101. 0.015	102. 0.01	105. 0.012	104. 0.012	105. 0.01	100. 0.015	107. 0.012	100. 0.012	109. 0.012	110. 0.015
III. Kedox	112. 2.568	113. 2.545	114. 2.793	115. 2.646	116. 2.378	117. 2.737	118. 3.097	119. 2.849	120. 2.624	121. 2.869
122.										
123. Comp.	124. N11	125. N12	126. N13	127. N14	128. N15	129. N16	130. N17	131. N18- H3	132. N19	133. N20
	135	136	137	138	139	140	141	142	1.12 0.00	144
134. LUMO	0.094	0.098	0.097	0.088	0.087	0.085	0.093	0.086	1450.08	0.077
	146		148	149	150	151	152	153	154	155
145. HOMO	0.244	1470.24	0.251	0.229	0.246	0.241	0.238	0.244	0.224	0.239
156. GAP	157. 0.15	158. 0.142	159. 0.154	160. 0.141	161, 0,159	162, 0,156	163. 0.145	164. 0.158	165. 0.143	166. 0.162
167. IP/ eV	168. 0.244	169. 0.24	170. 0.251	171. 0.229	172. 0.246	173. 0.241	174, 0.238	175. 0.244	176. 0.224	177. 0.239
178 EA/eV	179 0.094	180 0.098	181 0.097	182 0.088	183 0.087	184 0.085	185 0.093	186 0.086	187 0.08	188 0.077
189 (11) 2	100 0 160	101 0 160	102 0 174	102. 0.000	103. 0.007	105 0 163	105. 0.055	107 0 165	108 0 152	100.0.158
189. (μ) χ	201 0.075	202 0.071	202 0.077	204 0.071	205 0.070	206 0.078	207 0.072	208 0.070	200 0.072	210 0.091
200. fj	201. 0.075	202. 0.071	205. 0.077	204. 0.071	203. 0.079	200. 0.078	207. 0.072	208. 0.079	209. 0.072	210. 0.081
211. 5	212. 13.37	213. 14.1	214. 12.97	215. 14.14	216. 12.61	217. 12.83	218. 13.82	219. 12.66	220. 13.97	221. 12.34
222. (œ)	223. 0.013	224. 0.012	225. 0.013	226. 0.011	227. 0.013	228. 0.013	229. 0.012	230. 0.013	231. 0.011	232. 0.013
233. Redox	234. 2.589	235. 2.448	236. 2.591	237. 2.612	238. 2.823	239. 2.835	240. 2.55	241. 2.829	242. 2.782	243. 3.107
potential										
244.										
245. Comp.	246. W1	247. W2	248. W3	249. W4	250. W5	251. W6	252. W7	253. W8	254. W9	255. W10
256. LUMO	257	258	259	260	261	262	263	264	265	266
	0.098	0.091	0.076	0.065	0.089	0.072	0.094	0.079	0.072	0.116
267. HOMO	268	269	270	271	272	273	274	275	276	277
	0.253	0.217	0.218	0.221	0.229	0.223	0.247	0.219	0.233	0.223
278. GAP	279. 0.155	280. 0.126	281. 0.142	282. 0.156	283. 0.14	284. 0.151	285. 0.153	286. 0.14	287. 0.161	288. 0.107
289. IP/ eV	290. 0.253	291. 0.217	292. 0.218	293. 0.221	294. 0.229	295. 0.223	296. 0.247	297. 0.219	298. 0.233	299. 0.223
300. EA/	301. 0.098	302. 0.091	303. 0.076	304. 0.065	305. 0.089	306. 0.072	307. 0.094	308. 0.079	309. 0.072	310. 0.116
eV										
311. (μ) γ	312, 0,175	313. 0.154	314. 0.147	315, 0,143	316. 0.159	317.0.147	318. 0.171	319. 0.149	320, 0,153	321. 0.17
322 n	323 0.077	324 0.063	325 0.071	326 0.078	327 0.07	328 0.075	329 0.076	330 0.07	331 0.08	332, 0.054
333 8	334 12.92	335 15 89	336 14.08	337 12.86	338 14 24	339 13 26	340 13 1	341 14 32	342 12 43	343 18 67
244 (c)	245 0.014	246 0.01	247 0.01	248 0.011	240 0.011	250 0.011	251 0.012	252 0.01	252 0.012	254 0.000
255 Dedex	256 2.59	257 2 276	250 2 00	250 2 29	260 2 591	261 2 102	262 2 610	262 2 764	264 2 222	265 1 022
355. Redox	330. 2.38	337. 2.376	338. 2.88	339. 3.38	300. 2.381	301. 3.103	302. 2.019	303. 2.704	304. 3.233	305. 1.922
potential										
366 Comp	367 W11	368 W12	369 W13	370 W14	371 W15	372 W16	373 W17	374 W18	375 W19	376 W20
500. Comp.	370	370	380	381	387	382	575. 111	385	386	570. 1120
377. LUMO	576 0.073	579 0.083	0.075	0.064	0.083	365 0.071	3840.08		0.072	3870.09
	380	300	301	307	302	0.071	305	306	307	309
388. HOMO	0 222	0.202	0.229	0.222	0.212	3940.22	0 222	0 221	0.214	0.226
200 CAP	0.223	0.202	0.228	0.222	0.212	405 0 140	0.233	0.221	0.214	0.220
399. GAP	400. 0.15	401. 0.12	402. 0.153	403. 0.158	404. 0.129	405. 0.149	406. 0.153	407.0.138	408. 0.142	409.0.136
410. IP/ eV	411. 0.223	412. 0.202	413. 0.228	414. 0.222	415. 0.212	416. 0.22	417. 0.233	418. 0.221	419. 0.214	420. 0.226
421. EA/ eV	422. 0.073	423. 0.083	424. 0.075	425. 0.064	426. 0.083	427. 0.071	428. 0.08	429. 0.083	430. 0.072	431. 0.09
432. (μ) χ	433. 0.148	434. 0.142	435. 0.152	436. 0.143	437. 0.148	438. 0.146	439. 0.156	440. 0.152	441. 0.143	442. 0.158

Table (3) Chemical properties of studied compounds.

Egypt. J. Chem. **66**, No. 5 (2023)

443. η	444. 0.075	445. 0.06	446. 0.076	447. 0.079	448. 0.065	449. 0.075	450. 0.077	451. 0.069	452. 0.071	453. 0.068
454. S	455. 13.33	456. 16.71	457. 13.07	458. 12.62	459. 15.47	460. 13.4	461. 13.04	462. 14.52	463. 14.08	464. 14.73
465. (ω)	466. 0.011	467. 0.009	468. 0.012	469. 0.011	470. 0.01	471.0.011	472. 0.012	473. 0.01	474. 0.01	475. 0.011
476. Redox	477. 3.06	478, 2,448	479. 3.03	480. 3.478	481, 2,558	482. 3.104	483, 2,928	484, 2,657	485, 2,964	486, 2,507
potential										
187 Comp	499 C1	480 62	400 C2	401 G4	402 C5	402 C6	404 67	405 C8	406 C0	407 C10
487. Comp.	466. 01	489. 02	490. 03	491.04	492. 03	495. 00	494. 07	495. 08	490. 09	497. 010
498. LUMO	499	0.079	0.081	0.076	0.084	0.076	0.078	0.072	0.078	0.079
	510 -	511 -	512 -	513 -	514 -	515 -	0.078	517 -	518 -	519 -
509. HOMO	0.216	0 224	0.235	0.216	0 243	0.216	5160.22	0.231	0 241	0.232
520 GAP	521 0 14	522 0 145	523 0 154	524 0 14	525 0 159	526 0 14	527 0 143	528 0.16	529 0 162	530 0 153
531 IP/eV	532 0 216	533 0 224	534 0.235	535 0 216	536 0.243	537 0 216	538 0.22	539 0 231	540 0 241	541 0 232
542 EA/eV	543 0.076	544 0.079	545 0.081	546 0.076	547 0.084	548 0.076	549 0.078	550 0.072	551 0.078	552 0.079
553 (u) v	554 0 146	555 0 151	556 0 158	557 0 146	558 0 164	559 0 146	560 0 149	561 0 151	562 0 159	563 0 155
564. n	565, 0.07	566, 0.072	567. 0.077	568, 0.07	569, 0.079	570, 0.07	571. 0.071	572, 0.08	573, 0.081	574. 0.077
575. 8	576, 14,27	577, 13.8	578, 12,98	579, 14,28	580, 12,59	581, 14,32	582.14	583, 12,53	584, 12.32	585, 13.05
586. (ω)	587. 0.01	588, 0.011	589. 0.012	590, 0.01	591, 0.013	592, 0.01	593. 0.011	594, 0.012	595, 0.013	596. 0.012
597. Redox										
potential	598. 2.854	599. 2.837	600. 2.913	601. 2.847	602. 2.887	603. 2.835	604. 2.841	605. 3.228	606. 3.076	607. 2.951
1										
608. Comp.	609. G11	610. G12	611. G13	612. G14	613. G15	614. G16	615. G17	616. G18	617. G19	618. G20
610 LUMO	620	621	622 0.08	623	624 0.08	625	626	627	628	629
619. LUMO	0.077	0.077	0220.08	0.089	0240.08	0.098	0.086	0.079	0.079	0.092
620 HOMO	631	632	633	634	635	636 0.25	637	638	639	640
030. HOMO	0.223	0.226	0.224	0.247	0.223	0300.23	0.247	0.227	0.228	0.251
641. GAP	642. 0.146	643. 0.148	644. 0.144	645. 0.159	646. 0.143	647. 0.152	648. 0.161	649. 0.149	650. 0.149	651. 0.159
652. IP/ eV	653. 0.223	654. 0.226	655. 0.224	656. 0.247	657. 0.223	658. 0.25	659. 0.247	660. 0.227	661. 0.228	662. 0.251
663. EA/ eV	664. 0.077	665. 0.077	666. 0.08	667. 0.089	668. 0.08	669. 0.098	670. 0.086	671. 0.079	672. 0.079	673. 0.092
674. (μ) χ	675. 0.15	676. 0.152	677. 0.152	678. 0.168	679. 0.152	680. 0.174	681. 0.166	682. 0.153	683. 0.154	684. 0.171
685. η	686. 0.073	687. 0.074	688. 0.072	689. 0.079	690. 0.071	691. 0.076	692. 0.081	693. 0.074	694. 0.075	695. 0.08
696. S	697. 13.71	698. 13.48	699. 13.87	700. 12.61	701.14	702. 13.13	703. 12.41	704. 13.45	705. 13.38	706. 12.57
707. (ω)	708. 0.011	709. 0.011	710. 0.011	711. 0.013	712. 0.011	713. 0.013	714. 0.013	715. 0.011	716. 0.011	717. 0.014
718. Redox	719. 2.885	720. 2.916	721. 2.805	722. 2.787	723. 2.779	724. 2.555	725. 2.877	726. 2.894	727. 2.894	728. 2.734
potential										
729 Comp	730 H1	731 H2	732 H3	733 H4	734 H5	735 H6	736 H7	737 H8	738 H9	739 H10
	741		743	744	745	746	747	748	749	750
740. LUMO	0.091	7420.08	0.083	0.071	0.076	0.087	0.085	0.069	0.073	0.094
	752	753	754	755	756	757	758	759	760	761
751. HOMO	0.239	0.227	0.236	0.218	0.204	0.231	0.236	0.207	0.203	0.245
762. GAP	763. 0.148	764. 0.148	765. 0.153	766. 0.148	767. 0.128	768. 0.144	769. 0.151	770. 0.138	771. 0.13	772. 0.151
773. IP/ eV	774. 0.239	775. 0.227	776. 0.236	777. 0.218	778. 0.204	779. 0.231	780. 0.236	781. 0.207	782. 0.203	783. 0.245
784. EA/ eV	785. 0.091	786. 0.08	787. 0.083	788. 0.071	789. 0.076	790. 0.087	791. 0.085	792. 0.069	793. 0.073	794. 0.094
795. (μ) χ	796. 0.165	797. 0.154	798. 0.16	799. 0.145	800. 0.14	801. 0.159	802. 0.161	803. 0.138	804. 0.138	805. 0.169
806. η	807. 0.074	808. 0.074	809. 0.076	810. 0.074	811. 0.064	812. 0.072	813. 0.075	814. 0.069	815. 0.065	816. 0.075
817. S	818. 13.51	819. 13.54	820. 13.1	821. 13.55	822. 15.6	823. 13.93	824. 13.25	825. 14.49	826. 15.38	827. 13.28
828. (ω)	829. 0.012	830. 0.011	831. 0.012	832. 0.011	833. 0.009	834. 0.011	835. 0.012	836. 0.01	837. 0.009	838. 0.013
839. Redox	840 2 624	041 0.052	942 2.92	042 2 002	944 2 695	945 2 (52	946 2766	947 2 090	040 0770	940 2 6
potential	040. 2.624	041. 2.853	042. 2.83	043. 3.083	044. 2.085	043. 2.652	040. 2./00	047. 2.989	046. 2.//8	049. 2.0
850. Comp.	851. H11	852. H12	853. H13	854. H14	855. H15	856. H16	857. H17	858. H18	859. H19	860. H20
861. LUMO	862	863	864	865	866	8670.09	868	869	870	871
	0.084	0.088	0.079	0.068	0.092	070	0.086	0.094	0.076	0.095
872. HOMO	6/3 0.242	8/4 0.221	8/3	6/0 0.226	6//	0/0	0 225	68U	681 0.205	682 0.249
	0.245	0.231	0.230	0.220	0.235	0.233	0.255	0.237	0.205	0.240

Egypt. J. Chem. **66**, No. 5 (2023)

883. GAP	884. 0.158	885. 0.143	886. 0.157	887. 0.158	888. 0.16	889. 0.145	890. 0.149	891.0.143	892. 0.129	893. 0.153
894. IP/ eV	895. 0.243	896. 0.231	897. 0.236	898. 0.226	899. 0.253	900. 0.235	901. 0.235	902. 0.237	903. 0.205	904. 0.248
905. EA/ eV	906. 0.084	907. 0.088	908. 0.079	909. 0.068	910. 0.092	911. 0.09	912. 0.086	913. 0.094	914. 0.076	915. 0.095
916. (μ) χ	917. 0.164	918. 0.159	919. 0.158	920. 0.147	921. 0.173	922. 0.162	923. 0.161	924. 0.166	925. 0.14	926. 0.171
927. η	928. 0.079	929. 0.072	930. 0.079	931. 0.079	932. 0.08	933. 0.072	934. 0.074	935. 0.072	936. 0.064	937. 0.076
938. S	939. 12.62	940. 13.98	941. 12.7	942. 12.66	943. 12.5	944. 13.81	945. 13.46	946. 13.94	947. 15.55	948. 13.1
949. (ω)	950. 0.013	951. 0.011	952. 0.012	953. 0.012	954. 0.014	955. 0.012	956. 0.012	957. 0.012	958. 0.009	959. 0.013
960. Redox	061 2.876	062 263	062 2 004	064 2 21	065 2 721	066 2 600	067 2710	068 2 528	060 2605	070 2 608
potential	901. 2.870	902. 2.03	903. 2.994	704. 3.31	905. 2.751	900. 2.009	907. 2.719	906. 2.328	909. 2.093	970. 2.008

5. Conclusions

The 69 proposed fluoroquinolones showed significant theoretically activity against Bacillus subtilis, Staphylococcus aureus, E. coli and Klebsiella pneumoniae. The compound G1 has the highest binding affinity with gyrase B (compared with Ciprofloxacin $\Delta G = -7.36$), Hence a good activity against E.coli bacteria. Compounds H1 (N17W10), H2 (N15W17), H15 (N7W7) have significant activity against three bacteria, While five compounds show good activity against two bacteria. Thus, it can be used as a drug in a broader range than other compounds. The calculated chemical properties (such as molecular weight, log p, ionization energy, electronic affinity, donating or accepting hydrogen bonds, etc.) indicate that these molecules have unique therapeutic properties that can be employed to overcome the problem of bacterial resistance.

6. References

[1] Ventola, C. L. (2015) 'The Antibiotic Resistance Crisis: Part 1: Causes and Threats', Pharmacy and Therapeutics, 40(4), p. 277. doi: Article.

[2] Matada, B. S., Pattanashettar, R. and Yernale, N. G. (2021) 'A comprehensive review on the biological interest of quinoline and its derivatives', Bioorganic & Medicinal Chemistry, 32, p. 115973. doi: 10.1016/J.BMC.2020.115973.

[3] Abbaz, T., Bendjeddou, A. and Villemin, D. (2019) 'Theoretical Analysis and Molecular Orbital studies of Sulfonamides Products with N-Alkylation and O-alkylation', *International Journal of Advanced Engineering Research and Science*, 6(2), pp. 91–101. doi: 10.22161/IJAERS.6.2.12.

[4] Yankova, R. et al. (2016) 'Molecular structure, vibrational spectra, MEP, HOMO-LUMO and NBO analysis of Hf(SeO3)(SeO4)(H2O)4', Journal of Molecular Structure, 1106, pp. 82–88. doi: 10.1016/J.MOLSTRUC.2015.10.091.

[5] Simón, L. and Paton, R. S. (2016) 'QM/MM study on the enantioselectivity of spiroacetalization catalysed by an imidodiphosphoric acid catalyst: How confinement works', *Organic and Biomolecular Chemistry*, 14(11), pp. 3031–3039. doi: 10.1039/C6OB00045B.

[6] Shi, Y. and Szlufarska, I. (2020) 'Wear-induced microstructural evolution of nanocrystalline aluminum and the role of zirconium dopants', Acta Materialia, 200, pp. 432–441. doi: 10.1016/J.ACTAMAT.2020.09.005.

[7] Salihović, M. *et al.* (2014) 'DFT study and biological activity of some methylxanthines', *Bull. Chem. Technol. Bosnia Herzeg*, 42(c), pp. 31–36.

[8] Meng, X.-Y. *et al.* (2011) 'Molecular Docking: A powerful approach for structure-based drug discovery', *Current computer-aided drug design*, 7(2), p. 146. doi: 10.2174/157340911795677602.

[9] Al-Karmalawy, A. A. *et al.* (2021) 'Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor', *Frontiers in Chemistry*, 9, p. 227. doi: 10.3389/FCHEM.2021.661230/BIBTEX.

[10] Kumer, A., Sarker, M. N. and Paul, S. (2019) 'The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming', *International Journal of Chemistry and Technology*, 3(1), pp. 26–37. doi: 10.32571/ijct.478179.

[11] Sens, L. *et al.* (2018) 'Synthesis, antioxidant activity, acetylcholinesterase inhibition and quantum studies of thiosemicarbazones', *Journal of the Brazilian Chemical Society*, 29(2), pp. 343–352. doi: 10.21577/0103-5053.20170146.

[12] Tian, S. *et al.* (2015) 'The application of in silico drug-likeness predictions in pharmaceutical research', *Advanced Drug Delivery Reviews*, 86, pp. 2–10. doi: 10.1016/J.ADDR.2015.01.009.